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The first German edition of Helmholtz’ great work On the Sensations of Tone appeared in
1864,1 and the first English edition appear in 1875.2 Section V.3 discussed Musical Tones of
Strings Excited by Striking, and noted that while a very brief strike leads to an unpleasant
tone, if the strike is spread out over a half period of the fundamental frequency of the
stretched string, then a rather musical tone is obtained. This phenomenon attracted the
interest of various British physicists in the years 1883-84, as mentioned in the 2nd edition
(1885).3

In 1885, Gilbert and Sullivan premiered their comic opera The Mikado, which includes
the line,
Awaiting the sensation of a short sharp shock,
from a cheap and chippy chopper on a big black block!
at the end of Act 1.

I conjecture that this line was inspired in part by an awareness of Gilbert as to Helmholtz’
theory of the sensations caused by striking of stretched strings (to follow Gilbert’s tendency
towards alliteration).

I note also Gilbert’s whimsical interest in mathematics, shown in the lines of the Major
General’s patter song, Act 1 of The Pirates of Penzance (1879),
I’m very well acquainted, too, with matters mathematical,
I understand equations both the simple and quadratical.
About binomial theorem I’m teeming with a lot o’ news,
With many cheerful facts about the square of the hypotenuse.

1H. Helmholtz, Die Lehre von den Tonempfindungen als Physiologische Grundlage für die Theorie der
Musik (Friedrich vieweg, 1863), http://kirkmcd.princeton.edu/examples/mechanics/helmholtz_63.pdf

2H.L.F. Helmholtz, On the Sensations of Tone (Longmans, Green, 1875),
http://kirkmcd.princeton.edu/examples/mechanics/helmholtz_75.pdf

3H.L.F. Helmholtz, On the Sensations of Tone, 2nd English ed. (Longmans, Green, 1885), pp. 380-
394, http://kirkmcd.princeton.edu/examples/mechanics/helmholtz_85.pdf. See also, pp. 74-80 (and
pp. 545-546), particularly the footnotes, which recounts interest in England in Helmholtz’ theories of the
piano in the years 1883-1885.
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A Appendix: The Piano as a Physics Problem

A.1 Problem

A piano wire is struck by a sharp blow from a hammer, and a fairly pure note is produced.
This is perhaps surprising in view of the analysis on, for example, p. 229 of
http://kirkmcd.princeton.edu/examples/Ph205/ph205l21.pdf of the effect of an impulsive blow.
Helmholtz suggested that a better approximation to the effect of the hammer is that it exerts
a force,

F (x, t) =

⎧⎨
⎩ F δ(x − b) sin 2πt

T
(0 < t < T/2),

0 (otherwise).
(1)

That is, the force goes through one half period of s sinusoidal oscillation.
The force is applied at distance b from one end of a wire of length l and mass density ρ

per unit length, which is fixed at both end and subject to a tension that makes the transverse
wave velocity equal to c.

Consider a Fourier analysis of the vibrations, s(x, t) =
∑

n φn(t) sin(nπx/l), and use
Green’s method4 to solve the differential equations for the φn to show that,

s(x, t) =
2FT

π2c ρ

∑
n

1

n(1 − (ncT
2l

)2)
sin

nπb

l
cos

nπcT

4l
sin

nπx

l
sin

nπc(t − T/4)

l
. (2)

If we take b = l/2, the midpoint, and T = 2l/c, the fundamental period, then,

s(x, t) =
F l

π2T

∑
n

sinnπ

n(1 − n2)
sinnπx sin

nπc(t − T/4)

l
, (3)

so all harmonics vanish except n = 1, since limn→1
sin nπ
1−n2 = π cos nπ

−2n
= π

2
.

