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1 Problem

Show that Ampère’s force law for two circuits with steady currents could be associated with
a magnetic field.

1.1 Historical Background

In 1820-1822, Ampère examined the force between two circuits, carrying steady currents I1

and I2, and inferred that this could be written (here in vector notation, which Ampère did
not use) as (pp. 21-24 of [4]),2

Fon 1 =

∮
1

∮
2

d2Fon 1, d2Fon 1 =
μ0

4π
I1I2[3(r̂ · dl1)(r̂ · dl2) − 2dl1 · dl2] r̂

r2
= −d2Fon 2, (1)

where r = l1 − l2 is the distance from a current element I2 dl2 at r2 = l2 to element I1 dl1 at
r1 = l1.

3,4 The integrand d2Fon 1 of eq. (1) has the appeal that it changes sign if elements 1

1Deceased, Oct. 2, 2022.
2A historical survey of the development of electrodynamics in the 1800’s by one of the authors is the

Appendix to [48]. A thoughtful online site about Ampère is
http://www.ampere.cnrs.fr/parcourspedagogique/index-en.php.

3Ampère sometimes used the notation that the angles between dli and r are θi, and the angle between
the plane of dl1 and r and that of dl2 and r is ω. Then, dl1 · dl2 = dl1 dl2(sin θ1 sin θ2 cos ω + cos θ1 cos θ2),
and the force element of eq. (1) can be written as,

d2Fon 1 =
μ0

4π
I1I2 dl1 dl2(cos θ1 cos θ2 − 2 sin θ1 sin θ2 cos ω)

r̂
r2

= −d2Fon 2. (2)

4Ampère also noted the equivalents to,

dl1 =
∂r
∂l1

dl1, r · dl1 = r · ∂r
∂l1

dl1 =
1
2

∂r2

∂l1
dl1 = r

∂r

∂l1
dl1, dl2 = − ∂r

∂l2
dl2, r · dl2 = −r

∂r

∂l2
dl2, (3)

where l1 and l2 measure distance along the corresponding circuits in the directions of their currents. Then,

dl1 · dl2 = −dl1 · ∂r
∂l2

dl2 = − ∂

∂l2
(r · dl1) dl2 = − ∂

∂l2

(
r

∂r

∂l1

)
dl1 dl2 = −

(
∂r

∂l1

∂r

∂l2
+ r

∂2r

∂l1∂l2

)
dl1 dl2, (4)

and eq. (1) can also be written in forms closer to those used by Ampère,

d2Fon 1 =
μ0

4π
I1I2 dl1 dl2

[
2r

∂2r

∂l1∂l2
− ∂r

∂l1

∂r

∂l2

]
r̂
r2

=
μ0

4π
2I1I2 dl1 dl2

∂2
√

r

∂l1∂l2

r̂√
r

= −d2Fon 2. (5)
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and 2 are interchanged, and so suggests a force law for current elements that obeys Newton’s
third law.5

In 1825, Ampère noted, p. 214 of [7], p. 29 of [4], p. 366 of the English translation in [46],
that for a closed circuit, eq. (1) can be rewritten as,6

Fon 1 =
μ0

4π
I1I2

∮
1

∮
2

(dl1 · r̂) dl2 − (dl1 · dl2) r̂
r2

=

∮
1

I1dl1 × μ0

4π

∮
2

I2 dl2 × r̂

r2
, (7)

in vector notation (which, of course, he did not use).7 Ampère made very little comment on
this result.8 However, in retrospect, we see that the form (7) lends itself to the interpretation
that the force between closed circuits with steady currents can be written in terms of a
magnetic field BB−S as,

FB−S =

∮
I dl × B, (8)

BB−S =
μ0

4π

∮
I dl × r̂

r2
, (9)

both equations of which are often called the Biot-Savart law.9,10

5Maxwell called Ampère the “Newton of electricity” in Art. 528 of [28].
6Note that for a fixed point 2, dl1 = dr, and dr = dr · r̂ = dl1 · r̂. Then, for any function f(r),

df = (df/dr) dr = (df/dr) dl1 · r̂. In particular, for f = −1/r, df = dl1 · r̂/r2, so the first term of the first
form of eq. (6) is a perfect differential with respect to l1. Hence, when integrating around a closed loop 1,
the first term does not contribute, and it is sufficient to write (as first argued by Neumann, p. 67 of [12]),

