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1 Problem

In 1967 Veselago considered the possibility of materials with (relative) permittivity e and
(relative) permeability  both negative [1]. Building on the long history of artifical dielectrics
for high-frequency applications (see, for example, [2, 3, 4]), in 1999 Pendry et al. proposed
a technique for fabrication of metamaterials with both negative € and negative p within a
certain frequency range [5]. Such materials were first realized in the laboratory in 2000 [6].

An idealized model of the frequency dependence of the permittivity and the permeability
(both assumed to be linear and isotropic) is that,
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where the time dependence is assumed to have the form e=%*,
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wp is equivalent to the plasma frequency of the medium, and wy is a resonant frequency
of the medium that is associated with a small damping coefficient I' which we neglect by
restricting the analysis to frequencies not too close to wg or wy. In passive metamaterials the
+ sign is negative, while for an active metamaterial [7] with an inverted population the sign
can be positive. In general, there is no relation between the frequencies w. ; and w, j, but it
suffices to suppose that either We,0 = Wpy,0, We, 1l = Wy,1 OF We g = Wy 1, Wel = Wy 0-

(a) Discuss the relation between the phase and group velocities, v, and v, in a metama-
terial for waves of the form e!**=“*) where for negligible damping we can write (see
chap. 6, sec. 2 of [8] or sec. 85 of [9]),
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with n = £ck/w being the index of refraction, and ¢ is the speed of light in vacuum.

For what range of material parameters, if any, can the phase and group velocity be in
opposite directions and/or the index n be considered as negative?
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(b) By consideration of the phases of planes waves at the interface between an ordinary
transparent medium and a metamaterial, deduce the form of Snell’s law for waves
incident on the interface at angle 6; from within the ordinary medium, and refracted
into the metamaterial at angle #; to the normal.



2 Solution

2.1 Phase and Group Velocity

In a medium free of external charge and current, that can be characterized by linear, isotropic
(relative) permittivity € and permeability pu, Maxwell’s equations are (in Gaussian units),
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and the constitutive relations are,
D = ¢E, B = uH. (6)

These can be combined to give a wave equation for, say, the magnetic field H,
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In general we consider plane waves of the form,
H= HO 6i(k~x—wt)7 (8)

where Hy and k can be complex functions of the angular frequency w (but not of time). The
approximations of the models (1)-(2) for metamaterials permit imply that the wave vector
k is purely real. In this case, eqgs. (7) and (8) combine to give the dispersion relation,
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where the scalar wave number k is defined to be positive, and n is the index of refraction.
For wave propagation, both € and p must be positive, or both negative.! Then,

k:@:iw, (10)
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where the index n could be either positive or negative,
n = £\/e/. (11)
We write the wave vector as k = kk with & positive, so the waveform (8) becomes,
H = Hy ¢/(Fkx—0), (12)
such that we identify the phase velocity v, as,
k = —+—k (13)
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'For the special case that € or u (or both) vanish, see [10].
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The phase-velocity vector v, is in the direction of the wave vector k = & k.
Turning to the group velocity, we combining eqs. (4) and (10) to write the group velocity
of a packet of waves of the form (8) as,?
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For passive metamaterials the model forms (1)-(2) hold for wy < wy, as sketched on the
left in the two figures below. In this case d(w,/€jt)/dw is negative for wy < w < w; where €
and g are both negative. Thus, the phase and group velocities, eqs. (13) and (14), have the
opposite signs in a doubly negative, passive metamaterial [11].
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We can use the notation n = —,/en together with & = —nw/c to write the waveform (8)
as,
H= Hoez(nwr/c—wt)7 (15)

for the case of a wave with group velocity in the +z-direction and phase velocity in the —z-
direction. This convention is often summarized by saying that a passive, doubly negative

2Care must be taken to avoid the mathematical oddity that one might write df /dw = d+/(—f)?/dw =
2(1/2)\/(=f)/(=f) d(=f)/dw = —df /dw, which is a variant on the theme that while 1 = €' we cannot
say that 1 = /1 = Ve2im = '™ = 1.



metamaterial has a negative index of refraction.?

