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1 Problem

Deduce the Liénard-Wiechert potentials and fields [1, 2] in the Lorenz gauge [3]1 for a (point)
electric charge q via a Lorentz transformation from the instantaneous (inertial) rest frame
of the charge.

2 Solution

2.1 Retarded Fields

Maxwell’s equations for the electromagnetic fields E and B can be written (in Gaussian
units) in the form,

∇ · E = 4πρ, ∇ × E = −1

c

∂B

∂t
, ∇ · B = 0, ∇ × B =

4π

c
J +

1

c

∂E

∂t
, (1)

where ρ and J are the (total) volume densities of electric charge and current, and c is the
speed of light in vacuum. These four first-order differential equations can be combined into
two second-order wave equations,

∇2E − 1

c2

∂2E

∂t2
= 4π∇ρ +

4π

c2

∂J

∂t
, ∇2B− 1

c2

∂2B

∂t2
= −4π

c
∇ × J. (2)

The method of Lorenz [3] and Riemann [5] of retarded solutions can lead directly to the
forms,2

E(x, t) =

∫
[ρ] R̂

R2
d3x′ +

1

c

∫ (
[J] · R̂

)
+

(
[J] × R̂

)
R̂ × R̂

R2
d3x′ +

1

c2

∫ (
˙[J] × R̂

)
× R̂

R
d3x′, (3)

B(x, t) =
1

c

∫
[J] × R̂

R2
d3x′ +

1

c2

∫ ˙[J] × R̂

R
d3x′, (4)

where R − x − x′, R̂ = R/ |R| = R/R, [f ] = f(x′, t′ = t − R/c) and J̇ = ∂J/∂t.

1For commentary by the author on the paper of Lorenz, see the Appendix of [4].
2The wave equation for E was given by Lorenz [3] for a medium of electrical conductivity σ, but with E

replaced by J according to Ohm’s law, J = σE. Lorenz noted that a solution to this equation exists via the
method of retarded potentials, but his did not explicitly display this for J. Had he done so, he could have
arrived at eq. (3). Instead, the forms (3)-(4) first appeared in eqs. (14.34) and 14.42) of [6]. See also [7] and
the Appendix to [4].
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2.2 Retarded Potentials

Lorenz [3] also noted that the equation ∇ · B = 0 implies that the magnetic field can be
related to a vector potential A according to,

B = ∇ × A. (5)

Using eq. (5) in Faraday’s law, ∇ ×E = −(1/c)∂B/∂t, we can write

∇ ×
(
E +

1

c

∂A

∂t

)
= 0, (6)

which implies that E + (1/c)∂A/∂t can be related to a scalar potential V as −∇V , i.e.,

E = −∇V − 1

c

∂A

∂t
. (7)

Maxwell’s equations then lead to wave equations for the potentials V and A,

∇2V +
1

c

∂

∂t
∇ ·A = −4πρ, ∇2A− 1

c2

∂2A

∂t2
= −4π

c
J + ∇

(
∇ · A +

1

c

∂V

∂t

)
. (8)

Lorenz argued that if we enforce the auxiliary condition,

∇ · A = −1

c

∂V

∂t
(Lorenz), (9)

the wave equations (8) take the simpler forms,

∇2V − 1

c2

∂2V

∂t2
= −4πρ, ∇2A − 1

c2

∂2A

∂t2
= −4π

c
J (Lorenz), (10)

which have the formal, retarded solutions,

V (x, t) =

∫
[ρ]

R
d3x′, A(x, t) =

1

c

∫
[J]

R
d3x′ (Lorenz). (11)

In the present context it is useful to note that the retarded potentials (11) depend on the
(retarded) charge and current densities, but not on their time derivatives. In particular, this
means that the retarded potentials do not depend on the acceleration of the charges (which
would correspond to a dependence on J̇). Hence, the form of the retarded potentials of a
single accelerating charge have the same form as those for a charge with uniform velocity.

2.3 Liénard-Wiechert Potentials via Lorentz Transformations

The argument of this section was first given by Minkowski [8].3

Textbook derivations of the Liénard-Wiechert potentials tend to follow the original ar-
guments [1, 2] that evaluate the retarded potentials (11) for a “point” electric charge.4

3A version by the author on pp. 222-223 of [9], written in 1979, was perhaps too brief.
4See, for example, sec. 19-1 of [6] and sec. 14.1 of [10].
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A lesson of the retarded potentials (11) is that their value at (x, t) in the lab frame depends
on the position [x′] of the charge at the retarded time [t′] = t − [R]/c where [R] = x − [x′]
is the retarded distance between the charge and the observer. We expect the retarded
potentials V (x, t) and A(x, t) for a single electric charge to depend on the retarded distance
[R] between the observer and the charge and on the normalized velocity, [v]/c ≡ [β], of the
charge at the retarded time.