Fon 1 = −μ0

4π
I1I2

∮
1

∮
2

dl1 · dl2
r2

r̂ = −Fon 2. (6)

7Ampère’s force law for closed circuits with steady currents can be written in many other ways as well.
Maxwell gave an early survey of this in Arts. 510-526 of [28]. Surprisingly, Maxwell preferred Ampère’s force
law (his eq. (42) of Art. 526) to that of Biot and Savart (which he identified with Grassmann, eq. (43) of
Art. 526), stating that Ampère’s form “is undoubtedly the best”. Apparently, Maxwell did not realize that
his vector-diffential equations for the magnetic field lead most directly to the Biot-Savart-Grassmann form.
A review by one of the authors is in [45].

8As a consequence, the form (7) is generally attributed to Grassmann [11], as in [43], for example.
9Biot and Savart [1, 2] actually studied on the force due to an electric current I in a wire on one pole,

p, of a long, thin magnet. Their initial interpretation of the results was somewhat incorrect, which was
remedied by Biot in 1821 and 1824 [3, 6] with a form that can be written in vector notation (and in SI units)
as,

F =
μ0 p

4π

∮
I dl× r̂

r2
, (10)

where r is the distance from a current element I dl to the magnetic pole. There was no immediate interpre-
tation of eq. (10) in terms of a magnetic field, B = F/p.

10Equations (8)-(9) are a factorization of the Biot-Savart force law (7), and both equations are called the
Biot-Savart law in, for example, sec. 7-6, p. 125 of [32]. The earliest description of eq. (8) as the Biot-Savart
law may be in sec. 2 of [30]. However, many authors call only the eq. (9) the Biot-Savart law (but it is called
Laplace’s law in France); an early example is on p. 220 of [29]. Equation (8) is often called the Lorentz force
law, although it was first stated by Maxwell, somewhat obscurely, as the third term in eqs. (12)-(14), p. 172
of [23], and more clearly in eq. (11), Art. 603 of [28].
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Ampère had no concept of a magnetic field, which originated with Faraday, inspired in
part by patterns of iron filings on a sheet near a magnet.11 Of particular interest here is
Fig. 3 from Art. 3295 of [18], in which Faraday showed the pattern of iron filings in a plane
containing the axis of a small dipole magnet, as shown below.

This pattern corresponds to the lines of force of a magnetic dipole m on a hypothetical
magnetic pole p as deduced by Poisson, eq. (9), p. 507 of [5] (1824),

F = −p∇m · r̂
r2

= p
3(m · r̂) r̂ − m

r3
. (11)

where r is the vector from the center of the dipole m to the pole p. This was regarded by
Poisson as an action-at-a-distance force, and he did not consider the possibility of a magnetic
force field such as B = F/p that existed in vacuum at points unoccupied by magnetic poles.

Our present view is that iron filings are not magnetic poles, but magnetic dipoles, which
align themselves along lines of the magnetic field B.

The first to adopt Faraday’s concept of a magnetic field was Thomson (later Lord Kelvin),
who discussed the magnetic field of a magnetic dipole m in sec. II of [15] (1846). However,
he did not follow the path of Poisson (to write B = −∇(m · r̂/r2), but simply stated that,

B = ∇ ×A, where A =
m × r

r3
, (12)

in his eq. (II) where B = (X, Y, Z) and his eq. (3) where A = (α, β, γ). This is the first

11Faraday first mentioned magnetic lines of force in Art. 114 of [8] (1831): By magnetic curves, I mean
the lines of magnetic forces, however modified by the juxtaposition of poles, which would be depicted by
iron filings; or those to which a very small magnetic needle would form a tangent.

In 1845, Art. 2247 of [13], the term magnetic field appears for the first time in print: The ends of these
bars form the opposite poles of contrary name; the magnetic field between them can be made of greater or
smaller extent, and the intensity of the lines of magnetic force be proportionately varied.

