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1 Problem

Discuss the fields of a moving point electric dipole, and characterize these fields in terms of
multipole moments. It suffices to consider uniform motion with velocity v small compared
to the speed c of light in vacuum.

2 Solution

This note is an elaboration of [1].
The relativistic transformations of densities P and M of electric and magnetic dipole mo-

ments (also called polarization and magnetization densities, respectively) were first discussed
by Lorentz [2], who noted that they follow the same transformations as do the magnetic and
electric fields B = H + 4πM and E = D − 4πP, respectively,

P = γ
(
P0 +

v

c
× M0

)
− (γ − 1)(v̂ · P0) v̂, M = γ

(
M0 − v

c
× P0

)
− (γ − 1)(v̂ · M0) v̂, (1)

where the inertial rest frame moves with velocity v with respect to the (inertial) lab frame
of the polarization densities, and γ = 1/

√
1 − v2/c2.

Considerations of the fields moving electric dipoles perhaps first arose in the context of
Čerenkov radiation when the dipole velocity v exceeds the speed of light c/n in a medium
of index of refraction n [3].2

Later discussions by Frank of his pioneering work are given in [4, 5].
As noted by Frank [5], specialization of eq. (1) to point electric and magnetic dipole

moments p and m, and to low velocities, leads to the forms,

p ≈ p0 +
v

c
× m0, m ≈ m0 − v

c
× p0, p0 ≈ p− v

c
× m, m0 ≈ m +

v

c
× p, (2)

where p0 and m0 and the moments in the rest frame of the point particle, while p and m

1This note was written by the author in his private capacity. No official support or endorsement by the
Center for Disease Control and Prevention is intended or should be inferred.

2That a moving current leads to an apparent charge separation was noted in [6] (1880). Considerations
of the “motional” electric dipole, p = v/c×m0 when p0 = 0, due the motion of a magnetic dipole appears,
in eq. (17) of [7]. See also eq. (13) of [8], which was inspired by Art. 600 of [9]. This effect was also discussed
by Frenkel [10, 11] following the prediction by Uhlenbeck and Goudsmit [12] that an electron has an intrinsic
magnetic moment.
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are the moments when the particle has velocity v in the lab frame.3,4,5 However, the fields
associated with an electric and/or magnetic dipole moving at low velocity are not simply the
instantaneous fields of the moments p and m, which leads to ambiguities in interpretations
of the fields as due to moments.

Before deducing the fields, we note a past misunderstanding regarding eq. (2).

2.1 Fisher’s Claim

In sec. III of [14] it is claimed that the magnetic moment of a point electric dipole p0 which
moves with velocity v can be calculated according to,

m =
1

2c

∫
r × J dVol =

1

2c

∫
r × ρ0v dVol = − v

2c
×

∫
ρ0r dVol = − v

2c
× p0, (4)

which differs from eq. (2) by a factor of 2.
Furthermore, support for this result appears to be given in probs. 6.21, 6.22 and 11.27

of [15].
However, we should recall that the origin of the first equality in (4) is a multipole expan-

sion of the (quasistatic) vector potential of a current distribution. See, for example, sec. 5.6
of [15]. That form depends on the current density J having zero divergence. In general,

∇ · J = −∂ρ

∂t
, (5)

where ρ is the electric charge density.6 The charge density of a moving electric dipole is time
dependent, such that ∇ · J �= 0, and we cannot expect the analysis of eq. (4) to be valid.7

2.2 The Fields of a Moving Electric Dipole

The literature on calculations of the fields of a moving, point electric dipole is very extensive,
including [16]-[33]. Most of these works emphasize the radiation fields of an ultrarelativistic
dipole. Here, we consider only the low-velocity limit of an electric dipole, of strength p0 in
its rest frame, that is at the origin at time t = 0 with velocity v. We work in the quasistatic
approximation, in which the potentials are the same in the Coulomb and Lorenz gauges.

3Ref. [5] recounts a past controversy that these transformations might involve the index n if the magnetic
dipole were not equivalent to an Ampèrian current loop.

