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1 Problem

Discuss the principle of operation of an electromagnetic “pump” described by Mertz (1915)
in a popular electrical magazine [1].

As sketched below, an annular volume of copper sulfate and water, a conducting, para-
magnetic fluid,1 surrounds a strong, cylindrical, conducting, permanent magnet C that rests
on an insulating base B, and the liquid is surrounded by an outer conducting cylinder A.
When a strong DC current flows between the outer cylinder and the cylindrical magnet, the
copper-sulfate solution rotates azimuthally (and the current flows on spiraling paths in the
liquid). The direction of rotation depends on the sign of the electric current.

2 Solution

2.1 J × B Force

The most common type of electromagnetic pump is based on the J × B force density in a
current-carrying liquid,2 which latter is typically nonmagnetic (i.e., diamagnetic).

In Mertz’ apparatus, if we approximate the current in the liquid as flowing in horizontal
planes, the azimuthal component of the J×B force density would be −JrBz, in a cylindrical
coordinate system (r, φ, z) with the z-axis along that of the cylinder. If the conducting
cylinder C were nonmagnetic, there would be no z-component to the magnetic field (due
only to the electric current driven by the battery). Hence, it is essential that cylinder C be
a permanent magnet for there to be an azimuthal force on the liquid.

1Mertz’ paper is one of the earliest to mention magnetic fluids. In recent years, so-called ferrofluids have
found considerable application. See, for example, [2].

2This effect was perhaps first demonstrated by Hering [3], and analyzed by Northrup [4] (1907).
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A version of Mertz’ experiment using (table)salt water as the conducting liquid is reported
at https://www.physicscentral.com/experiment/physicsathome/electricwhirlpool.cfm. That is,
use of the paramagnetic copper-sulfate solution is not essential.

2.2 Force on Paramagnetic Ions

Here, we show that the magnetic force on the paramagnetic copper ions in the liquid adds
to the J ×B force discussed above.

To deduce this force, we model the magnetic moment m of an ion as two equal an opposite
(effective) magnetic charges p separated by small distance d, i.e., m = pd. The force on an
effective magnetic charge p at position x in a magnetic field B is F = pB(x).3 Then, the
force on a magnetic dipole m with −p at x and p at x + d is,

F = lim
d→0, p d=m

[pB(x + d) − pB(x)] = p(d · ∇)B(x) = (m · ∇)B. (1)

Further, we suppose that the paramagnetic ions in the liquid are aligned (on average) with
the magnetic field, such that,

m = kB. (2)

for a (temperature-dependent) constant k. Hence, the force on a magnetic dipole in the
liquid is,4,5

F = k(B · ∇)B. (3)

In a cylindrical coordinate system (r, φ, z) with the z-axis along that of the cylinder, the
permanent magnetic field has r- and z-components, while that due to the electrical current
in the conducting cylinder C has only a φ-component. Both of these fields are azimuthally
symmetric.6

In general, the magnetic force on the liquid has all three of r-, φ- and z-components, but
we emphasize only the φ component here,

Fφ = k

(
Br(r, z)

∂

∂r
+ Bz(r, z)

∂

∂z

)
Bφ(r, z). (4)

3See Appendix A of [5] for discussion of the force on effective magnetic charges associated with magnetic
materials that actually are based on Ampèrian “molecular currents”.

4In general, ∇B2 = 2(B ·∇)B + 2B× (∇×B). If there were no current in the liquid (and it were in a
steady state), ∇ × B = 0, and we could write the force as F = k∇B2/2. Then, with B independent of φ,
as in the present example, there would be no azimuthal force.

5In a linear magnetic medium, where B = μrμ0H and μr is the relative permeability, the magnetization
density is M = nm with n being the number density of magnetic dipoles m. Also, M = χMH, where
χM = μr − 1 (see, for example, sec. 2.4 of [6]). Hence, m = (μr − 1)B/nμrμ0, and k = (μr − 1)/nμrμ0.

Paramagnetic materials have μr > 1, k > 0, while diamagnetic materials have 1 > μr > 0, k < 0. Hence,
the direction of the force (3) on a magnetic liquid in Mertz’ example is opposite for paramagnetic and
diamagnetic liquids.