In 1852, Faraday published a set of speculative comments [18] in the Phil. Mag. (rather than Phil. Trans.
Roy. Soc. London, the usual venue for his Experimental Researches), arguing more strongly for the physical
reality of the lines of force.

In Art. 3258 he considered the effect of a magnet in vacuum, concluding (perhaps for the first time) that
the lines of force have existence independent of a material medium:
A magnet placed in the middle of the best vacuum we can produce...acts as well upon a needle as if it were
surrounded by air, water or glass; and therefore these lines exist in such a vacuum as well as where there is
matter.
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appearance of a vector potential in print.12 Like Poisson, Thomson provided no figure, but
gave a brief verbal description that suggests he was aware of our form (11), given by Poisson,
which agrees with our eq. (12), assuming that F = pB.

Meanwhile, in 1845, Neumann followed the examples of Lagrange, Laplace and Poisson in
relating forces of gravity and electrostatics to (scalar) potentials, and sought a potential for
Ampère’s force law (1) between two (closed) current loops. For this, he noted that Ampère’s
force law can be rewritten in the form (6), which permits us to write Fon1 = −∇U where,
U is the scalar potential (energy) given on p. 67 of [12],13

U =
μ0

4π
I1I2

∮
1

∮
2

dl1 · dl2
r

(14)

in SI units. We now also write this as,

U = Ii

∮
i

dli · Aj = Ii

∫
dAreai · ∇ × Aj = Ii

∫
dAreai · Bj = IiΦij, (15)

where Φij is the magnetic flux through circuit i due to the current Ij in circuit j, and,

Aj =
μ0

4π

∮
j

Ij dlj
r

, (16)

such that Neumann is often credited for inventing the vector potential A, although he appears
not to have written his eq. (14) in any of the forms of eq. (15).

In 1870, Helmholtz made a review of electrodynamics, and in eq. (1), p. 76 of [27],14 he
stated that a general form for the magnetic interaction energy (his P , but our U) of two

12In 1867 Gauss posthumously published an analysis that he dated to 1835 (p. 609 of [26]), in which he
stated that a time-dependent electric current leads to an electric field which is the time derivative of what
we now called the vector potential. English translation from [38]:

The Law of Induction
Found out Jan. 23, 1835, at 7 a.m. before getting up.

1. The electricity producing power, which is caused in a point P by a current-element γ, at a
distance from P , = r, is during the time dt the difference in the values of γ/r corresponding
to the moments t and dt, divided by dt. where γ is considered both with respect to size
and direction. This can be expressed briefly and clearly by

− d(γ/r)
dt

. (13)

Gauss’ unpublished insight that electromagnetic induction is related to the negative time derivative of a
scalar quantity was probably communicated in the late 1830’s to his German colleagues, of whom Weber
was the closest.

On p. 612 (presumably also from 1835), Gauss noted a relation (here transcribed into vector notation)
between the vector A =

∮
dl/r and the magnetic scalar potential Ω of a circuit with unit electrical current

(which he related to the solid angle subtended by the circuit on p. 611), −∇Ω = ∇ × A. While we would
identify −∇Ω with the magnetic field H, Gauss called it the “electricity-generating force”. In any case, this
is the earliest (claimed) appearance of the curl operator (although published later than MacCullagh’s use of
it, p. 22 of [10] (1839)).

13If we write eq. (14) as U = I1I2M12, then M12 is the mutual inductance of circuits 1 and 2.
14For comments by one of the authors on this paper, see [47]. See also commentaries in [35, 39, 40, 41].
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current elements, which are part of closed circuits of steady currents, could be written as a
combination of the forms he attributed to Neumann [12, 16] and to Weber [14, 17],15

d2U =
μ0

4π

(
1 + k

2

I1 dl1 · I2 dl2)

r
+

1 − k

2

(I1 dl1 · r̂)(I2 dl2 · r̂)
r

)
, (17)

where k = 1 for Neumann’s form and k = −1 for Weber’s. Then, in eq. (1a) he noted that
the scalar U is related to a vector potential (his (U, V, W ) but our A) as U =

∫
J ·A dVol/2,

noting that I dl ↔ J dVol where J is the (steady) current density (which obeys ∇ ·J = 0),16

