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Closed loops of steady electric current have a nonzero magnetic dipole moment, and exert
equal and opposite forces on one another when at rest,1 as first demonstrated by Ampère
[1]. He argued that the force between two currents elements, I1 dr1 and I2 dr2, is directed

along their line of centers r = r1 − r2: d2F
(A)
12 = −d2F

(A)
21 ∝ I1I2 (r1 − r2).

2 This law predicts
that two current elements do not exert a total torque on themselves,

d2τ
(A)
12 + d2τ

(A)
21 = r1 × d2F

(A)
12 + r

(A)
2 × d2F21

∝ r1 × dI1 dI2 (r1 − r2) + r2 × dI2 dI1 (r2 − r1) = 0. (1)

A simple experiment with two neodymium magnets3 demonstrates significant rotation
when they are dropped from rest, with, say, the North pole of one magnet pointing along
their line of centers and the North pole of the other magnet perpendicular that line.4,5 In
particular, when the two magnets collide and stick together, they continue to rotate as a
whole, with nonzero mechanical angular momentum.

This result shows that Ampère’s force law (and any magnetic force law in which the force
between two current elements is along their line of centers, such as that of Weber [6]) cannot
hold in general, although it does hold for two circuits at rest with steady currents.6

However, it could be that the total initial torque is zero, in agreement with eq. (1),
and only after the two magnets start to move does the total torque on the system become
nonzero. The experiment described above does not resolve this issue.

1The case of closed loops, at rest, of electric current can be called magnetostatics.
2In full, Ampère’s force law can be written as d2F(A)

12 = (I1I2/c2) [3(r̂ · dr1)(r̂ · dr2) − 2 dr1 · dr2] r̂/r2 in
Gaussian units, where c is the speed of light, for the force on current element 1 due to element 2.

3Such as at https://www.amazon.com/LOVIMAG-Neodymium-Magnets-Whiteboard-Magnets-24pack/dp/B0C7468DWQ/
4This experiment is more readily done today than it would have been in 1820, and seems little discussed

in the literature of electromagnetism.
5Ampère argued [2] (see also [3]) that all magnetism is due to electric currents, rather than magnetic

“poles”. The latter do not exist so far as we know, and permanent magnetism can be ascribed to “molecular
currents” in the language of Ampère. The confirmation that permanent magnetism, due to the magnetic
moments of electrons, is Ampèrian (rather than Gilbertian = due to pairs of opposite magnetic charges)
came only after detailed studies of positronium (e+e− “atoms”) in the 1940’s [4, 5].

6If Maxwell had been aware of this experiment, perhaps he would have been less enthusiastic about
Ampère’s force law in Art. 527 of his Treatise [7]. In any case, he displayed the Lorentz force law in Art. 598
of his Treatise, albeit not very clearly. Then, in eq. (11) of Art. 603, Maxwell presented the J/c×B law for
the force on a current density J in a magnetic field B, which is often called the Biot-Savart force.

Further discussion of these issues is given in Appendices A.24.4.7 and A.24.4.9 of [8].
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For further insight, we use the Biot-Savart force law7 to compute the torque of one circuit
on another, supposing both circuits are at rest and carry steady currents,

τ
(BS)
12 =

∮
1

r1 × dF
(BS)
12 (r1) =

∮
1

r1 × I1I2

c2

∮
2

dr1 × (dr2 × r)

r3

=
I1I2

c2

∮
1

∮
2

r1 × [(dr1 · r) dr2 − (dr1 · dr2) r]

r3

=
I1I2

c2

∮
2

(∮
1

(dr1 · r) r1

r3

)
× dr2 − I1I2

c2

∮
1

∮
2

(dr1 · dr2) r1 × r2

r3

=
I1I2

c2

∮
2

∮
1

dr1 × dr2

r
− I1I2

c2

∮
1

∮
2

(dr1 · dr2) r1 × r2

r3
= −τ

(BS)
21 , (2)

with r = r1 − r2, and recalling8 that (dr1 · r/r3) = −d(1/r), the integral in parentheses in
the third line of eq. (2) can be integrated by parts (with respect to r1) to yield the form of
the first integral in the last line of eq. (2).

Hence, the total torque, τ
(BS)
12 + τ

(BS)
21 , on two circuits (at rest with steady currents) is

zero according to the Biot-Savart force law, in agreement with eq. (1) based on Ampère’s
force law.9

We infer that the observed total angular momentum of the system of two small magnets
is due to a total nonzero total torque that is generated only after the system is released from
rest, which could not happen if either Ampère’s force law or the Biot-Savart force law still
held for moving current elements.

However, the force law J/c × B does apply in general, being a version of the Lorentz
force law. But, the form (often attributed to Biot and Savart) B =

∫
dVol (J/c × r) /r3 for

the magnetic field due to current density J applies only to magnetostatics. Generalizations
of the Biot-Savart magnetostatic field are reviewed, for example, in [11].

The initial angular momentum of the system is zero, so we expect that total, final angular
momentum of the system to also be zero. This requires there to be a nonzero electromagnetic-
field angular momentum equal and opposite to the mechanical angular momentum of the
spinning magnets.

