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1 Introduction

The existence of a “mass shift”,

m = m0 − μ · Bext

c2
, (1)

(where m is the rest mass of a permanent magnetic moment μ such as that of an electron,
proton or neutron, whose rest mass in zero magnetic field is m0, c is the speed of light
in vacuum, and Bext in an external, static magnetic field) has been argued from time to
time, perhaps starting with a brief remark by Frenkel in the final paragraph of [1]. See also
eq. (18 · 9) of [2], eq. (8′), p. 1837 of [3], eq. (3.17), p. 1621 of [4], Appendix B of [5],1 p. 15
of [7], p. 4 of [8],2 and p. 64 of [9].

March 26, 2024. The arguments for the mass shift include the doubtful eqs. (6) and (11)
below, that the potential energy Upotential = −μ ·Bext for magnetic moment μ in an external
magnetic field Bext should be considered as part of the rest energy of the moment μ, rather
than of the system as a whole (in which latter case there is no mass shift of the magnetic
moment μ).3

Section 2 below presents arguments that I now consider to be specious. The comments
in Sec. 3 are then somewhat irrelevant.

1For comments by the author on this paper, see [6].
2This paper notes on p. 8 that the “mass shift” is not predicted in either the classical Foldy-Wouthuysen

model or in Dirac’s quantum theory of the electron.
3A related issue is whether there is a “mass shift” [10, 11, 12, 13] of an electric charge q at rest in an

external electrostatic field Eext (due to other charges q′ at rest) of the form

m = m0 +
Uint

c2
, where Uint =

∫
Eq ·Eext

4π
dVol = q

∑
q′

q′∣∣rq − r′q
∣∣ = qVext, (2)

in Gaussian units, with m0 as the rest mass of charge q, and the integral for the electrostatic-interaction
energy Uint = qVext (for scalar potential Vext in the Coulomb gauge) is discussed, for example, on p. 47 of
[14] and on p. 31 of [15]. The interaction energy can be negative and greater in magnitude than m0 c2 as
for an electron near the surface of the postively charged high-voltage electrode of, for example, a Van de
Graaff generator [16]. If so, electrons (as well as positive ions) would be accelerated away from the electrode,
whereas only positive ions are observed

In [17], the force needed to accelerate a system of two like electric charges, in motion perpendicular to
their (somehow constant) separation vector, was computed and found to be consistent with the rest mass of
the system being 2m0 + q2/d, where m0 and q are the rest mass and charge of each particle, and d is their
separation. No claim was made that the rest mass of each charge was shifted by q2/2d.
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2 Arguments for the “Mass Shift”

An argument, as in sec. 4.3 of [9], is that when, a permanent magnetic moment μ is drawn
into an external, static magnetic field Bext with μ parallel to Bext, then the moment takes
on positive kinetic energy. To conserve energy, some other energy must have decreased.4

The force F on a magnetic moment μ in an external magnetic field Bext can be written
as,

F = (μ · ∇)Bext, (3)

whether the moment is due to equal and opposite magnetic “poles” (Gilbertian [19, 20]), or
to electric currents (Ampèrian, [21, 22]). Clarification that permanent magnetism, due to
the magnetic moments of electrons, is Ampèrian (rather than Gilbertian) came only after
detailed studies of positronium (e+e− “atoms”) in the 1940’s [23, 24].

For a static, external magnetic field, ∇×Bext = 4πJext/c, where Jext is the source-current
density, and we use Gaussian units in this note. At the location of the magnetic moment,
∇ × Bext = 0, so eq. (3) can be rewritten as,5,6,7

F = ∇(μ · Bext) = −∇(−μ · Bext) = −∇Upotential, (4)

where

Upotential = −μ ·Bext (5)

can be called the magnetic potential energy of the system.8 If we then say that

E = mc2 = m0c
2 + Upotential (6)

for the energy of a magnetic moment in an external magnetic field, we arrive at eq. (1) for
the mass shift.

We suppose the system starts “at rest” with moment μ far from the sources of the
external magnetic field Bext, such that the initial, total energy of the system is,

U0 = Uµ,internal,0 + UBext,internal,0, (7)

considering that the energies of the self magnetic fields of μ and Bext are part of their internal
energies.

There is no classical model of a permanent magnetic moment as due to electric currents,
although we say that permanent moment is Ampèrian, as noted, for example, in [23, 24].
We are left with the view that the internal energy of a permanent magnetic moment is just
its rest energy mc2, where m is the rest mass of the moment.

4A hint of this argument appeared in [18].
5Equation (4) also holds for a magnetic moment with steady currents held constant by a “battery”.
6For a different derivation of eq. (4), see Sec. 2.18 of [25].
7The force (4) is called the Stern-Gerlach force in the German literature.
8Maxwell wrote the potential energy of a magnetization density M in an external magnetic field as

Upotential = − ∫
M ·Hext dVol in eq. (6), Art. 389 of [26], based on a model of Gilbertian magnetic moments.
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The final energy Uf of the system includes the kinetic energy of the moment μ and of the
sources of Bext, although we will neglect the latter, and suppose that the external magnetic
field (and its sources) remains at rest, and is independent of time (static).