In the case of a uniformly moving charge, for which [β] = β = v/c = constant, we wish
to relate the retarded potentials in lab frame to those in a frame (called the � frame) in
which the charge is at rest.

In the � frame, the potentials according to an observer at (x�, t�) of a charge q that is
uniformly moving in the lab frame are simply,

V �(x�, t�) =
q

[R�]
, A�(x�, t�) = 0, (12)

where [R�] = x�− [x′�], the charge is at rest at position [x′�] in the � frame, and the retarded
time is [t′�] = t� − [R�]/c.

It seems reasonable that the potentials (12) also hold in the instantaneous, inertial rest
frame of an arbitrarily accelerated charge. This view seems to have been held by Minkowski
[8], and was endorsed by Landau in sec. 63 of [11]. However, in the case of a charge that is
uniformly accelerated, the potentials do not obey eq. (12), as reviewed in sec. 2.3.1 below.

The potentials (12) in the � frame are related to those in the lab frame by a Lorentz
transformation involving [β] and [γ] = 1/

√
1 − [β]2,

V = [γ](V � + [β] · A�) = q
[ γ

R�

]
, A‖ = [γ](A�

‖ + [β]V �) = q

[
γβ

R�

]
, A⊥ = A�

⊥ = 0, (13)

where A‖ =
(
A · [β̂]

)
[β̂] and A⊥ = A− A‖ = A−

(
A · [β̂]

)
[β̂].

To complete the analysis, we need the value of R� in the lab frame. For this, we combine
the retarded distance [R] = x− [x′] with the time difference t − [t′] = [R]/c into a 4-vector,

Δxμ = (ct − c[t′],x− [x′]) − ([R], [R]), (14)

whose invariant length is zero. That is, Δxμ is a lightlike 4-vector, whose components in the
� frame are ([R�], [R�]). Then, the Lorentz transformation of the time component of Δxμ

tells us that

[R�] = Δx�
0 = [γ](Δx0 − [β] · Δx) = [γ(R − β · R)] = [γ(1 − β · R̂)R]. (15)

Using this in eq. (13), we obtain the retarded potentials in the lab frame as,

V (x, t) =
q

[R − β · R]
=

q

[(1 − β · R̂)R]
, A(x, t) =

q[β]

[R − β · R]
=

q[β]

[(1 − β · R̂)R]
. (16)

While the result (16) has been obtained for the special case of a uniformly moving “point”
charge, it also applies to a “point” charge with arbitrary motion, according to the argument
at the end of sec. 2.2. Thus, we have arrived at the Liénard-Wiechert potentials via Lorentz
transformations.5

5This derivation has also been given in [11, 12, 13, 14]. Another work, [15], should also have arrived
at eq. (16) via a Lorentz transformation, but due to algebraic errors, concluded that the famous Lorentz
contraction of lengths should instead be an expansion.
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2.3.1 Uniformly Accelerated Charge

Analytic calculations for the potentials and fields of a point charge with uniform acceleration
of infinite duration can be given (see, for example, [16]). If the charge moves along the
positive z-axis with constant, positive acceleration a� in the instantaneous rest frame of the
charge, we define the charge to be momentarily at rest at t = 0. Then, the position of the
charge at time t is given by,

z(t) =
√

b2 + c2t2, x = 0 = y. (17)

where b = c2/a�. The potentials according to an observer at cylindrical coordinates x =
(ρ, φ, z) are,6

V (x, t) = q
z(z2 + b2 + ρ2 − c2t2) − cts

s(z2 − c2t2)
, A(x, t) = q

ct(z2 + b2 + ρ2 − c2t2) − zs

s(z2 − c2t2)
ẑ, (18)

where,

s =
√

(z2 + ρ2 + b2 − c2t2)2 − 4b2(z2 − c2t2) =
√

(z2 + ρ2 − z2
b )

2 + 4b2ρ2. (19)

The potentials (and fields) are zero for z < −ct (and diverge on the plane z = −ct).7 The
(moving) plane z = −ct can be called an event horizon, in that an observer at z < −ct can
detect no fields from the charge q at time t.

