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1 Problem

A long cylinder of radius a has uniform magnetization M transverse to its axis. Find the
magnetic fields B and H everywhere. Show that the field lines outside the cylinder are
circles.

A trap for diamagnetic objects based on a pair of finite-length, transversely magnetized
cylinders is reported in [1].

Suppose also that the cylinder is given a uniform velocity, v � c, along its axis, where c is
the speed of light in vacuum. Find the resulting charge density and electric field everywhere,
ignoring effects of order (v/c)2.

2 Solution Assuming Ampèrian Magnetization

We assume that the magnetization is Ampèrian (associated with electrical currents) and not
Gilbertian (associated with pairs of opposite, true magnetic charge). We therefore denote
the magnetization as MA in this section. See the Appendix for the possible case of Gilbertian
magnetization.

Let ẑ be the axis of the cylinder and x̂ the direction of the magnetization.

2.1 Cylinder at Rest

2.1.1 Solution via the Magnetic Scalar Potential

Since there are no free currents in this statics problem,

∇× HA = 0, (1)

where

HA =
B

μ0

− MA (2)

is the macroscopic magnetic field (in SI units) associated the magnetic induction B (which
obeys ∇ · B = 0 in the absence of true magnetic charges) and the Ampèrian magnetization
MA.1 Hence, we can define a magnetic scalar potential such that,

HA = −∇φH . (3)

1The field HA is ordinarily written simply as H, as the usual macroscopic Maxwell equations tacitly
assume that the magnetization is Ampèrian.
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As the cylinder is very long, we approximate the problem as 2-dimensional: φH = φH(r, θ)
in cylindrical coordinates (r, θ, z).

As discussed in, for example, Appendix A of [2], a fictitious magnetic charge density,

ρm,A = −∇ · MA, (4)

can be associated with the Ampèrian magnetization density MA, in which case ∇·HA = ρm,A

in SI units.
Since MA = M x̂ in this example, the volume charge density of (fictitious) magnetic

charges is ρm,A = −∇ · MA = 0. However, at the surface of the cylinder (r = a), there is a
(fictitious) surface magnetic-charge density given by,

σm,A = MA · r̂ = M cos θ. (5)

The potential is continuous at the boundary r = a, and Gauss’ law, ∇ ·HA = ρm,A, tells
us that,

σm,A = M cos θ = HA,r(r = a+) −HA,r(r = a−) = −∂φH(r = a+)

∂r
+

∂φH(r = a−)

∂r
. (6)

The potential can be expanded as a harmonic series, but only the term in cos θ will
contribute in view of eq. (6). Thus,

φH =

{−Hr cos θ, r ≤ a,
−H a2

r
cos θ, r ≥ a,

(7)

satisfies continuity of the potential at r = a. Then, eq. (6) also tells us that H = −M/2.
Inside the cylinder we have,

φH(r < a) =
Mx

2
, (8)

HA(r < a) = −∇φH = −M

2
x̂ = −MA

2
, (9)

BA(r < a) = μ0(HA + MA) = μ0

MA

2
. (10)

Outside the cylinder there is no magnetization, and,

φH(r > a) = Ma2 cos θ

2r
=

Ma2

2

x

x2 + y2
, (11)

HA(r > a) =
BA(r > a)

μ0

=
Ma2

2r2
(cos θ r̂ + sin θ θ̂) =

Ma2

2r4

[
(x2 − y2) x̂ + 2xy ŷ

]
. (12)

The potential (11) and the fields (12) outside the cylinder are equivalent to those of a line
with magnetic-moment density πa2M x̂ per unit length in z.2

2The magnetic scalar potential of a point magnetic dipole m is m ·R/R3, where R is the distance from
the dipole to the observation point. In case of density m x̂ per unit length of magnetic dipoles along the
z-axis, the magnetic scalar potential at (r, θ, z) in cylindrical coordinates is then given by,

φH(r, θ, z) = φH(r, θ, 0) =
1
4π

∫ ∞

−∞

m · R
R3

dz′ =
mr cos θ

4π

∫ ∞

−∞

dz′

(z′2 + r2)3/2
=

m cos θ

2πr
. (13)
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Field Lines outside the Cylinder

The exterior magnetic field lines are orthogonal to the equipotential surfaces given by
eq. (11).

This problem is 2-dimensional, so we can take advantage of the fact that any analytic
function f(z) = φ(z) + iλ(z) of a complex variable z = x + iy obeys ∇2φ = 0 = ∇2λ, and
that lines of constant φ are orthogonal to lines of constant λ.3 In particular, we consider,

f =
Ma2

2z
=

Ma2

2

x − iy

x2 + y2
, φ =

Ma2

2

x

x2 + y2
, λ = −Ma2

2

y

x2 + y2
. (14)

Lines of constant φ and λ (which constants can be negative) obey the relations,

(
x − a2

Mφ

)2

+ y2 =

(
a2

Mφ

)2

, x2 +

(
y − a2

Mλ

)2

=

(
a2

Mλ

)2

, (15)

which are circles of radii a2/M |φ| and a2/M |λ| centered at (x, y) = (a2/Mφ, 0) and (0, a2/Mλ).
The figure below is from p. 262 of [3]; for horizonal magnetization, the field lines are solid
and the equipotentials are dashed.

2.1.2 Solution via the Vector Potential

Instead of invoking the magnetic scalar potential φH , we can analyze this problem by con-
sideration of the bound currents associated with the magnetization MA.