4The moments p and m associated with the densities P and M in a volume V = V0/γ transform for
arbitrary v/c according to,

p = p0 +
v
c
×m0 − (1 − 1/γ)(v̂ · p0) v̂, m = m0 − v

c
× p0 − (1 − 1/γ)(v̂ · m0) v̂. (3)

5In experimental searches for electric dipole moments of electrons, neutrons, etc., which have intrinsic
magnetic moments, the discussion (see, for example, [13]) emphasizes the rest frame of the particle, where the
magnetic interaction energy due to lab-frame fields B and E is U ≈ −m0 · (B−v/c×E)−p0 · (E+v/c×B),
where v is the lab-frame velocity of the particle. This could be rewritten entirely in terms of lab-frame
quantities as U ≈ −m · B− p · E, but this in not done in the literature.

6For moving media, ∇ · J = −∂ρ/∂t − (v · ∇)ρ = −dρ/dt.
7Thanks to Grigory Vekstein for pointing this out.
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2.2.1 Multipole Expansions of the Potentials

Following the spirit of [14], and secs. 4.1 and 5.6 of [15], we consider multipole expansions
of the scalar potential V and the vector potential A at time t = 0, when the moving electric
dipole is that the origin. Then, the (quasistatic) scalar potential is,

V (r, t = 0) =
p0 · r

r3
, (6)

as the charge distribution has only a dipole moment at this time. The (quasistatic) vector
potential has the expansion,

Ai(r, t = 0) =
1

cr

∫
Ji(r

′, t = 0) dVol′ +
r

cr3
·
∫

r′Ji(r
′, t = 0) dVol′ + · · ·

=
v

cr

∫
ρ0(r

′, t = 0) dVol′ +
vir

cr3
·
∫

r′ρ0(r
′, t = 0) dVol′ + · · ·

=
vir · p0

cr3
, (7)

where ρ0 is the electric charge distribution of the electric dipole in its rest frame,
∫

ρ0(r) dVol =
0,

∫
ρ0(r) r dVol = p0, and J = ρ0v is the current density of the moving electric dipole in

the lab frame. It is perhaps not evident that all higher-order terms vanish in eq. (7), but
this will be confirmed in sec. 2.2.2. Then,

A(r, t = 0) =
(p0 · r)v

cr3
=

(
−v

c
× p0

)
× r

r3
+

(r · v)p0

cr3
≡ Am + Ap, (8)

where,

Am =
m × r

r3
=

(p0 · r)v − (r · v)p0

cr3
with m = −v

c
× p0, (9)

which is the vector potential expected from eq. (2) for a moving electric dipole moment (with
no intrinsic magnetic moment), and,

Ap =
(r · v)p0

cr3
. (10)

It is something of a convention to say that Am is the vector potential of the magnetic
moment of the moving electric dipole in that the term Ap is also a vector potential with
1/r2 dependence as associated with dipole potentials. The decomposition A = Am + Ap

is of possible mathematical convenience but has no well-defined physical significance. For
example, we could also write,

A =
(p0 · r)v

cr3
=

(p0 · r)v − (r · v)p0

2cr3
+

(p0 · r)v + (r · v)p0

2cr3
= Aa + As, (11)

where,

Aa =
(p0 · r)v − (r · v)p0

2cr3
=

1

2
Am, As =

(p0 · r)v + (r · v)p0

2cr3
, (12)
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are the antisymmetric and symmetric combinations of the terms (p0 · r)v/2cr3 and
(r · v)p0/2cr

3. The decomposition (11) is advocated in probs. 6.21 and 6.22 of [15], but
should not be construed as implying that the magnetic moment of the moving electric dipole
is Am/2, just as the decomposition (8) does not imply that the magnetic moment of the
moving electric dipole is Am.8

It would seem most correct simply to say that 1/r2 term in the vector potential of the
moving electric dipole is (p0 · r)v/cr3 without supposing this to be the sum of two effects of
different physical character. Nonetheless, we can be led to the decompositions (8) and (11)
by other arguments, each compelling in its way, as considered in secs. 2.2.3 and 2.2.4.

