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1 Problem

Discuss the flow of energy, including possible angular momentum in the flow, of a weakly
focused Gaussian laser beam that reflects off a flat, perfectly conducting mirror. You may
assume that the waist/focal point of the beam lies in the plane of the mirror.

2 Solution

We will use the time-average Poynting vector, 〈S〉 = Re(E × B�)/2μ0 = c ε0Re(E × cB�)/2
(in SI units, where c is the speed of light in vacuum), to discuss the flow of energy in waves
with electric field E and magnetic field B, assuming these waves to be in vacuum.

2.1 Reflection of an Infinite Plane Waves by a Planar Mirror

Before turning to the more realistic case of reflection of a beam with limited transverse
extent, we consider the reflection by a perfectly conducting surface in the plane z = 0 of a
plane wave of angular frequency ω that is polarized in the x-direction. The waves propagate
in vacuum in the region z < 0.

If the incoming wave had zero angle of incidence its fields could be written (for z < 0)m

Ex = E0 e
i(kz−ωt), Ey = Ez = 0, Bx = 0, cBy = Ex, Bz = 0, (1)

where k = ω/c and c is the speed of light in vacuum. The energy flow in this wave is
described by the (real) Poynting vector,

S = c ε0ReE × ReB = c ε0E
2
0 cos2(kz − ωt) ẑ, (2)

whose time average,

〈S〉 =
c ε0
2
Re(E × cB�) = c ε0

E2
0

2
ẑ, (3)

is the product of the wave velocity c ẑ and the time-average energy density 〈u〉 = ε0E
2
0/2.

We now consider that case that the incident beam has angle of
incidence θ in the y-z plane. We anticipate that the reflected
beam also makes angle θ to the z-axis.
The incident and reflected beams each have the form (1) with
respect to axes (xi, yi, zi) and (xr, yr, zr), where the zi- and zr-
axes are in the directions of propagation of the two beams.

1



The transformation between the axes (xi, yi, zi) of the incident beam and the laboratory
axes (x, y, z) is,

xi = x, yi = y cos θ − z sin θ, zi = y sin θ + z cos θ, (4)

and the components of a vector A with respect to the laboratory frame are related to those
with respect to axes (xi, yi, zi) by,

Ax = Axi, Ay = cos θ Ayi + sin θ Azi, Az = − sin θ Ayi + cos θ Azi . (5)

Combining eqs. (1), (4) and (5), the components of the fields of the incident wave in the
laboratory frame are (for z < 0),

Eix = E0 e
i(ky sin θ+kz cos θ−ωt), Eiy = Eiz = 0, (6)

Bix = 0, cBiy = Eix cos θ, cBiz = −Eix sin θ. (7)

Similarly, the reflected beam is related by the transformations,

xr = x, yr = −y cos θ − z sin θ, zr = y sin θ − z cos θ, (8)

and,

Ax = Axr, Ay = − cos θ Ayr + sin θ Azr , Az = − sin θ Ayr − cos θ Azr , (9)

such that the laboratory-frame field components are (for z < 0),

Eir = E0r e
i(ky sin θ−kz cos θ−ωt), Ery = Erz = 0, (10)

Brx = 0, cBry = −Erx cos θ, cBrz = −Erx sin θ. (11)

The boundary conditions at the perfectly conducting surface z = 0 are that the total
electric field have no tangential component (Ex = 0 = Ey) and that the total magnetic field
have no normal component (Bz = 0). All of these conditions are satisfied by,

E0r = −E0, (12)

which is often expressed by saying that the reflected beam has a 180◦ phase change with
respect to the incident beam.