The bulk magnetization current density is JA,bound = ∇×MA, which vanishes for uniform
magnetization. However, there is a nonzero bound surface current density,

KA(r = a, θ, z) = r̂ × MA(r = a−) = −M sin θ ẑ. (16)

3See, for example, secs. 306-318 of [3] or sec. 7.2 of [4].
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The vector potential AA generated by this surface current has only a z-component, which is
independent of z for a long cylinder,

AA,z(r, θ, z) = −μ0Ma

4π

∫ ∫
sin θ′√

a2 + r2 − 2ar cos(θ′ − θ) + z′2 dθ′ dz′ (17)

The magnetic field BA = ∇ × AA has only r− and θ-components, with,

BA,r =
1

r

∂Az

∂θ
=

μ0Ma2

4π

∫ ∫
sin θ′ sin(θ′ − θ)

[a2 + r2 − 2ar cos(θ′ − θ) + z′2]3/2
dθ′ dz′

=
μ0Ma2

2π

∫
sin(θ′ + θ) sin θ′

a2 + r2 − 2ar cos θ′
dθ′

=

⎧⎨
⎩

μ0M cos θ
2

(r < a),

μ0Ma2 cos θ

2r2 (r > a),
(18)

using Dwight 859.131. Similarly,

BA,θ = −∂Az

∂r
= −μ0Ma2

4π

∫ ∫
sin θ′ cos(θ′ − θ)

[a2 + r2 − 2ar cos(θ′ − θ) + z′2]3/2
dθ′ dz′

= −μ0Ma2

2π

∫
sin(θ′ + θ) cos θ′

a2 + r2 − 2ar cos θ′
dθ′

=

⎧⎨
⎩

μ0M sin θ
2

(r < a),

μ0Ma2 sin θ
2r2 (r > a).

(19)

Thus, the magnetic field BA is the same as that found in eqs. (10) and (12).
Although I couldn’t evaluate eq. (17) directly, we can now integrate BA = ∇ × AA to

find the vector potential as,

AA,z =

⎧⎨
⎩

μ0My
2

= μ0Mr sin θ
2

(r < a),

μ0Ma2 sin θ

2r
(r > a),

(20)

which is continuous across the surface r = a.

2.2 Cylinder Moving with Velocity v

In case of a moving cylinder, the analysis of sec. 2.1 holds in the rest frame of the cylinder.
When the cylinder has velocity v = vẑ in the lab frame, the fields in that frame appear to
be,

EA = −γv × B′
A ≈ −v × BA, BA = γ

(
B′

A − v

c2
× E′

A

)
≈ B′

A, (21)

where we ignore terms of order v2/c2, so the magnetic field BA in the lab frame is the same
as the field B′

A in the rest frame (given by eqs. (10) and (12)).4

4Regarding the sign in (21), we note that a hypothetical electric charge which is at rest in the lab frame
would move with velocity −v in the rest frame of the magnetized cylinder, and so in the latter frame would
experience a Lorentz force −v × B.
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Thus,

EA(r < a) ≈ −μ0M
v

2
ŷ = −μ0M

v

2
(sin θ r̂ + cos θ θ̂), (22)

EA(r > a) ≈ μ0

Mva2

2r2
(sin θ r̂ − cos θ θ̂). (23)

There is an electric charge density on the surface of the cylinder given by,

σe = ε0

[
Er(r = a+) − Er(r = a−)

]
=

Mv sin θ

c2
. (24)

This can be thought of as arising from an electric polarization PA related to the moving
Ampèrian magnetization by,

PA ≈ v

c2
× M′

A ≈ v

c2
×MA =

Mv

c2
ŷ, (25)

according to,

σe(r = a) = PA · r̂ ≈ PA sin θ =
Mv sin θ

c2
. (26)

This is an illustration of the fact that the polarization densities MA and PA are compo-
nents of the 4-tensor,

MA =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 cPA,x cPA,y cPA,x

−cPA,x 0 −MA,z MA,y

−cPA,y MA,z 0 −MA,x

−cPA,z −MA,y MA,x 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (27)

Appendix: Fields in the Case of Gilbertian

Magnetization

If the magnetization were due to Gilbertian magnetic dipoles rather than Ampérian ones,
we suppose the existence of true magnetic charges with volume density ρm,true, such that the
third Maxwell equation becomes,5

∇ · BG = μ0 ρm,true. (28)

In the present, static example with no free electric or magnetic currents, we also have that,

∇ × BG = 0, (29)

so the magnetic field can be related to a scalar potential,

BG = −∇φB . (30)

5See, for example, [2].
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The source of the magnetic scalar potential is the true magnetic charges associated with
the (true, Gilbertian) magnetization MG. Again we suppose that MG = M x̂, so the true
volume charge density is ρm,G = −∇ ·MG = 0. At the surface of the cylinder (r = a), there
is a surface density of true magnetic charge given by,

σm,G = MG · r̂ = M cos θ. (31)

These conditions are identical to those in sec. 2.1.1 with the substitution of BG/μ0 for
HA and σm,G for σm,A. Hence, we conclude that the magnetic field for the case of Gilbertian
magnetization follows from eqs. (10) and (12) as,

BG(r < a) = −μ0

M

2
x̂ = −μ0

MG

2
, (32)

BG(r > a) = μ0

Ma2

2r2
(cos θ r̂ + sin θ θ̂). (33)

The magnetic field B outside the cylinder is the same whether the magnetization is Ampérian
or Gilbertian, but the B-field inside the cylinder is opposite in the two cases.

If we accept that the Lorentz force density on an electric current density Je is f = Je×B,6

then, for example, the Hall voltage difference between y = a and y = −a (for electrical cur-
rent flowing parallel to the axis of the cylinder) would have opposite signs for Ampérian and
Gilbertian magnetization. This permits a simple test as to the character of the magnetization
in a conducting, permanent, cylindrical magnet with transverse magnetization.
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