The lab frame is the instantaneous rest frame of the charge at time t = 0, when the
charge is at (0, 0, b). At this time, the potentials at x = (ρ, φ, z) are,

V (x, 0) = q
z2 + b2 + ρ2

z
√

(z2 + ρ2 + b2)2 − 4b2z2
, A(x, 0) = −q

z
ẑ. (20)

Unlike the case of a nonaccelerated charge, the vector potential A is nonzero in the instan-
taneous rest frame of the charge. Also, the scalar potential V does not have the form q/r
where r =

√
(z − b)2 + ρ2 is the distance from the observer to the charge.

That is, the potentials of a uniformly accelerated charge do not have the form of eq. (12)
in the instantaneous rest frame of the charge.8

2.4 Liénard-Wiechert Fields via Lorentz Transformations

The Liénard-Wiechert potentials can be used to deduce the electromagnetic fields E and B of
an accelerated charge using eqs. (5) and (7), via notoriously intricate computations. Hence,
it is useful to consider whether the electromagnetic fields could be deduced in a simpler
manner, perhaps via Lorentz transformations.

6Neither V nor A depend directly on the acceleration a�.
7This singular plane can be thought of as the location at time t of the plane of Ĉerenkov radiation

associated with the charge t = −∞ when its velocity was v = −c ẑ.
8However, I believe that form eq. (12) holds except for charges whose velocity was formally equal to c

at t = −∞ and was decelerated in some manner to v < c thereafter. That is, I believe eq. (12) holds for
all physical motions of charges, so it is perhaps less surprising that the potentials (16) apply to the general
case, and not just for motion with uniform velocity.
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This has been reported in [17],9 based on a model of the fields E� and B� in the in-
stantaneous rest frame of the charge. In this model, the fields are nonzero throughout all
space, whereas in the case of a uniformly accelerated charge, as in sec. 2.3.1, the fields are
nonzero only for z > −ct. Hence, the argument of [17] cannot be considered as generally
applicable, although the objection to this argument is mainly that it does not apply to the
mathematically interesting, but physically unrealistic, case of a uniformly accelerated charge.

The argument can be considered as an application of eq. (4) in the instantaneous rest
frame (the � frame) of a point charge q, where it seems appealing to suppose that [J�] = 0

while [J̇�]/c = q[β̇
�
], such that the fields at the observer in this frame would be,

E� = q

[
R�

R�3

]
+

q

c

⎡
⎣

(
β̇

� ×R�
)
× R�

R�3

⎤
⎦ =

q

c

[
R�

[R�3

]
+

q

c

⎡
⎣

(
R� · β̇�

)
R�

R�3

⎤
⎦ − q

c

[
β̇

�

R�

]
,(21)

B� =
q

c

[
β̇

� ×R�

R�2

]
= [R̂�] × E�. (22)

The Lorentz transformation to the lab frame has boost with [β] and [γ] = 1/
√

1 − [β]2, as
on p. 3. The electric field transforms according to,

E‖ = E�
‖, E⊥ = [γ]E�

⊥ − [γβ] × B�, (23)

where E‖ =
(
E · [β̂]

)
[β̂] and E⊥ = E − E‖ = E −

(
E · [β̂]

)
[β̂]. In the transformation of

the magnetic field, the transformation of [R̂�] is just [R̂], so we have that,

B = [R̂] × E. (24)

To complete the transformation (23) we need the parallel and perpendicular components

of
[
β̇

�
]

and of [R�]. The transformation of the acceleration
[
β̇

�
]

is,

[
β̇

�

‖
]

=

[
d2x′�

‖
dt′�2

]
=

[
γ3β̇‖

]
,

[
β̇

�

⊥
]

=

[
d2x′�

⊥
dt′�2

]
=

[
γ2β̇⊥

]
, (25)

since the Lorentz transformation of spacetime quantities is d[x′�
‖ ] = [γ]d[x′

‖], d[x′�
⊥] = d[x′

⊥]

and d[t′�] = d[t′]/[γ], i.e., a Lorentz contraction for the parallel interval d[x′
‖] and a time

dilation for d[t′]. Then, recalling the Lorentz transformation of the lightlike 4-vector Δxμ,
eqs. (14)-(15), we have,

[R�] = [γ(R − β · R)], [R�
‖] = [γ(R‖ − Rβ)], [R�

⊥] = [R⊥]. (26)

Note that [R�
‖] does not equal [γR‖] as would hold if [R‖] were part of a spacelike 4-vector

(0, [R‖]) for which the Lorentz contraction would apply.