Combining eqs. (6)-(7), (10)-(11) and (12), the total field components are (for z < 0),

Ex = 2iE0 e
i(ky sin θ−ωt) sin(kz cos θ), Ey = Ez = 0, (13)

Bx = 0, cBy = 2E0 e
i(ky sin θ−ωt) cos θ cos(kz cos θ),

cBz = −2iE0 e
i(ky sin θ−ωt) sin θ sin(kz cos θ). (14)

The time-average Poynting vector is,

〈S(z < 0)〉 = 2c ε0E
2
0 sin θ sin2(kz cos θ) ŷ, (15)

which corresponds to a (steady) flow of energy in the y-direction, parallel to the mirror for
any nonzero value of the angle of incidence θ. This flow is modulated in z according to
sin2(kz cos θ).
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We could also decompose the total Poynting vector as,

〈S〉 =
c ε0
2
Re(E × cB�) =

c ε0
2
Re[(Ei + Er) × (cB�

i + cB�
r)]

=
c ε0
2
Re(Ei × cB�

i ) +
c ε0
2
Re(Er × cB�

r) +
c ε0
2
Re[(Ei × cB�

r) + (Er × cB�
i )]

= 〈Si〉 + 〈Sr〉 + 〈Sint〉 . (16)

Recalling eq. (3) we have that (for z < 0),

〈Si〉 = c ε0
E2

0

2
k̂i , 〈Sr〉 = c ε0

E2
0

2
k̂r , and 〈Si〉 + 〈Si〉 = c ε0E

2
0 sin θ ŷ, (17)

where k̂i = sin θ ŷ + cos θ ẑ and k̂r = sin θ ŷ − cos θ ẑ. The interaction Poynting vector is,

〈Sint(z < 0)〉 = −c ε0E2
0 sin θ cos(2kz cos θ) ŷ = c ε0E

2
0 sin θ[2 sin2(kz cos θ) − 1] ŷ, (18)

so the total energy flow is again given by eq. (15).
The existence of a nontrivial interaction term (18) in this simple example illustrates

that some aspects of the description of energy flow via the Poynting vector are not very
intuitive. For example, while the flow of energy in the incident or reflected beams, considered
by themselves, has only a positive y-component, the direction of the interaction flow (18)
oscillates in z with period λ/(2 cos θ).

For possible clarification of the nature of the interaction flow, we next consider the
reflection of beams with limited transverse extent.

2.2 Reflection of a Weakly Focused, Linearly Polarized Gaussian

Optical Beam

2.2.1 Gaussian Optical Beams

We use so-called Gaussian beams of circular cross section to describe approximate wave
solutions to Maxwell’s equations that have limited transverse extent. For completeness, a
derivation of the form of a linearly polarized Gaussian beam is given in the Appendix. In
the paraxial approximation, such a beam that is polarized along the x-axis and propagating
along the z-axis is described as,

Ex ≈ E0 e
−ρ2/(1+z2/z2

0)√
1 + z2/z2

0

ei{kz[1+z0ρ2/k(z2+z2
0 )]−ωt−tan−1(z/z0)},

Ey = 0, (19)

Ez ≈ − ix
z0
Ex

e−i tan−1 z/z0√
1 + z2/z2

0

,

Bx = 0, cBy = Ex, cBz = − iy
z0

Ex
e−i tan−1 z/z0√

1 + z2/z2
0

, (20)
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where c is the speed of light in vacuum,

k =
ω

c
, ρ =

√
x2 + y2

w0
=
r⊥
w0

, (21)

w0 is the characteristic radius of the beam at its waist (focus), θ0 is the diffraction angle and
z0 is the Rayleigh range, as shown in the figure below, which quantities are related by,

θ0 =
w0

z0

, z0 =
kw2

0

2
=

2

kθ2
0

. (22)

Near the focus (ρ <∼ 1, |z| � z0), the beam (19)-(20) can be approximated as the plane
wave,1

Ex = E0 e
−ρ2

ei(kz−ωt), Ey = 0, Ez = − ix
z0
Ex, (23)

Bx = 0, cBy = Ex, cBz = − iy
z0
Ex, (24)

which obeys ∇ · E = 0 = ∇ · B recalling eq. (22). The equations ∇ × E = −∂B/∂t and
∇ × B = ∂E/∂(c2t) are satisfied up to terms of order ρ2θ0. We are interested in transverse
distances ρ <∼ 1, so the approximation (23)-(24) is a good solution to Maxwell’s equations
provided w0 � z0, i.e., θ0 � 1. This is the case in the present problem, where we wish to
explore the behavior of very weakly focused optical beams.