6The spiraling current in the liquid contributes to all three of Br , Bφ and Bz . This effect must be
included in a detailed calculation; otherwise Fφ = 0 as remarked in the preceding footnote.
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The azimuthal force (4) is nonzero only if there exists both the field (Br, 0, Bz) due to the
permanent magnet C and the field (0, Bφ, 0) due to the electrical current through the magnet.

Note that if the magnet C were very long, and the liquid only near its midplane in z,
then Br would be negligible, Bφ would depend only on r, and the azimuthal force would be
negligible.

A Appendix: The Ampère Force Law (Sept. 7 2021)

Mertz’ experiment provided a tabletop demonstration (in his view) of the (Biot-Savart)
J × B force law. He did not mention Ampère’s force law, which also predicts the observed
azimuthal rotation of the conducting liquid, as discussed below.

A.1 Historical Background

In 1820-1822, Ampère examined the force between two circuits, carrying steady currents I1

and I2, and inferred that this could be written (here in vector notation, which Ampère did
not use) as (pp. 21-24 of [7]),7

Fon 1 =

∮
1

∮
2

d2Fon 1, d2Fon 1 =
μ0

4π
I1I2[3(r̂ · dl1)(r̂ · dl2) − 2dl1 · dl2] r̂

r2
= −d2Fon 2, (5)

where r = l1 − l2 is the distance from a current element I2 dl2 at r2 = l2 to element I1 dl1 at
r1 = l1.

8,9 The integrand d2Fon 1 of eq. (5) has the appeal that it changes sign if elements 1
and 2 are interchanged, and so suggests a force law for current elements that obeys Newton’s
third law.

In 1825, Ampère noted, p. 214 of [10], p. 29 of [7], p. 366 of the English translation in

7A historical survey of the development of electrodynamics in the 1800’s is given in the Appendix to [9].
A thoughtful online site about Ampère is http://www.ampere.cnrs.fr/parcourspedagogique/index-en.php.

8Ampère sometimes used the notation that the angles between dli and r are θi, and the angle between
the plane of dl1 and r and that of dl2 and r is ω. Then, dl1 · dl2 = dl1 dl2(sin θ1 sin θ2 cos ω + cos θ1 cos θ2),
and the force element of eq. (5) can be written as,

d2Fon 1 =
μ0

4π
I1I2 dl1 dl2(cos θ1 cos θ2 − 2 sin θ1 sin θ2 cos ω)

r̂
r2

= −d2Fon 2. (6)

9Ampère also noted the equivalents to,

dl1 =
∂r
∂l1

dl1, r · dl1 = r · ∂r
∂l1

dl1 =
1
2

∂r2

∂l1
dl1 = r

∂r

∂l1
dl1, dl2 = − ∂r

∂l2
dl2, r · dl2 = −r

∂r

∂l2
dl2, (7)

where l1 and l2 measure distance along the corresponding circuits in the directions of their currents. Then,

dl1 · dl2 = −dl1 · ∂r
∂l2

dl2 = − ∂

∂l2
(r · dl1) dl2 = − ∂

∂l2

(
r

∂r

∂l1

)
dl1 dl2 = −

(
∂r

∂l1

∂r

∂l2
+ r

∂2r

∂l1∂l2

)
dl1 dl2, (8)

and eq. (5) can also be written in forms closer to those used by Ampère,

d2Fon 1 =
μ0

4π
I1I2 dl1 dl2

[
2r

∂2r

∂l1∂l2
− ∂r

∂l1

∂r

∂l2

]
r̂
r2

=
μ0

4π
2I1I2 dl1 dl2

∂2
√

r

∂l1∂l2

r̂√
r

= −d2Fon 2. (9)
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[8], that for a closed circuit, eq. (5) can be rewritten as,10

Fon 1 =
μ0

4π
I1I2

∮
1

∮
2

(dl1 · r̂) dl2 − (dl1 · dl2) r̂
r2

=

∮
1

I1dl1 × μ0

4π

∮
2

I2 dl2 × r̂

r2
, (11)

in vector notation (which, of course, he did not use).11 Ampère made very little comment
on this result.12 However, in retrospect, we see that the form (11) lends itself to the inter-
pretation that the force between closed circuits with steady currents can be written in terms
of a magnetic field B as,

F =

∮
I dl × B, where B =

μ0

4π

∮
I dl × r̂

r2
, (12)

both equations of which are often called the Biot-Savart law.13

Already in 1820 Ampère came to the vision that all magnetic effects are due to electrical
currents.14,15

A.2 Application to Mertz’ Experiment

In Ampère’s view, the axially magnetized rod should be considered as containing “molecular
currents”, and uniform axial magnetization Mcorresponds to a uniform, azimuthal surface
current, K = M× n̂, where n̂ is the outward unit vector from the cylindrical surface of the
rod.