2.2.2 Fields and Potentials via Lorentz Transformations

Before going further, it is useful to note the most direct method of obtaining the potentials
and fields of a moving electric dipole is via a Lorentz transformation from its rest frame,
which has velocity v with v � c with respect to the lab frame.

The potentials in the rest frame of the electric dipole, assumed to be at the origin, are,

V � =
p0 · r�

r�3
, A� = 0, (13)

where quantities in the rest frame are denoted with the superscript �. The Lorentz trans-
formation of the 4-vectors (ct, r) and (V,A) to the lab frame at time t = 0 yield, for v � c,
where γ = 1/

√
1 − v2/c2 ≈ 1,

r�
‖ = γ(r‖ − vt) ≈ r‖, r�

⊥ = r⊥, i .e., r� ≈ r, (14)

V = γ(V � + A� · v/c) ≈ V � =
p0 · r�

r�3
≈ p0 · r

r3
, (15)

A = γ(A� + V �v/c) ≈ (p0 · r)v
cr3

. (16)

Hence, the multipole expansion (8) of the vector potential A at order 1/r2 is actually the
“exact” result in the low-velocity approximation.

While the fields E and B can now be calculated from the potentials according to,

E = −∇V − 1

c

∂A

∂t
, B = ∇ ×A, (17)

it is more straightforward to deduce the fields E and B as the Lorentz transforms of the
fields in the rest frame of the electric dipole,

E� =
3(p0 · r�)r�

r�5
− p0

r�3
− 4π

3
p0δ

3r�, B� = 0. (18)

Then,9 at time t = 0 when r� ≈ r,

E = γ
(
E� − v

c
× B�

)
− (γ − 1)(E� · v̂)v̂ ≈ E� =

3(p0 · r)r
r5

− p0

r3
− 4π

3
p0δ

3r, (19)

8That Jackson was aware of both decompositions (8) and (11) is indicated in a letter of Mar. 20, 1990 on
this theme [34], and somewhat indirectly in prob. 11.28 of [15]. V.H. thanks J.D.J. for a copy of this letter.

9See, for example, sec. 11.10 of [15].
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B = γ
(
B� +

v

c
× E�

)
− (γ − 1)(B� · v̂)v̂ ≈ v

c
×E� ≈ v

c
× E

=
v

c
×

(
3(p0 · r)r

r5
− p0

r3
− 4π

3
p0δ

3r

)
≡ Bm + Bp ≡ Ba + Bs, (20)

where the partial fields Bm, Bp, Ba and Bs will be displayed in secs. 2.2.3 and 2.2.4.

2.2.3 Potentials Deduced from Lab-Frame Charge and Current Densities

In its rest-frame the point electric dipole p0 (located at the origin) has polarization density,

P� = p0 δ3r�. (21)

The associated charge density is,

ρ� = −∇� · P� = −p0 · ∇�δ3r�. (22)

In the lab frame the charge density is,

ρ = γρ� ≈ ρ� ≈ −p0 · ∇δ3r = −∇ · P, (23)

where the lab-frame polarization density is,

P = p0 δ3r, (24)

at the instant when the dipole is at the origin, noting that r ≈ r� and ∇� = ∇ in the
low-velocity approximation.10

When the dipole is moving with a velocity v in the lab frame it has current density,

J = γρ�v ≈ ρ�v = −v(p0 · ∇)δ3r

= −(v · ∇)p0 δ3(r) − v(∇ · p0 δ3r) + (v · ∇)p0 δ3r

= −(v · ∇)p0 δ3r −∇ × (v × p0 δ3r)

≡ Jp + Jm, (25)

noting that the operator ∇ does not act on the constant vectors p0 and v. The current
density Jp can be thought of as an “electric-polarization current”,

Jp = −(v · ∇)p0 δ3r ≡ −(v · ∇)P = −dP

dt
. (26)

Likewise, the current density Jm can be thought of as a “magnetic-polarization current”,

Jm = −∇× (v × p0 δ3r) = c∇ × m δ3r ≡ c∇ × M, (27)

using the convention that m = −v/c × p0 of eq. (2), and

M = m δ3r. (28)

10The electric field D = E + 4πP has zero divergence, ∇ ·D = ∇ ·E + 4π∇ ·P = 4πρ + 4π∇ ·P = 0, in
view of eq. (23).
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Then the sum of the polarization currents (26) and (27) equals the “convection” current
(25).