The flow of energy in this beam near its waist is described by the (real) Poynting vector,

S = c ε0ReE × RecB ≈ c ε0E
2
0 e

−2ρ2

(
r⊥
2z0

sin[2(kz − ωt)] r̂⊥ + cos2(kz − ωt) ẑ

)
. (25)

The time-average flow of energy is, of course, only in the direction ẑ of propagation of the
wave. In addition to the steady, time-average flow of energy (which obeys ∇ · 〈S〉 = 0), there
is an oscillatory transverse flow (and a corresponding oscillatory density u of energy stored
in the electromagnetic field).2

1The forms (23)-(24) could also be deduced quickly by first assuming Ey and Bx to be a plane wave with
a Gaussian transverse modulation, and then enforcing conditions ∇ · E = 0 = ∇ · B to determine Ez and
Bz .

2Near its waist, a Gaussian beam is similar to a wave inside a conducting wave guide, which latter case
also exhibits steady longitudinal, and oscillatory transverse, flow of energy [1].
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2.2.2 Reflection by a Perfectly Conducting Planar Mirror

For simplicity, we again restrict our attention to the case that the x-polarization of the
electric field is perpendicular to the plane of incidence, the y-z plane. The mirror is in the
plane z = 0, and the beams exist in the half space z < 0.

The incident and reflected beams each have the Gaussian form (23)-(24), with respect to
axes (xi, yi, zi) and (xr, yr, zr), where the zi- and zr-axes are in the directions of propagation of
the two beams. The transverse distance ρi in the incident beam can be written in laboratory
coordinates using eq. (4),

ρ2
i =

x2
i + y2

i

w2
0

=
x2 + y2 cos2 θ − yz sin 2θ + z2 sin2 θ

w2
0

, (26)

where θ is the angle between the axis of the incident beam and the z-axis, and we assume that
axis of the incident beam passes through the origin. Then, combining eqs. (5) (23)-(26),
the components of the incident beam in the laboratory frame are,

Eix = E0 e
−ρ2

i ei(ky sin θ+kz cos θ−ωt), (27)

Eiy = −ix sin θ

z0
Eix, (28)

Eiz = −ix cos θ

z0
Eix, (29)

Bix = 0, (30)

cBiy =

[
cos θ − i sin θ

y cos θ − z sin θ

z0

]
Eix , (31)

cBiz = −
[
sin θ + i cos θ

y cos θ − z sin θ

z0

]
Eix . (32)

Similarly, the transverse distance ρr in the reflected beam is,

ρ2
r =

x2
r + y2

r

w2
0

=
x2 + y2 cos2 θ + yz sin 2θ + z2 sin2 θ

w2
0

, (33)

in laboratory coordinates, and the field components of the reflected beam in the laboratory
frame are,

Erx = E0r e
−ρ2

r ei(ky sin θ−kz cos θ−ωt), (34)

Ery = −ix sin θ

z0
Erx, (35)

Erz = i
x cos θ

z0
Eix, (36)

Brx = 0, (37)

cBry =

[
− cos θ + i sin θ

y cos θ + z sin θ

z0

]
Erx , (38)
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cBrz = −
[
sin θ + i cos θ

y cos θ + z sin θ

z0

]
Erx , (39)

where we have assumed that the reflected beam also makes angle θ with respect to the z-axis,
and that the axis of the reflected beam passes through the origin.