If a current element I dl in the conducting liquid interacted with a current element I ′ dl′

on the surface of magnetized rod according to eq. (5), the force be would be along the line the
line of centers of the two current elements. For dl pointing to the axis of the rod, an element

10Note that for a fixed point 2, dl1 = dr, and dr = dr · r̂ = dl1 · r̂. Then, for any function f(r),
df = (df/dr) dr = (df/dr) dl1 · r̂. In particular, for f = −1/r, df = dl1 · r̂/r2, so the first term of the first
form of eq. (10) is a perfect differential with respect to l1. Hence, when integrating around a closed loop 1,
the first term does not contribute, and it is sufficient to write (as first argued by Neumann, p. 67 of [11]),

Fon 1 = −μ0

4π
I1I2

∮
1

∮
2

dl1 · dl2
r2

r̂ = −Fon 2. (10)

11Ampère’s force law for closed circuits with steady currents can be written in many other ways as well.
Maxwell gave an early survey of this in Arts. 510-526 of [12].

12As a consequence, the form (11) is generally attributed to Grassmann [13], as in [14], for example.
13Biot and Savart [15, 18] actually studied on the force due to an electric current I in a wire on one

pole, p, of a long, thin magnet. Their initial interpretation of the results was somewhat incorrect, which was
remedied by Biot in 1821 and 1824 [19, 20] with a form that can be written in vector notation (and in SI
units) as,

F =
μ0 p

4π

∮
I dl× r̂

r2
, (13)

where r is the distance from a current element I dl to the magnetic pole. There was no immediate interpre-
tation of eq. (13) in terms of a magnetic field, B = F/p.

14The brief report of a lecture by Ampère on Sept. 18, 1820 [21] ends with je réduisis tous les phénomènes
magnétiques à des effets purement électriques. See also [22].

15The confirmation that permanent magnetism, due to the magnetic moments of electrons, is Ampèrian
(rather than Gilbertian = due to pairs of opposite magnetic charges) came only after detailed studies of
positronium (e+e− “atoms”) in the 1940’s [23, 24].
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I ′ dl′ on the surface of the rod, but not in the plane containing the element I dl and the
axis of the rod, implies a force component in the direction of M× dl according to Ampère’s
prescription (5). This is consistent with the observed behavior in Mertz’ experiment, so his
experiment does not distinguish between Ampère’s force law and the Biot-Savant force law.

A.2.1 Model Calculation for an Infinte Solenoid

For ease of analytic computation, we consider the case where the “external” magnetic field
in Mertz’ experiment is due to an infinite solenoid, about the z-axis, of radius a, with axial
magnetic field B = μ0I ẑ inside the solenoid (and “zero” outside it), where I is the azimuthal
current density per unit length aroung the solenoid.

Then, for a radial current element in the conducting liquid, J = −J r̂ in a cylindrical
coordinate system (r, φ, z), the Biot-Savart force is,

dF = J dVol × B = μ0IJ dVol φ̂, (14)

if the current element is inside the solenoid, while the force if zero otherwise.
According to Ampère’s prescription (5), the force on this current element, at (r, φ, z) =

(b, 0, 0), is,

dF =
μ0

4π
IJ dVol

∫ ∞

−∞
dz

∫ 2π

φ=0[
3
(
R̂ · −r̂(φ = 0)

) (
R̂ · a dφ φ̂(φ)

)
− 2 (−r̂(φ = 0)) · a dφ φ̂(φ)

] R̂

R2
, (15)

where,

R = b r̂(φ = 0) − a r̂(φ) − z ẑ = (b − a cos φ) x̂ − a sinφ ŷ − z ẑ, (16)