A =
1 + k

2

μ0

4π

∫
J

r
dVol +

1 − k

2

μ0

4π

∫
(J · r̂) r̂

r
dVol ≡ 1 + k

2
AN +

1 − k

2
AW, (18)

AN =
μ0

4π

∫
J

r
dVol, (19)

AW =
μ0

4π

∫
(J · r̂) r̂

r
dVol, (20)

where r = x − x′. However, Neumann never wrote the form called AN here. Kirchhoff,
p. 530 of [21], attributed AW to Weber, who later transcribed Kirchhoff’s paper into sec. I.1.
of [25], with AW appearing on p. 578.17,18

1.2 The Problem

Consider the magnetic field,

BA−W(x) =
μ0

4π

∮
I dl · r̂ r̂

r2
=

μ0

4π

∫
J(x′) · r̂ r̂

r2
dVol (r = x − x′), (21)

which has the form of AW of eq. (20), but with the factor r in the denominator replaced by
r2.19

Show that the Ampère force law (1) for d2Fon 1 = d2FA(x,x′) on current element I1 dl1
at x due to element I2 dl2 at x′ can be related to this magnetic field by,

dBA−W(x,x′) =
μ0

4π
I2 dl2 · r̂ r̂

r2
=

μ0

4π
I2 dl2 · r r

r4
, (22)

d2FA(x,x′) = −I1 dl1 · {dBA−W(x,x′) + 2∇([BA−W(x,x′) · r]} r̂, (23)

15See also sec. IIB of [43], and [45]. The energy that Helmholtz associated with Weber was never actually
advocated by the latter, who had a different vision of magnetic energy, as discussed in sec. A.23 of [48].

16Thus, we cannot write for an isolated current element that dA = μ0I[(1 + k)dl + (1 − k)(dl · r̂) r̂]/8πr.
17Both AN and AW lead to the same magnetic field, B = ∇×AN = ∇×AW , which is an early example

of gauge invariance.
18Helmholtz’ discussion was tacitly restricted to electro- and magnetostatics, such that his eq. (3a), p. 80,

that ∇ · A = k dV/dt, where V is the instantaneous electric scalar potential, led him to identify k = 0 with
Maxwell’s theory [24], which emphasized ∇ ·A = 0, although we would now consider k = 1 to be compatible
with Maxwell’s theory for static electromagnetism. Maxwell was more interested in electrodynamics than
electro/magnetostatics, such that his only mention of the “Neumann” magnetostatic scalar potential, our
eq. (14), was in eq. (9), Art. 422 of [28].

19The field BA−W is a vector, while the usual magnetic field B (as in eq. (9)) is a pseudovector.
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where r is the distance vector from l1 to l2 introduced in eq. (1). Show also that ∇ ·BA−W =
0, consistent with Ampère’s view that magnetism is due to electric currents rather than
magnetic charges/poles.

Compute the magnetic field (21) due to a magnetic dipole m, a small current loop of
radius a, current I , with m along the axis of the loop, and m = πa2I . Compare the field
lines for this model of a magnetic dipole with the figure from Faraday on p. 3 above.

Would Faraday have accepted the field BA−W as a valid physical description of the
magnetic field?

2 Solution

From eq. (22), we have,

∇[dBA−W(x,x′) · r] =
μ0

4π
I2∇

(
dl2 · r

r2

)
=

μ0

4π
I2

(
−2dl2 · r

r3
∇r +

∇(dl2 · r)
r2

)

=
μ0

4π
I2

(
−2dl2 · r

r4
r +

dl2
r2

)
=

μ0

4π
I2

(
−2dl2 · r̂

r2
r̂ +

dl2
r2

)
. (24)

Then,

− I1 dl1 · [dBA−W(x,x′) + 2∇(dBA−W(x,x′) · r)] r̂
= −μ0

4π
I1 dl1 ·

[
I2(dl2 · r̂) r̂

r2
+ 2I2

(
−2dl2 · r̂

r2
r̂ +

dl2
r2

)]
r̂

=
μ0

4π
I1 dl1 ·

(
3I2(dl2 · r̂) r̂

r2
− 2I2 dl2

r2

)
r̂ =

μ0

4π
I1I2 [3(dl1 · r̂)(dl2 · r̂) − 2dl1 · dl2] r̂

r2

= d2FA(x,x′) = d2Fon 1, (25)

according to Ampère’s form (1).
Thus, Ampère’s force law (1) can be related to a magnetic field BA−W if we allow the

force law (22) to depend on the spatial derivatives of BA−W as well as BA−W itself. Such
a derivative coupling is not favored in the simplest implementation of a field theory, but
cannot be excluded altogether. However, the force (22) on current element I1 dl1 is not a
function only of this element and the field BA−W at the element, so it not in the spirit of
Faraday’s vision of a field theory.