The (quasistatic) vector potentials associated with the polarization currents (26) and
(27) when the electric dipole is at the origin in the lab frame are,

Ap(r) =
1

c

∫
Jp(r

′)
|r − r′| dVol′ = −1

c

∫
(v · ∇′)p0 δ3r′

|r − r′| dVol′ = −p0

c

∫
(v · ∇′) δ3r′

|r− r′| dVol′

=
p0

c

∫
[v · (r − r′)] δ3r′

|r − r′|3 dVol′ =
(r · v)p0

cr3
, (29)

as previously found in eq. (10), and,

Am(r) =
1

c

∫
Jm(r′)
|r − r′| dVol′ =

∫ ∇′ × m δ3r′

|r − r′| dVol′ = −m×
∫ ∇′ δ3r′

|r − r′| dVol′ (30)

= m ×
∫

(r − r′) δ3r′

|r − r′|3 dVol′ =
m × r

r3
= −(v × p0) × r

cr3
=

(p0 · r)v − (r · v)p0

cr3
,

as previously found in eq. (9).
The magnetic field (20) can now be written as,

B =
v

c
×

(
3(p0 · r)r

r5
− p0

r3

)
= Bm + Bp. (31)

where,

Bm = 2Ba = ∇ × Am = −∇ × (v × p0) × r

cr3

= −v × p0

cr3
∇ · r + r

(
∇ · v × p0

cr3

)
− (r · ∇)

v × p0

cr3
+

(
v × p0

cr3
· ∇

)
r

= −3v × p0

cr3
− 3[r · (v × p0)]r

cr5
+

3v × p0

cr3
+

v × p0

cr3

=
3[(−v/c × p0) · r]r

r5
− −v/c× p0

r3
=

3(m · r)]r
r5

− m

r3

= ∇ × (p0 · r)v − (r · v)p0

cr3

= (p0 · r)∇ × v

cr3
− v

cr3
×∇(p0 · r) − (v · r)∇ × p0

cr3
+

p0

cr3
×∇(v · r)

= −3(p0 · r)r × v

cr5
− v × p0

cr3
+

3(v · r)r × p0

cr5
+

p0 × v

cr3

= v ×
(

3(p0 · r)r
cr5

− p0

cr3

)
− p0 ×

(
3(v · r)r

cr5
− v

cr3

)

= v × 3(p0 · r)r
cr5

− 2v × p0

cr3
− p0 × 3(v · r)r

cr5
, (32)

and,

Bp = ∇ ×Ap = ∇ × (r · v)p0

cr3
= (r · v)∇× p0

cr3
+ ∇(r · v) × p0

cr3
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= −3(r · v)r× p0

cr5
+ v × p0

cr3
= p0 ×

(
3(r · v)r

cr5
− v

cr3

)

= v × p0

cr3
+ p0 × 3(r · v)r

cr5
. (33)

The consistency of this decomposition tends to reinforce the identification of eq. (27) as
“the” magnetic moment of the moving electric dipole, even though the quantities Ap and
Bp also have the 1/r2 and 1/r3 dependence, respectively, expected for dipole potentials and
fields. However, alternative decompositions of the electric and magnetic lead to different
interpretations. One such decomposition is considered in the following section.

2.2.4 Jackson’s Argument

The preceding analyses have assumed for simplicity that the electric dipole is at the origin.
Problems 6.21 and 6.22 of [15] encourage us to consider the situation when the electric dipole
is not at the origin.