R2 = a2 + b2 − 2ab cos φ + z2, (17)

R̂ · −r̂(φ = 0) = −b− a cosφ

R
, R̂ · a dφ φ̂(φ) = −ab sinφdφ

R
(18)

−r̂(φ = 0)) · a dφ φ̂(φ) = a sinφdφ. (19)

Thus,

dF =
μ0

4π
IJ dVol

∫ ∞

−∞
dz

∫ 2π

0

dφ

[
3ab sin φ(b− a cos φ)

R2
− 2a sin φ

]
(b − a cosφ) x̂ − a sinφ ŷ − z ẑ

R3
. (20)
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The x̂-component integral is odd in sinφ, and the ẑ-integral is odd in z, so both of these
integrals vanish. The remaining ŷ-integral is,

dFy =
μ0

4π
a2IJ dVol

∫ ∞

−∞
dz

∫ 2π

0

dφ

[
−3b sin2 φ(b − a cosφ)

R5
+

2 sin2 φ

R3

]

=
μ0

4π
a2IJ dVol

∫ 2π

0

dφ

[
− 4b sin2 φ(b− a cos φ)

(a2 + b2 − 2ab cos φ)2
+

4 sin2 φ

a2 + b2 − 2ab cos φ

]

=
μ0

π
IJ dVol

∫ 2π

0

dφ
(1 − (b/a) cosφ) sin2 φ

[1 − 2(b/a) cos φ + (b/a)2]2

=
μ0

2π
IJ dVol

∫ 2π

0

dφ
(1 − (b/a) cosφ)(1 − cos 2φ)

[1 − 2(b/a) cos φ + (b/a)2]2

=
μ0

2π
IJ dVol

∫ 2π

0

dφ
1 − (b/a) cos φ − cos 2φ + (b/a) cosφ cos 2φ

[1 − 2(b/a) cos φ + (b/a)2]2

=
μ0

2π
IJ dVol

∫ 2π

0

dφ
1 − (b/2a) cos φ − cos 2φ + (b/2a) cos 3φ

[1 − 2(b/a) cos φ + (b/a)2]2
, (21)

using Dwight [25] 200.03 and 200.05. The remaining integrals in eq. (21) are given in Grad-
shteyn and Ryzhik [26] 3.616.7, and must be evaluated separately for b < a and b > a,

dFy(b < a) =
μ0

2π
IJ dVol

2π

(1 − (b/a)2)3

[
b2/a2

(
2 +

1 − (b/a)2

b2/a2

)
− b4/a4

2

(
2 + 2

1 − b2/a2

(b/a)2

)

−b4/a4

(
2 + 3

1 − b2/a2

b2/a2

)
+

b6/a6

2

(
2 + 4

1 − b2/a2

b2/a2

)]

=
μ0IJ dVol

(1 − (b/a)2)3

(
1 +

b2

a2
− b2

a2
− 3b2

a2
+

b4

a4
+

2b4

a4
− b6

a6

)

=
μ0IJ dVol

(1 − (b/a)2)3

(
1 − 3b2

a2
+

3b4

a4
− b6

a6

)
= μ0IJ dVol, (22)

in agreement with the (much simpler to derive) Biot-Savart result, noting that at the current
element J dVol the ŷ-direction is also the φ̂-direction.

For completeness, if the current element J dVol is outside the infinite solenoid,

dFy(b > a) =
μ0

2π
IJ dVol

2π

(b/a)2 − 1)3

[(
2 + b2/a2 − 1

) − 1

2

(
2 + 2(b2/a2 − 1)

)

− 1

b2/a2

(
2 + 3(b2/a2 − 1)

)
+

1

2b2/a2

(
2 + 4(b2/a2 − 1)

)]

=
μ0IJ dVol

(b/a)2 − 1)3

(
1 + b2/a2 − b2/a2 +

1

b2/a2
− 3 − 1

b2/a2
+ 2

)
= 0. (23)

A.2.2 Comment

The result that the force on the current element considered above is the same according to
both the Ampère and Biot-Savart force laws is an example of a general result for steady
currents flowing in closed circuits, as discussed in [27, 28].
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