2.1 ∇ · BA−W = 0

The divergence of BA−W(x) is, noting that ∇ acts on r = x − x′ but not on J(x′),

∇ · BA−W(x) =
μ0

4π

∫
∇ ·

(
J(x′) · r

r4
r

)
dVol′

=
μ0

4π

∫ [
J(x′) · r

r4
∇ · r + r · ∇

(
J(x′) · r

r4

)]
dVol′

=
μ0

4π

∫ [
3J(x′) · r

r4
+ r ·

(∇(J(x′) · r)
r4

− 4(J(x′) · r)
r5

∇r

)]
dVol′
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=
μ0

4π

∫ [
3J(x′) · r

r4
+ r ·

(
J(x′)
r4

− 4(J(x′) · r)r
r6

)]
dVol′ = 0, (26)

away from r = 0, i.e., for source currents away from the observation point.
To ascertain the behavior of BA−W for small r, it is useful to consider its flux across the

surface of a sphere of radius r, within which the current J is approximately constant.

Φ =

∫
(BA−W · r̂) dArea =

μ0

4π

∫ 1

−1

J · r̂
r2

2πr2 d cos θ =
μ0J

2

∫ 1

−1

cos θ d cos θ = 0, (27)

taking the z-axis to be along the direction of J at the center of the sphere. That is, the
magnetic field (21) for a current element J dVol = I dl has lines of BA−W diverging from
the current element in one hemisphere, and converging on it in the other, such that the
total flux into/out of the current element is zero. Then, together with eq. (26), we see that
∇ · BA−W = 0 everywhere.

Hence, there exists a vector potential AA−W such that BA−W = ∇×AA−W. A particular
form of the vector potential is,20

AA−W(x) =
μ0

4π

∫
J(x′) × r

2r2
dVol′. (29)

2.2 ∇ ×BA−W (Nov. 2, 2022)

As first noted by Helmholtz, Theorem VI, p. 61 of [22] (1858), to specify a vector field via
first-order differential equations, both the curl and the divergence of the field must be known.
For the usual magnetic field B, its curl for steady-state examples is ∇ × B = μ0J, which is
often called “Ampère’s Law”.21

20

∇ ×
(

J× r
r2

)
=

J
r2

(∇ · r) − r
(

∇ · J
r2

)
+ (r · ∇)

J
r2

−
(

J
r2

· ∇
)

r

=
3J
r2

− r
(
J · ∇ 1

r2

)
− 2J

r3
(r ·∇)r − J

r2
=

2J
r2

+ 2r
J · r
r4

− 2J
r2

=
2(J · r)r

r4
∝ dBA−W. (28)

21In 1826, Ampère gave lectures that included discussion of the force on a magnetic pole due to an electric
current, noting that the line integral of the tangential force around a closed loop is proporptional to the
electric current that passes through the loop, independent of the shape of the loop [36, 44]. This was a
statement of what is now called “Ampère’s (circuital) law”. While Ampère did not consider the now-usual
magnetic field B, we note that the force on a magnetic pole p is F = pB, so his conclusion that

∮
F · dl ∝ I,

where I is the electric current through the loop of integration, implies also that
∮

B · dl ∝ I.
This “law” was noted by Maxwell on p. 56 of [20], who deduced from it via Stokes’ theorem that ∇×H = J,

taking note of the relation B = μH for linear media, Maxwell’s eq. (B), p. 53, where our μ is Maxwell’s k2.
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The curl of BA−W is,