The boundary conditions at the perfectly conducting surface z = 0 are again satisfied by,

E0r = −E0. (40)

The time-average energy flow can now be described by the total Poynting vector,

〈S〉 =
c ε0
2
Re(E × cB�) =

c ε0
2
Re[(Ei + Er) × (cB�

i + cB�
r)]

=
c ε0
2
Re(Ei × cB�

i ) +
c ε0
2
Re(Er × cB�

r) +
c ε0
2
Re[(Ei × cB�

r) + (Er × cB�
i )]

= 〈Si〉 + 〈Sr〉 + 〈Sint〉 . (41)

Recalling eq. (25) we have that (for −z0
<∼ z < 0),

〈Si〉 ≈ c ε0
E2

0

2
e−2ρ2

i k̂i , 〈Sr〉 ≈ c ε0
E2

0

2
e−2ρ2

r k̂r , (42)

〈Si〉 + 〈Sr〉 ≈ c ε0
E2

0

2

[(
e−2ρ2

i + e−2ρ2
r

)
sin θ ŷ +

(
e−2ρ2

i − e−2ρ2
r

)
cos θ ẑ

]
. (43)

Lines of the summed Poynting flux 〈Si〉 + 〈Sr〉 are sketched in the figure below, and are
consistent with a naive expectation as to how the total energy flow should behave.

However, the total Poynting vector also includes the interaction term,

〈Sint(−z0
<∼ z < 0)〉 ≈ −c ε0E2

0 e
−ρ2

i−ρ2
r sin θ

[(
cos(2kz cos θ) +

z cos θ

z0
sin(2kz cos θ)

)
ŷ

+
y cos θ

z0
sin(2kz cos θ) ẑ

]
, (44)

which obeys the condition of steady flow, 〈∇ · Sint〉 = 0 on neglect of small terms of order
yz/z2

0. The interaction flow is significant only in the region of overlap of the incident and
reflected beams, with flow lines roughly as sketched on the following page. While the flow
of 〈Si〉 + 〈Sr〉 is counterclockwise in this example, the flow of 〈Sint〉 is clockwise.

The area of a loop of the circulating interaction energy flow is of order λ2. It seems hard
to give such loops a physical interpretation, especially in a quantum description, where a

6



photon of the field has characteristic size λ. Yet, Maxwell might have been pleased by the
appearance of small loops of energy flow in a nominally simple example.

2.2.3 Angular Momentum

If the Gaussian beam were a pulse with a sharp wavefront, that wavefront would first en-
counter the mirror at negative values of y. The resulting initial pressure would exert a torque
about the x-axis, and the mirror would begin to rotate in a counterclockwise sense, if free
to turn about that axis. Similarly, if the pulse had a sharp trailing edge, this would last
encounter the part of the mirror at positive values of y, imparting an angular momentum to
the mirror that cancels that due to the leading edge of the pulse.

The initial and final angular momenta of the fields and of the mirror are zero. However,
during the time that the beam is interacting with the mirror, the field angular momentum
must be equal and opposite to that of the mirror, i.e., clockwise. We see in the figure above
that the flow of interaction energy in the loop closest to the mirror, which loop has the largest
flow, is indeed clockwise, and qualitatively consistent with the total angular momentum of
the system being zero.

The time-average field angular momentum 〈L〉EM about the origin can be calculated as,

〈L〉EM =

∫
r× 〈S〉

c2
dVol =

∫
r×

(〈S〉i
c2

+
〈S〉r
c2

+
〈S〉int

c2

)
dVol = 〈L〉i +〈L〉r +〈L〉int , (45)

where 〈L〉i = 0 = 〈L〉r, and the interaction angular momentum has only an x-component,

Lint,x =

∫
y 〈S〉int,z − z 〈S〉int,y

c2
dVol

≈ ε0
c
E2

0 sin θ

∫
e−ρ2

i −ρ2
r

(
z cos(2kz cos θ) − (y2 − z2) cos θ

z0
sin(2kz cos θ)

)
dVol

≈ ε0
c
E2

0 sin θ

∫
e−ρ2

i −ρ2
rz cos(2kz cos θ) dVol, (46)

which could be evaluated numerically.
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A Appendix: Gaussian Beams

We review one derivation of a linearly polarized Gaussian beam, say withEx = f(r, z) ei(kz−ωt)

that is cylindrically symmetric with angular frequency ω and wave number k = ω/c and prop-
agating along the z axis in vacuum. Of course, the electric field must satisfy the free-space
Maxwell equation ∇ · E = 0. If f(r, z) is not constant and Ey = 0, then we must have
nonzero Ez. That is, the desired electric field actually has more than one vector component.