If the dipole is at position r0, most of the preceding results still hold with the substitutions
r → r−r0 and r → |r − r0|. However, the multipole moments of charge and current densities
depend on the choice of origin.

The total electric charge, Q =
∫

ρ dVol is, of course, independent of the choice of origin.
The electric dipole moment p =

∫
ρ r dVol is independent of the choice of origin if the total

charge Q is zero (as for an electric dipole moment). Hence, the electric dipole moment of
a dipole charge distribution is independent of the choice of origin. However, the electric
quadrupole moment of a dipole charge distribution depends on the choice of origin.

The magnetic moment of a current density that obeys ∇ · J = 0 is independent of the
choice of origin. In such cases

∫
J dvol = 0, and we can write,

m =
1

c

∫
r × J dVol → 1

c

∫
(r − r0) × J dVol = m +

r0

c
×

∫
J dVol = m. (34)

In the present example of a moving electric dipole the current density has nonzero di-
vergence, and the magnetic dipole moment (and higher magnetic moments) depend on the
choice of origin. This reinforces the sense of previous sections that it is difficult to identify
“the” magnetic moment of a moving electric dipole.

Turning to the argument implied in probs. 6.21 and 6.22 of [15], it is suggested that
the vector potential (16) be rewritten in the form (11) as the sum of antisymmetric and
symmetric terms. The motivation here is not obvious in quasistatic examples, but this
technique is of use when considering a Taylor expansion of the retarded vector potential of a
time-harmonic current distribution J(r, t) = J(r) e−iωt, at distances far from these currents,

A(r, t) =
1

c

∫
J(r′, t′ = t − R/c))

R
dVol′ ≈ e−iωt

cr

∫
J(r′) eikR dVol′

≈ ei(kr−ωt)

cr

∫
J(r′) e−ik r̂·r′ dVol′

≈ ei(kr−ωt)

cr

(∫
J(r′) dVol′ − ik

∫
J(r′)(r̂ · r′) dVol′ + · · ·

)
, (35)
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where R = |r − r′| ≈ r − r̂ · r′. As is well known (see, for example, secs. 9.2-3 of [15]), the
first term corresponds to the vector potential of electric dipole radiation, and the second
term is the sum of the vector potentials of magnetic dipole radiation and electric quadrupole
radiation. The separation of the second term into the two types of radiation is accomplished
by considering its symmetric and antisymmetric parts,

J(r′)(r̂ · r′) =
(r̂ · r′)J(r′) − (r̂ · J(r′))r′

2
+

(r̂ · r′)J′ + (r̂ · J(r′))r′

2

=
(r′ × J(r′)) × r̂

2
+

(r̂ · r′)J(r′) + (r̂ · J(r′))r′

2

= cM(r′) × r̂ +
(r̂ · r′)J(r′) + (r̂ · J(r′))r′

2
, (36)

where M(r) = r × J(r)/2c is the magnetization density associated with current density J.
The identification of r × J/2c as a magnetization density seems justified if J has zero

divergence, which is not the case, in general, in radiation problems. It is noteworthy that [35]
(sec. 71) discusses both magnetic moments and radiation for a collection of point charges,
rather than for a current density J, which deftly avoids the present ambiguities.

For completeness, we record that the magnetic field associated with the symmetric part,
As, of the vector potential (11) is, at time t = 0 when the moving electric dipole is at the
origin,

Bs = ∇ ×As = ∇× (p0 · r)v + (r · v)p0

2cr3

= (p0 · r)∇× v

2cr3
− v

2cr3
× ∇(p0 · r) + (v · r)∇ × p0

2cr3
− p0

2cr3
×∇(v · r)

= −3(p0 · r)r× v

2cr5
− v × p0

2cr3
− 3(v · r)r × p0

2cr5
− p0 × v

2r3

= v × 3(p0 · r)r
2cr5

+ p0 × 3(v · r)r
2cr5

= −3 r × (v · r)p0 + (p0 · r)v
2cr5

. (37)

When the moving dipole is at the origin the magnetic field varies purely as 1/r3, so the
fourth Maxwell equation (for points away from the dipole itself),

∇× B =
1

c

∂E

∂t
, (38)

tells us that the electric field must include terms that vary as 1/r4, which are associated
with the (time-dependent) electric quadrupole moment. However, eq. (38) should not be
construed as implying that the changing electric quadrupole moment “creates” the magnetic
field.