9The argument of [17] is an elaboration of the “kink” model of Thomson [18] for the electric field of a
charge that has constant velocity except for a brief interval of acceleration. This argument was also used
in [19]. That the argument is not “simple” is illustrated by [20], where computational errors led to a claim
that the Liénard-Wiechert fields are incorrect.
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We next display three relations needed below (following sec. IV of [19]):[(
β� · β̇�

)
R�

‖
]

=
[
β�β̇

�

‖R
�
‖ β̂

�
]

=
[
(β�R�

‖)β̇
�

‖ β̂
�
]

=
[
(β · R�

‖)β̇
�

‖
]
, (27)[

(R� + R�β) · β̇�
]

=
[
(R�

‖ + R�β) · β̇�

‖ + R�
⊥ · β̇�

⊥
]

=
[
γ4

{
R‖ − Rβ + (R − β · R)β

} · β̇‖ + γ2R⊥ · β̇⊥
]

=
[
γ4(1 − β2)R‖ · β̇‖ + γ2R⊥ · β̇⊥

]
=

[
γ2R · β̇

]
, (28)[

β ×
(
R� × β̇

�
)]

=
[(

β · β̇�
)

R� − (β · R�)β̇
�
]

=
[
ββ̇

�

‖(R
�
‖ + R�

⊥) − βR�
‖
(
β̇

�

‖ + β̇
�

⊥
)]

=
[
ββ̇

�

‖R
�
⊥ − βR�

‖β̇
�

⊥
]

=
[(

β · β̇�
)

R�
⊥ − (β · R�)β̇

�

⊥
]
. (29)

Of these, eq. (29) is readily anticipated in that
[
β ×

(
R� × β̇

�
)]

is perpendicular to [β].

The ingredients for the Lorentz transformation of the electric field can be written as,

E�
‖ = q

[
R�

‖
R�3

]
+

q

c

⎡
⎣

(
R� · β̇�

)
R�

‖

R�3

⎤
⎦ − q

c

[
β̇

�

‖
R�

]
(30)

= q

[
R�

‖
R�3

]
+

q

c

⎡
⎣

{
(R� + R�β) · β̇�

}
R�

‖

R�3

⎤
⎦ − q

c

[
(R� + β · R�

‖)β̇
�

‖
R�2

]

= q

[
R‖ − Rβ

γ2(R − β · R)3

]
+

q

c

⎡
⎣

(
R · β̇

)
(R‖ −Rβ)

(R − β · R)3

⎤
⎦ − q

c

[
Rβ̇‖

(R − β · R)2

]

= q

[
R‖ − Rβ

γ2(R − β · R)3

]
+

q

c

⎡
⎣

(
R · β̇

)
(R‖ −Rβ) −R(R − β · R)β̇‖

(R − β · R)3

⎤
⎦ ,

[γ]E�
⊥ − [γβ] × B� = q

[
γR�

⊥
R�3

]
+

q

c

⎡
⎣γ

(
R� · β̇�

)
R�

⊥

R�3

⎤
⎦ − q

c

[
γβ̇

�

⊥
R�

]
+

q

c

⎡
⎣γ

{
β ×

(
R� × β̇

�
)}

R�2

⎤
⎦

= q

[
γR�

⊥
R�3

]
+

q

c

⎡
⎣γ

(
R� · β̇�

)
R�

⊥

R�3

⎤
⎦ − q

c

[
γβ̇

�

⊥
R�

]

+
q

c

⎡
⎣γ

{(
β · β̇�

)
R�

⊥ − (β · R�)β̇
�

⊥
}

R�2

⎤
⎦ (31)

= q

[
γR�

⊥
R�3

]
+

q

c

⎡
⎣γ

{(
{R� + R�β} · β̇�

)
R�

⊥ − R�(R� + β · R�)β̇
�

⊥
}

R�3

⎤
⎦

= q

[
R⊥

γ2(R − β · R)3

]
+

q

c

⎡
⎣

(
R · β̇

)
R⊥ − R(R − β · R)β̇⊥

(R − β · R)3

⎤
⎦ .
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Finally, we arrive at the Liénard-Wiechert electric field,

E = E�
‖ + [γ]E�

⊥ − [γβ] × B�

= q

[
R −Rβ

γ2(R − β · R)3

]
+

q

c

⎡
⎣

(
R · β̇

)
(R− Rβ) − R(R − β · R)β̇

(R − β · R)3

⎤
⎦

= q

[
R −Rβ

γ2(R − β · R)3

]
+

q

c

⎡
⎣R ×

{
(R − Rβ) × β̇

}
(R − β · R)3

⎤
⎦ , (32)

noting that R(R − β · R) = R · (R − Rβ). We had previously seen in eq. (24) that the
Liénard-Wiechert expression for the magnetic field is,

B = [R̂] × E. (33)

It is interesting that we find the general forms for the Liénard-Wiechert fields by an
argument that is not completely general.
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