∇ × BA−W(x) =
μ0

4π

∫
∇×

(
J(x′) · r

r4
r

)
dVol′

=
μ0

4π

∫ [
J(x′) · r

r4
∇ × r − r × ∇

(
J(x′) · r

r4

)]
dVol′

= −μ0

4π

∫
r×

(∇(J(x′) · r)
r4

− 4(J(x′) · r)
r5

∇r

)
dVol′

= −μ0

4π

∫
r ×

(
J(x′)
r4

− 4(J(x′) · r) r
r6

)
dVol′ =

μ0

4π

∫
J(x′) × r

r4
dVol′. (30)

This is nonzero throughout all space, and does not lend itself to a simple interpretation as to
the source of the magnetic field, as does Ampère’s law, ∇ × B = μ0J, for the usual (static)
magnetic field. B.

2.3 Three Examples

2.3.1 Magnetic Dipole

We now consider a magnetic dipole m = πa2I ẑ, i.e., a small, circular loop of radius a,
centered on the origin, that carries steady current I .

We calculate BA−W at the point r = (x � a, 0, z), with r =
√

x2 + z2. For a current
element I dl = Ia dφ located at angle φ to the x-axis, i.e., at r′ = (a cosφ, a sinφ, 0) in
(x, y, z) coordinates, we have, with R = r − r′,

dl = a dφ (− sinφ, cosφ, 0), R = (x − a cosφ,−a sinφ, z), dl · R = −ax dφ sinφ,(31)

R =
√

x2 − 2ax cos φ + a2 + z2 ≈
√

x2 + z2

(
1 − ax cosφ

x2 + z2

)
= r

(
1 − ax cosφ

r2

)
, (32)

BA−W =
μ0

4π

∮
I
(dl · R)R

R4

≈ μ0

4π

aI

r4

∫ 2π

0

dφ (−x sinφ)

(
1 +

4ax cos φ

r2

)
(x− a cos φ,−a sinφ, z)

=
μ0

4π

aI

r4
(0, πax, 0) =

μ0

4π

mx

r4
ŷ =

μ0

4π

mx

r4
φ̂ =

μ0

4π

m × r

r4
= ∇ × μ0

4π

m

2r2
= ∇ ×AA−W.(33)

See also [19], and Art. 498 of [28].
Objections to the identification of Ampère’s circuital law of 1826 with “Ampère’s law” in [37, 42] are too

narrow, in the view of the present authors.
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Lines of the BA−W ∝ m× r̂/r3 are circles centered on the axis m, and do not at all resemble
the pattern of iron filings found by Faraday for a small dipole magnet (p. 3 above).

Hence, while the field BA−W is mathematically consistent with Ampère’s force law (1)
between two circuits with steady currents, it seems unappealing physically, and would not
have been accepted by Faraday.

2.3.2 Infinite Solenoid (Aug. 20, 2021)

In this section, we consider an infinite solenoid of radius a along the z-axis, with steady,
azimuthal surface current I per unit length in z.

We calculate BA−W at the point r = (r, 0, 0). For a current element I dl = Ia dφ located
at angle φ to the x-axis at height z′, i.e., at r′ = (a cosφ, a sinφ, z′), we have, with R = r−r′,

dl = a dφ (− sinφ, cosφ, 0), R = (r − a cos φ,−a sinφ,−z′), dl · R = −ar dφ sinφ, (34)

R =
√

r2 − 2ar cosφ + a2 + z′2, (35)

BA−W =
μ0

4π

∮
I
(dl · R)R

R4
= −μ0

4π
arI

∫ ∞

−∞
dz′

∫ 2π

0

dφ
sinφ(r − a cosφ),−a sinφ,−z′)

(r2 − 2ar cos φ + a2 + z′2)2

=
μ0

4π

πarI

2

∫ 2π

0

dφ
(sinφ(r − a cosφ), a sin2 φ, 0)

(r2 − 2ar cos φ + a2)3/2
, (36)

using Dwight 120.2 [31]. This is a nonzero function for any value of the distance x of the
observer from the axis of the infinite solenoid. The x-component of the final integral is zero,
leaving only the y-component, which is also in the φ̂-direction at the observer. The character
of BA−W is in contrast to the Biot-Savart magnetic field which is zero outside the solenoid
and constant inside (with value μ0I ẑ). For r � a (outside the solenoid),

BA−W(r � a) → μ0

4π

πa2rI

4r3
φ̂ =

μ0

4π

m× r

4r3
, (37)
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where r = (r, 0, 0) and m = πa2I ẑ is the magnetic dipole moment per unit length of the
infinite solenoid. That is, the field lines of BA−W for an infinite solenoid are of the same
form as those for a magnetic dipole (sec. 2.3.1 above).