It is instructive to consider ∇ × Bs, for which we note that,

∇ × r× (v · r)p0

r5
= ∇ × (v · r̂) r̂ × p0

r3

= ∇ 1

r3
× (v · r̂) r̂ × p0 +

∇ × [(v · r̂) r̂ × p0]

r3
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= − 3

r4
(v · r̂) r̂ × (r̂ × p0) +

∇(v · r̂) × (r̂ × p0)

r3
+ (v · r̂)∇× (r̂ × p0)

r3

= − 3

r4
(v · r̂)[(p0 · r̂) r̂ − p0] +

(v ·∇) r̂ × (r̂ × p0)

r3
+ (v · r̂)(p0 · ∇) r̂ − p0(∇ · r̂)

r3

=
3(v · r̂)p0 − 3(v · r̂)(p0 · r̂) r̂

r4

+
[v − (v · r̂) r̂] × (r̂ × p0)

r4
+ (v · r̂)p0 − (p0 · r̂) r̂] − 2p0

r4

=
3(v · r̂)p0 − 3(v · r̂)(p0 · r̂) r̂

r4

+
(v · p0) r̂ − (v · r̂)(p0 · r̂) r̂

r4
− (v · r̂)p0 + (v · r̂)(p0 · r̂) r̂]

r4

=
−5(v · r̂)(p0 · r̂) r̂ + (v · p0) r̂ + 2(v · r̂)p0

r4
. (39)

Using eq. (39) with p0 and v interchanged, we obtain,

∇ × r × [(v · r)p0 + (p0 · r)v]

r5
=

−10(v · r̂)(p0 · r̂) r̂ + 2(v · p0) r̂ + 2(v · r̂)p0 + 2(p0 · r̂)v
r4

.(40)

Then, recalling eq. (37), we find that,

∇ × Bs =
15(v · r̂)(p0 · r̂) r̂ − 3(v · p0) r̂ − 3(v · r̂)p0 − 3(p0 · r̂)v

cr4
. (41)

As noted in prob. 6.21(c) of [15], when the moving dipole is at position r0 = vt its electric
field, eq. (19) with r → r − r0, has the multipole expansion with respect to the origin,

E =
3[p0 · (r − r0)](r − r0)

|r − r0|5
− p0

|r − r0|3

=
3(p0 · r̂) r̂ − p0

r3
+

15(r0 · r̂)(p0 · r̂) r̂ − 3(r0 · p0) r̂ − 3(r0 · r̂)p0 − 3(p0 · r̂)r0

r4
+ · · ·

= Edipole + Equadrupole + · · · , (42)

for r0 � r. The electric dipole field Edipole (in contrast to the field E of the moving electric
dipole) is constant in time (as is the electric dipole moment p ≈ p0). Thus,11

∇ × Bs =
1

c

∂Equadrupole

∂t
≈ 1

c

∂E

∂t
. (43)

This establishes a relation between the partial magnetic field Bs and the electric quadrupole
field Equadrupole of the moving electric dipole, but this should not be interpreted as a cause-
and-effect relation.

It remains that the magnetic field of a moving electric dipole p0 at order 1/r3 is not
exactly that of the “magnetic moment” −v/c × p0, so that it is somewhat delicate to use
the terminology “magnetic moment” in this example.

11One can show that ∇×Ba = 0, starting from the next to last form of eq. (32) and using the identities
(a · ∇) r̂ = [a − (a · r̂) r̂]/r and (a · ∇)(b · r̂) = [a · b − (a · r̂)(b · r̂)]/r, so that eq. (38) is satisfied for
B = Ba + Bs.
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3 Moving Magnetic Dipole

For completeness, we include a discussion of the case of a magnetic dipole m0 that has
velocity v in the lab frame. See also [29].