On the other hand, if active metamaterials can be constructed with behavior as shown in
the right figures above, then for w1 < w < wy, where both € and j are negative, d(w/ef)/dw
is positive, and the group and phase velocities are in the same direction. In this case it would
be best to write simply n = | /ep.

2.1.1 Energy Density

If a medium could have negative ¢ and negative u at zero frequency, then the static energy
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would be negative, which is unreasonable for a passive material.
When the permittivity and permeability have frequency dependence, the energy density
takes on a more complicated form (due to Brillouin (1932), reviewed in chap. IV of [8]; see

also sec. 80 of [9]),
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The products ew and pw are illustrated for the models (1)-(2) in the figure below. We see

that for the passive metamaterial (wy < w1) the energy density is positive (as was anticipated

by Veselago [1]). But for an active metamaterial the energy density is formally negative in

the region w; < w < wq of doubly negative € and p. Such behavior is nonclassical, but occurs

in gain media [12].4
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30f course, it is also consistent to write n = Ve and k = nw/c. Conversely, any medium could be
defined to have a negative index of refraction so long as we also write k = —nw/c.

4In the realm of electromagnetic antennas there exists lore called the “Chu limit” [13]-[17], which tacitly
assumes that the density of electromagnetic energy in the “near zone” of the antenna is positive. However,
if the near zone were an active medium, perhaps a metamaterial, the Chu limit would not necessarily hold
[18]. It remains that to date no clear evasion of the Chu limit has been demonstrated.



2.1.2 “Left-Handed” Metamaterials

The fourth Maxwell equation (5) for a plane wave of form e'®**~%*) indicates that

kxE:fBzﬁHZi\/EkH, or H:i\/ERxE, B = /aik x E, (18)
c c € 1

using eq. (10), where the upper sign holds for ordinary media and active metamaterials, while
the lower sign holds for passive metamaterials. This result has led to the characterization
of passive metamaterials as left-handed media, in contrast to ordinary media, and active
metamaterials, for which R, E and H form a right-handed triad.® According to the discussion
in sec. 2.1, only left-handed media should be characterized as having a negative index of
refraction.

2.1.3 Momentum Density
In 1903 Max Abraham noted [19] that the Poynting vector [20], which describes the flow of
energy in the electromagnetic field,
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when divided by ¢? has the additional significance of being the density of momentum stored
in the electromagnetic field,’
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Of course, D = E + 47P and H = B — 47M, where P and M are the densities of electric
and magnetic polarization, respectively.

In 1908 Hermann Minkowski gave an alternative derivation [23] that the electromagnetic-
momentum density is,”

(M) DxB
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o (Minkowksi), (21)
and the debate over the merits of these two expressions continues to this day. Minkowski
died before adding to the debate, while Abraham published several times on it [25]. For
recent reviews, see [26]-[29].
As both fields D and H include aspects of the material medium, if any, we consider the
field-only momentum density to be simply,
ExB

PEM = —, (field only). (22)

This momentum density is directed along the wave vector k, which is opposite to the group
velocity, in doubly negative metamaterials.

5Note that k, E and B form a right-handed triad in all materials.
6This was discussed earlier by J.J. Thomson [21] and by Poincaré [22].
See also, for example, sec. 2.1 of [24].