2.3.3 Long, Straight Wire (Aug. 21, 2021)

In this section, we consider a wire along the z-axis, carrying current I .
The Ampère-Weber magnetic field (21) at the point r = (r, 0, 0) is, integrating over

current elements I dl at r′ = (0, 0, z′),

dl = (0, 0, dz′), R = r − r′ = (r, 0,−z′), dl · R = −z′ dz′, R =
√

r2 + z′2, (38)

BA−W =
μ0

4π

∮
I
(dl · R)R

R4
= −μ0

4π
I

∫ ∞

−∞
dz′ z′(r, 0,−z′)

(r2 + z′2)2
=

μ0I

8r
ẑ, (39)

using Dwight 122.2 [31]. That is, BA−W is parallel to the wire and falls off inversely with
the distance from it.

This result contrasts with Faraday’s vision that the lines of magnetic field circle about
long, straight, current-carrying wires (Art. 233 of [9]; see also sec. A.17.4 of [48]).

A Appendix: Force Law for a Moving Charge

(Jan. 3, 2023)

We could try to generalize the Ampère-Weber force law, eq. (23), to the case of an electric
charge q with velocity v at position x. Replacing I1 dl1 by q v, we infer from eqs. (21)-(23)
that,

FA−W(x) = −q v ·
∫

r̂ [dBA−W(x,x′) + 2∇(dBA−W(x,x′) · r)] dVol′

= −q v · μ0

4π

∫
r̂

(
J(x′) · r̂

r2
+ 2r̂ · ∇J(x′) · r

r2

)
dVol′, (40)

where r = x− x′ is the distance vector from the source point x′ to the observation point x.
Recalling eq. (24), this can we written as,

FA−W(x) =
μ0

4π
q

∫
r̂
3(J(x′) · r̂)(v · r̂) − 2v · J(x′)

r2
dVol′, (41)

which is not a simple function of BA−W(x). Further, FA−W does not equal the Lorentz force,

F = q v ×B ≈ q v × μ0

4π

∫
J(x′) × r̂

r2
dVol′ =

μ0

4π
q

∫
(v · r̂)J(x′) − (v · J(x′)) r̂

r2
dVol′, (42)

where the approximation holds for low velocities. This reinforces that the Ampère-Weber
magnetic field, BA−W, does not have great physical significance.22

22The Ampère-Weber force law (23) is equivalent to Ampère’s original force law (1), which also does not
well generalize to an expression for the force on a moving electric charge, or on an isolated current element.
Ampère understood this, and inferred that (electrically neutral) isolated current elements could not exist.
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B Appendix: Force on a Magnetic Pole (Aug. 21, 2021)

An important insight of Ampère was that all magnetism is due to electric currents, rather
than to magnetic poles as had been assumed by all previous workers. In particular (as
mentioned in footnote 8 above), Biot and Savart studied the interaction of a magnetic needle
with an electric current, supposing that a magnetic pole p resided on the tip of the needle,
such that the force law they proposed can be written in vector form as,

F = pBB−S, where BB−S =
μ0

4π

∮
I dl × r̂

r2
. (43)

In particular, for the case of steady current I ẑ in a long straight wire, the Biot-Savart
magnetic field is BB−S = μ0I ẑ × r̂/2πr at the magnetic pole p at (transverse) distance r
from the wire.

If we consider that an alternative magnetic field must also describe the force on a magnetic
pole according to F = pBalt, then it is clear that the form BA−W of eq. (21) does not satisfy
this. In particular, for the case of the magnetic field (39) due to the current in a long,
straight wire (as in the experiment of Biot and Savart [1]), BA−W = μ0I ẑ/16r is parallel
to the wire, which would imply a force on the pole parallel to the wire, rather than in the
direction I × r as observed experimentally.
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