To deduce all components of the electric and magnetic fields of a Gaussian beam from
a single scalar wave function, we follow the suggestion of Davis [2] and seek solutions for a
vector potential A that has only a single Cartesian component (such that (∇2A)j = ∇2Aj

[3]). We work in the Lorenz gauge (and SI units), so that the electric scalar potential Φ is
related to the vector potential A by,

∇ · A = − 1

c2
∂Φ

∂t
= i

ω

c2
Φ = i

k2

ω
Φ. (47)

The vector potential can therefore have a nonzero divergence, which permits solutions having
only a single component.

Of course, the electric and magnetic fields can be deduced from the potentials via,

E = −∇Φ − ∂A

∂t
= i

ω

k2
∇(∇ ·A) + iωA, (48)

using the Lorenz condition (47), and,

B = ∇ × A. (49)

The vector potential satisfies the free-space (Helmholtz) wave equation,

∇2A− 1

c2
∂2A

∂t2
= (∇2 + k2)A = 0. (50)

We seek a solution in which the vector potential is described by a single Cartesian component
Aj that propagates in the +z direction with the form,

Aj(r) = ψ(r) ei(kz−ωt). (51)

Inserting trial solution (51) into the wave equation (50), we find that

∇2ψ + 2ik
∂ψ

∂z
= 0. (52)

In the usual analysis, one now assumes that the beam is cylindrically symmetric about
the z axis and can be described in terms of three geometric parameters the diffraction angle
θ0, the waist w0, and the depth of focus (Rayleigh range) z0, which are related by,

θ0 =
w0

z0

=
2

kw0

, and z0 =
kw2

0

2
=

2

kθ2
0

. (53)
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We now convert to the scaled coordinates,

ξ =
x

w0
, υ =

y

w0
, ρ2 = ξ2 + υ2, and ς =

z

z0
. (54)

Changing variables and noting relations (53), the wave equation (52) takes the form,

∂2ψ

∂ξ2 +
∂2ψ

∂υ2
+ θ2

0

∂2ψ

∂ς2
+ 4i

∂ψ

∂ς
= 0. (55)

The paraxial approximation is that the term in the small quantity θ2
0 is neglected, and the

resulting paraxial wave equation is,

∂2ψ

∂ξ2 +
∂2ψ

∂υ2
+ 4i

∂ψ

∂ς
≈ 0. (56)

An “educated guess” is that the transverse behavior of the wave function ψ has a Gaussian
form, but with a width that varies with z. Also, the amplitude of the wave far from its waist
should vary as 1/z. In the scaled coordinates ρ and ς a trial solution is,

ψ = h(ς) e−f(ς)ρ2

, (57)

where the possibly complex functions f and h are defined to obey f(0) = 1 = h(0). Since
the transverse coordinate ξ and υ are scaled by the waist w0, we see that Re(f) = w2

0/w
2(ς)

where w(ς) is the beam width at position ς . From the geometric parameters (54) we see
w(ς) ≈ θ0z = w0ς for large ς . Hence, we expect that Re(f) ≈ 1/ς 2 for large ς . Also, we
expect the amplitude h to obey |h| ≈ 1/ς for large ς.