A.2 Solution

The transverse displacement s(x, t) of the string can be written as a sum of spatial modes,
sin(nπx/l), whose time dependence φn(t) is to be determined,

s(x, t) =
∑

n

φn(t) sin
nπx

l
. (4)

The equation of motion of the string is,

ρs̈ = c2ρs′′ + F (x, t), (5)∑
n

(
φ̈n +

n2π2c2

l2
φn

)
sin

nπx

l
=

1

ρ
F (x, t) =

1

ρ

∑
n

Fn(t) sin
nπx

l
, (6)

4See, for example, p. 145 of http://kirkmcd.princeton.edu/examples/Ph205/ph205l13.pdf
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where the Fourier coefficients Fn(t) are related by,

2

l

∫ l

0

dx
∑

n

F (x, t) sin
mπx

l
=

2

l

∫ l

0

dx
∑

n

Fn(t) sin
nπx

l
sin

mπx

l
= Fm(t)

=
2

l

∫ l

0

dx F (x, t) sin
mπx

l
=

2

l

⎧⎨
⎩ F sin 2πt

T
sin mπb

l
(0 < t < T/2),

0 (otherwise).
(7)

Hence, the coefficient φn(t) obeys the differential equation of a forced, undamped oscillator,

φ̈n +
n2π2c2

l2
φn =

2F

ρl

⎧⎨
⎩ sin 2πt

T
sin nπb

l
(0 < t < T/2),

0 (otherwise).
(8)

Recalling the method of Green, discussed on p. 145 of
http://kirkmcd.princeton.edu/examples/Ph205/ph205l13.pdf, we have for φn at times t > T/2,
noting that ω1 = nπc/l,

φn(t > T/2) =
l

nπc

2F

ρl

∫ T/2

0

dt′ sin
2πt

T
sin

nπb

l
sin

nπc

l
(t − t′)

=
2F

nπcρ
sin

nπb

l

∫ T/2

0

dt′
1

2

{
cos

[(
2π

T
+

nπc

l

)
t′ − nπ

l
t

]
− cos

[(
2π

T
− nπc

l

)
t′ +

nπ

l
t

]}

=
F

nπcρ
sin

nπb

l

{
sin

[(
2π
T

+ nπc
l

)
T
2
− nπ

l
t
]
+ sin nπct

l
2π
T

+ nπc
l

− sin
[(

2π
T
− nπc

l

)
T
2

+ nπ
l
t
] − sin nπct

l
2π
T
− nπc

l

}

=
F

nπcρ
sin

nπb

l

{
sin

[
π − nπc

l

(
t − T

2

)]
+ sin nπct

l
2π
T

+ nπc
l

− sin
[
π + nπc

l

(
t − T

2

)] − sin nπct
l

2π
T
− nπc

l

}

=
F

nπcρ
sin

nπb

l

{
sin nπc

l

(
t − T

2

)
+ sin nπct

l
2π
T

+ nπc
l

+
sin nπc

l

(
t − T

2

)
+ sin nπct

l
2π
T
− nπc

l

}

=
2F

nπcρ
sin

nπb

l

4π
T

cos nπcT
4l

sin nπct
l

(
t − T

4

)
(

2π
T

)2 − (
nπc

l

)2 . (9)

The displacement is now given by,

s(x, t) =
2FT

π2c ρ

∑
n

1

n(1 − (ncT
2l

)2)
sin

nπb

l
cos

nπcT

4l
sin

nπx

l
sin

nπc(t − T/4)

l
. (10)

If we take b = l/2, the midpoint, and T = 2l/c, the fundamental period, then,

s(x, t) =
F l

π2T

∑
n

sinnπ

n(1 − n2)
sinnπx sin

nπc(t − T/4)

l
, (11)

so all harmonics vanish except n = 1, since limn→1
sin nπ
1−n2 = π cos nπ

−2n
= π

2
.
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Even if T = 2l/c can’t be achieved exactly in practice, the series converges quickly as the
terms go as 1/n3 for large n.

In contemporary pianos, b = l/8, in which case (for T = 2l/c),

s(x, t) =
2F l

π2T

∑
n

1

n(1 − n2)
sin

nπ

8
cos

nπ

2
sinnπx sin

nπc(t − T/4)

l
, (12)

which includes harmonics n = 1, 2, 4, 6, 10, ...
Many harpsichords are built with b = l/2, which gives them a purer tone, although

perhaps less interesting than that of a piano.
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