The potentials in the rest frame of magnetic dipole (where the magnetic moment is m0),
assuming the dipole to be at the origin, are,

V � = 0, A� =
m0 × r�

r�3
, (44)

where quantities in the rest frame are denoted with the superscript �. The Lorentz trans-
formation of the 4-vector (V,A) to the lab frame at time t when the dipole is at position
r0 = vt yield, for v � c, where γ = 1/

√
1 − v2/c2 ≈ 1, and r� ≈ r − r0 ≡ R, is,

V = γ(V � + A� · v/c) ≈ m0 × R · v
cR3

=
v/c× m0 · R

R3
, (45)

A = γ(A� + V �v/c) ≈ A� =
m0 × R

R3
. (46)

These potentials have a crisper interpretation than those of eqs. (6) and (8) for a moving
electric dipole, in that we can say that the potentials of a magnetic dipole which moves with
v � c correspond to magnetic dipole moment m = m0 and electric dipole moment,

p =
v

c
×m0, (47)

with respect to its instantaneous position.
The lab-frame fields E and B are the Lorentz transforms of the fields in the rest frame

of the magnetic dipole,

E� = 0, B� =
3(m0 · r�)r�

r�5
− m0

r�3
. (48)

Then,

E ≈ −v

c
×B� ≈ −v

c
×B = −v

c
×

(
3(m0 · R)R

R5
− m0

R3

)
, (49)

B ≈ B� =
3(m0 ·R)R

R5
− m0

R3
. (50)

The electric field can also be written as,

E = Ep + Em, (51)

with,

Ep = −∇V =
3(p · R)R

R5
− p

R3
=

3(v/c × m0 · R)R

R5
− v/c × m0

R3
, (52)
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and12

Em = −1

c

∂A

∂t
= −1

c

∂

∂t

m0 × R

R3
= −m0 ×

(
3(v · R)R

cR5
− v

cR3

)
, (53)

where Ep and Em can also be interpreted as the electric fields associated with the polarization
and magnetization densities of the moving magnetic dipole, respectively. The fields (49),
(50), (52) and (53) are the duals of the fields (20), (19), (33) and (32), respectively, of a
moving electric dipole, and suffer from the ambiguity that the electric (magnetic) field of
the moving magnetic (electric) dipole is not simply that of the electric (magnetic) moment
of the moving dipole.

If we decompose the electric field of the moving magnetic dipole into antisymmetric and
symmetric pieces (with respect to interchange of symbols m0 and v),

E = Ea + Es, (54)

then,

Ea =
Ep

2
=

3[(v/c ×m0/2) · R]R

R5
− v/c× m0/2

R3

= −v

2
×

(
3(m0 · R)R

cR5
− m0

cR3

)
+

m0

2
×

(
3(v · R)R

cR5
− v

cR3

)
, (55)

Es = E − Ea = 3R × (v · R)m0 + (m0 · R)v

2cR5
, (56)

and,

∇ × Ea = 0, ∇× Es = −1

c

∂Bquadrupole

∂t
, (57)

where the magnetic field (48) of the moving magnetic dipole at r0 can be expanded for r0 � r
as, recaling that R = r − r0,

B =
3[m0 · (r − r0)](r − r0)

|r − r0|5
− m0

|r − r0|3

=
3(m0 · r̂) r̂ −m0

r3
+

15(r0 · r̂)(m0 · r̂) r̂ − 3(r0 · m0) r̂ − 3(r0 · r̂)m0 − 3(m0 · r̂)r0

r4
+ · · ·

= Bdipole + Bquadrupole + · · · . (58)

The form of eq. (55) permits us to consider that the electric dipole moment of the moving
magnetic moment is v/c×m0/2, rather than that given in eq. (47), so again we must exercise
care in using the term “moment” to characterize a moving intrinsic moment.

For discussion of a moving magnetic dipole in an external electric field, see [37].

12The form (53) was noted in prob. 12.4 of [36] and in prob. 11.29 of [15].
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