Plugging the trial solution (57) into the paraxial wave equation (56) we find that,

− fh+ ih′ + ρ2h(f2 − if ′) ≈ 0. (58)

We see that for eq. (58) to be true at all values of ρ implies that,

f ′

f2
= −i, and

h′

fh
= −i. (59)

Thus, f = h is a solution, despite the different physical origin of these two functions as the
transverse width and amplitude of the wave. We integrate the first of eq. (59) to obtain,

1

f
= C + iς. (60)
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Our definition f(0) = 1 determines that C = 1. That is,

f =
1

1 + iς
=

1 − iς

1 + ς2
=
e−i tan−1 ς

√
1 + ς2

. (61)

Note that Re(f) = 1/(1+ς2) = w2
0j/w

2
j (ς), while |f | = 1/

√
1 + ς2, so that f = h is consistent

with the asymptotic expectations discussed above. The longitudinal dependence of the width
of the Gaussian beam is now seen to be,

w(ς) = w0

√
1 + ς2. (62)

The lowest-order wave function is,

ψ0 = f e−fρ2

=
e−i tan−1 ς

√
1 + ς2

e−ρ2/(1+ς2) eiςρ2/(1+ς2). (63)

The factor e−i tan−1 ς in ψ0 is the so-called Gouy phase shift [4], which changes from 0 to π/2
as z varies from 0 to ∞, with the most rapid change near the z0. For large z the phase
factor eiςρ2/(1+ς2) can be written as ei(z0/z)(r2

⊥/w2
0) ≈ eikr2

⊥/(2z), recalling eq. (53). When this is
combined with the traveling wave factor ei(kz−ωt) we have,

ei[kz(1+r2
⊥/2z2)−ωt] ≈ ei(kr−ωt), (64)

where r =
√
z2 + r2

⊥. Thus, the wave function ψ0 is a modulated spherical wave for large z,
but is a modulated plane wave near its waist.

To obtain the electric and magnetic fields of a Gaussian beam that is polarized in the y
direction we take the vector potential to be,

Ax =
E0

iω
ψ0 e

i(kz−ωt) =
E0

iω
f e−fρ2

ei(kz−ωt), Ay = 0, Az = 0. (65)

Then,

∇ · A = −2fx

w2
0

Ax. (66)

and the electric field follows from eq. (48) as,

Ex ≈ E0f e
−fρ2

ei(kz−ωt), Ey ≈ 0, Ez ≈ −i x
z0
fEx, (67)

where we neglect terms of order 1/z2
0 . Similarly, the magnetic field follows from eq. (49) as,

Bx = 0, cBy = Ex , cBz = −i y
z0
fEx . (68)

The time-average flow of energy in the Gaussian beam (67)-(68) is described by the
Poynting vector,

〈S〉 =
c ε0
2
Re(E × B�) ≈ c ε0

2
E2

0 |f |2 e−2Refρ2

(
ς

z0(1 + ς2)
r⊥ + ẑ

)

=
c ε0
2

E2
0

(1 + z2/z2
0)
e−2r2

⊥/θ2
0(z

2+z2
0 )

(
r⊥z

z2 + z2
0

r̂⊥ + ẑ

)
. (69)
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Far from the waist, where |z| 
 z0, the Poynting vector is,

〈S(|z| 
 z0)〉 ≈ c ε0
2
E2

0

z2
0 e

−2r2
⊥/θ2

0z2

z2

(r⊥
z

r̂⊥ + ẑ
)
≈ c ε0

2
E2

0

z2
0 e

−2θ2/θ2
0

r2
r̂, (70)

where θ ≈ r⊥/z is the polar angle with respect to the z-axis. Close from the waist, where
|z| � z0, the Poynting vector is,

〈S(|z| � z0)〉 ≈ c ε0
2
E2

0 e
−2r2

⊥/θ2
0z2

0 ẑ ≈ c ε0
2
E2

0 e
−2r2

⊥/w2
0 ẑ. (71)

Lines of the Poynting vector (69) are sketched below. All the energy within a circle of radius
w0 in the plane z = 0 appears within a cone of half angle θ0 at large z.

The fields Ex and Ez, i.e., the real parts of eqs. (67), are shown in Figs. 1 and 2.

Figure 1: The electric field Ex(x, 0, z) of a linearly polarized Gaussian beam
with diffraction angle θ0 = 0.45, according to eq. (67).
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Figure 2: The electric field Ez(x, 0, z) of a linearly polarized Gaussian beam
with diffraction angle θ0 = 0.45, according to eq. (67).
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