In general,

A M
pfm\}{ = [PEM; prM) = €PEM; (23)

such that in doubly negative metamaterials both pg?\% and pg\ﬁ point in the direction of the

group velocity, but are equal only if € = p.
In a dispersive medium with index n(w) it is useful to introduce the quantity,
c dk  d(wn) dn
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7, dw dw dw

(24)

which is sometimes called the group-velocity index. This velocity is usually positive in a
passive medium, but is negative near optical resonances [12]. The emerging consensus [24,
26, 27, 28] is that the Abraham momentum density corresponds to the momentum of a photon
of angular frequency w in a medium of group-velocity index n, being hwv,/c* = hwv,/n,c,
and is sometimes call the kinetic momentum density. The Minkowski momentum density
corresponds to the momentum n?hwv,/c* = n*hw v,/nyc of a photon of angular frequency
w, and is sometimes called the pseudomomentum or the quasimomentum.® The Abraham and
Minkowski momenta are always in the same direction for ordinary media and for doubly
negative metamaterials.

The momentum of a photon most often used in quantum theory is Ak = nhw k /¢, which
is often called the canonical momentum. The canonical momentum is in the direction of the
wave vector k, and so has the same direction as the field-only momentum density (22). In
most media the Minkowski momentum is the same as the canonical momentum, but they
are opposite in a passive, doubly negative, nondispersive metamaterial [30].

Which of these momenta is the most physically relevant depends on the details of the
experiment to measure the momentum.

2.2 Snell’s Law

We consider the case of an ordinary medium with ¢; > 0, ¢, > 0 at x < 0, and a doubly
negative metamaterial with e; < 0, puy, < 0 at x > 0, as sketched in the figure on the next
page.

We also consider plane waves of the form E = Egpe ). One condition on the incident,
reflected and transmitted waves is that the phase of all three waves must be the same at any
point (0,y, z) on the interface # = 0. This implies that,

i(k-x—wt

k;sinf; = k, sin#, = £k; sin 0, (25)

where for the moment we suppose that the transmitted wave is “ordinary” in the sense that
the transmitted ray which passes through the origin lies in the first quadrant of the x-z

8Some people prefer to define the Minkowksi momentum as £k, in which case it is identical to the
canonical momentum [26]. This view comes from consideration of the wave as a polariton, which is not
strictly a photon, as a polariton includes matter, charged or neutral, in its wave function. The momentum
of the polariton is nhwv,/c?, of which it is considered that the photon part is k. I am not presently
persuaded of the merits of this decomposition of a quantum state.

9S0-called electrostatic waves can exist in media where D, B and H are zero , while the wave is associated
with a momentum density in the medium that is opposite to the direction of the wave vector [31].



plane, as shown in the left figure above for an active metamaterial. Then, the upper (lower)
sign in eq. (25) holds for an active (passive) metamaterial.
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Since the incident and reflected waves are in the same medium the magnitudes of the
wave numbers k; and k, are the same (for waves of a given frequency w),
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0, =0;. (27)
If we designate k; to be a positive quantity,
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where the index of refraction,
No = :|:w€2,u2, (29)
can be considered as negative for a passive metamaterial, as discussed in sec. 2.1. Then,

eq. (25) also indicates that,
ny sin@; = no sin 6y, (30)

where ns, and hence 6, as well, are negative for passive metamaterials. In the latter case, the
transmitted ray which passes through the origin lies in the second quadrant of the x-z plane,
as shown in the right figure above. This behavior is often called negative refraction.!%!!

0T hus, we have the option of retaining Snell’s law in the form n; sin #; = ny sin 6, for medium 2 being a
passive metamaterial by considering no and 6; as both negative, with 6, defined to be positive in the first
quadrant of the -z plane. Alternatively, we could consider no to be positive, and modify Snell’s law to be
nysinf; = —ngsinf;, where again 0; is defined to be positive in the first quadrant of the xz-z plane. And
yet another alternative is to write Snell’s law as nj sin#; = nq sin 6; with no positive, but to define 6; to be
positive in the second quadrant of the x-z plane. Among these three alternatives the first is perhaps the
most pleasing.

HNegative refraction in the sense considered here can also be occur for materials with positive Re(n) if
the losses are sufficiently high (I'm(n) large) [32, 33].
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