7What is called the Biot-Savart force law, d2F(BS)
12 = (I1I2/c2) [dr1) × (dr2) × r)] /r3, in, for example,

Sec. 5.2 of [9], is actually due to Ampère, p. 29 of [1], p. 366 of the English translation. Biot and Savart only
considered the force between a hypothetical magnetic monopole and an electric current loop, as reviewed,
for example, in Sec. A.11 of [8]. Ampère’s version of the Biot-Savart force law was almost universally ignored
until it was independently (re)discovered by Grassmann in 1845 [10].

8See, for example, sec. 5.2 of [9], or footnote 58, p. 23 of [8].
9Already in 1825, Ampère [1] showed that his force law and that of Biot and Savart imply the same force

of one circuit on another (for circuits at rest with steady currents). This is also true for the torque of one
circuit on another, as can be seen from eq. (7) of [12], d2

(
F(A)

12 −F(BS)
12

)
= −(I1I2/c2) d[r · dr1)r/r3] for the

difference between the two force laws on element I1 dr1 due to element I2 dr2. This difference is a perfect
differential, so the difference in the torque on circuit 1 due to circuit 2 according to the two forces laws is
zero, τ

(A)
12 − τ

(BS)
12 =

∮
1
r1 × ∮

2
d2

(
F(A)

12 − F(BS)
12

)
= 0, as the integral around closed circuit 2 of a perfect

differential is zero.
Note that this result, together with eq. (1) for Ampère’s force law, implies that the sum τ

(BS)
12 + τ

(BS)
21 is

zero, as found above by a different argument.
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Once the magnets start to move, an electric field E is generated in addition to the initial
magnetic field of the system. Then, the field angular momentum LEM can/must be nonzero,

LEM =

∫
r × pEM dVol =

∫
r ×

( c

4π
E × B

)
dVol = −Lmech. (3)

Appendix: Total Torque on Two Magnetic Dipoles
It is also instructive to consider two small (“point”) magnetic dipoles initially at rest,

μ1 = μ1 x̂ initially located at the origin, r1 = (x1, y1, z1) = (0, 0, 0), and μ2 = μ2 ŷ initially at
r2 = (x2, y2, z2) = (r, 0, 0). The analysis below is in the context of Maxwell’s electrodynamics;
see, for example, Sec. 5.7 of [9] or Sec. 6.1.2 of [13].

The initial magnetic field at μ1, due to μ2, is (in Gaussian units)

B2(r1) =
3(μ2 · r̂) r̂ − μ2

r3
= −μ2 ŷ

r3
. (4)

with r = r1 − r2. Similarly, the initial magnetic field at μ2, due to μ1, is

B1(r2) =
3(μ1 · r̂) r̂ −μ1

r3
=

2μ1 x̂

r3
. (5)

The initial force on μ1 is10

F1 = ∇(μ1 · B2) = μ1∇1B2,x = μ1μ2∇1
3(y1 − y2)(x1 − x2)

r5
12

= −3μ1μ2

r4
ŷ, (6)

with r12 =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, noting that ∂ r12/∂y1 = ∂ r12/∂z1 = 0 as
the dipoles have y1 = z1 = y2 = z2 = 0. Similarly the initial force on μ2 is11

F2 = ∇(μ2 · B1) = μ2∇2B1,y = μ1μ2∇2
3(x1 − x2)(y1 − y2)

r5
12

=
3μ1μ2

r4
ŷ = −F1. (10)

10Use of the gradient operator ∇ requires consideration of the magnetic field in the vicinity of the dipoles,
and not just at their location. Of course, the result of the gradient operation is evaluated for the actual
location of the dipoles, at r1 = (0, 0, 0) and r2 = (r, 0, 0).

11The force F on a permanent magnetic-dipole moment μ in an external magnetic field B can be rewritten
as

F = ∇(μ ·B) = μ × (∇ × B) + B× (∇ × μ) + (μ · ∇)B + (B ·∇)μ = (μ · ∇)B, (7)

noting that ∇ × B = 0 in the region of the dipole μ provided the source currents of the external field are
elsewhere. For the present example,

F1(r1) = (μ1 · ∇)B2(r1) = μ1

∂

∂x1

(
3μ2(y1 − y2)r

r5
12

− μ2 ŷ
r3
12

)
= −3μ1μ2 ŷ

r4
, (8)

while

F2(r2) = (μ2 · ∇)B1(r2) = μ2

∂

∂y2

(
3μ1(x1 − x2)r

r5
12

− 2
μ1 x̂
r3
12

)
=

3μ1μ2 ŷ
r4

= −F1. (9)
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However, once the magnets start rotating, the forces between them become attractive, and
they soon stick to one another, while continuing to rotate as a whole. Experiment with two
neodymium magnets confirms these results.

The torque about an arbitrary reference point on a magnetic dipole μ at position rµ is
the sum of the torque rµ × F, due to the magnetic force F = ∇(μ · B) on the dipole, and
the torque μ × B about the center of the dipole.

The total initial torque τ (about an arbitrary, fixed reference point) on the system of
two magnetic dipoles is

τ = r1 × F1 + μ1 × B2 + r2 × F2 + μ2 × B1

= r × F2 + μ1 x̂ ×−μ2 ŷ

r3
+ μ2 ŷ × 2μ1 x̂

r3
= r x̂ × 3μ1μ2

r4
ŷ − μ1μ2 ẑ

r3
− 2μ1μ2 ẑ

r3
= 0, (11)

The total initial torque on the system (which is initially at rest) is zero, such that the
Maxwellian force and torque laws for “point” magnetic dipoles are in agreement with Ampère’s
force law about this.
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