The final kinetic energy of the magnetic moment is related by,

KEµ,f =

∫ f

0

F · dx =

∫ f

0

∇(μ · Bext) · dx = μ · Bext. (8)

Conservation of energy can then be written as,

U0 = Uf = KEµ,f + Uµ,internal,f + UBext,internal,f + Uµ,Bext, (9)

where Uµ,Bext is the magnetic-field interaction energy,

Uµ,Bext = μ · Bext, (10)

as computed in sec. 4.3 of [9], and in Appendix A below by another method.
Combining eqs. (7)-(10), we have,

Uµ,internal,f + UBext,internal,f = Uµ,internal,0 + UBext,internal,0 − μ · Bext − Uµ,Bext. (11)

If the external magnetic field Bext is due to currents driven by “batteries”, it could be that
the internal energy of the permanent moment μ does not change as the moment enters the
external field, while the internal energy of the “batteries” does change. Hence, it is more
pertinent to consider the case of two permanent magnetic moments.

The discussion above assumes that the “external” magnetic field Bext is static, so for a
system of two permanent magnetic moments μ1 and μ2 we presume that moment μ2 is held
at rest by some force, which does no work. Then, eq. (11) becomes (with μ → μ1),

Uµ1,internal,f + Uµ2,internal,f = Uµ1,internal,0 + Uµ2,internal,0 − μ1 · B2 − Uµ1,µ2
, (12)

where the final magnetic-field interaction energy is,

Uµ1,µ2
= μ1 ·B2 = μ2 · B1 =

3(μ1 · r̂)(μ2 · r̂) − μ1 · μ2

r3
, (13)

with r as the position vector from moment 1 to moment 2. Then, eq. (12) takes the form,

m1c
2 + m2c

2 = m0,1c
2 − μ1 · B2 + m0,2c

2 − μ2 · B1, (14)

which suggests that the rest mass m of a permanent magnetic moment μ in an external,
static magnetic field Bext experiences the “mass shift” (1).9

9Note that if both moments are held at rest, eq. (14) could be written as m1c
2 + m2c

2 =
m0,1c

2 − μ1 ·B2 + m0,2c
2/2− μ2 ·B1/2, which suggests that the “mass shift” is only 1/2 of that in eq. (1).
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3 Comments

3.1 Can the Rest Mass Be Negative?

Since an electron has a permanent magnetic moment, eq. (1) should apply to it. If so, the
rest mass of an electron would be negative if its magnetic moment, of magnitude e�/2m0c,
is parallel to a magnetic field that exceeds (twice) the so-called QED critical field Bcritical =
m2

0c
3/e� = 4.4 × 1013 gauss. Such fields exist at the surface of magnetars [27].
On p. 15 of [7] it was argued that when the rest mass of an electron is negative, the

direction of the cyclotron motion of the electron about the magnetic field vector is reversed
in a very strong field, compared to that in lower magnetic fields.

The “mass shift” (1) of an electron in a laboratory magnetic field of 1 T is less than a
part per billion, so would have little effect on “everyday” electrodynamics.

3.2 Does the “Mass Shift” Affect the Dirac Equation?

The view of Wald (private communication) is that the “mass shift”, eq. (1), does not affect
the Dirac equation, where the mass in that equation is the rest mass m0 in zero magnetic
field, even when the (spin-1/2) Dirac particle is in an external, static magnetic field. In this
view, the permanent magnetic moment e�/2m0c of an electron, is not affected by the “mass
shift” (1).10

The “mass shift” (1), if it existed, would affect the kinetic energy, momentum, and orbital
angular momentum of an electron, and hence the energy levels of an atom, and the Landau
levels of an electron,11 in an external, static magnetic field should be shifted by a part per
billion in a static field of a few Tesla (which is not predicted in standard quantum theory).

3.3 Renormalization of the Mass Shift

Since the magnetic-field interaction energy μ ·Bext is “tied” to the electron, the gravitational
interaction of an electron in a magnetic field includes this mass/energy, and it seems that
the “gravitational mass” of an electron (for low velocities [31]) is m+μ ·Bext/c

2 = m0. That
is, the gravitational interaction is not sensitive to the “mass shift” (1).

10An electron in an electromagnetic plane wave experiences a different kind of mass shift, first noted by
Volkov [28, 29, 30], that m = m0

√
1 + η2 ≥ m0, where η = eE/m0ωc for an electron in a circularly polarized

plane wave with (rms) electric field strength E and angular frequency ω. The Dirac equation for an electron
in a plane electromagnetic wave involves the shifted mass m, rather than the unshifted mass m0.

In a classical view the shifted mass m is the “transverse mass” associated with the transverse oscillations
(of amplitude less than the wavelength of the electromagnetic wave) of the electron in the wave, while in a
quantum view the electron is a “quasiparticle”, “dressed” by photons of the electromagnetic wave.

11A semiclassical analysis of the lowest Landau level of an electron of rest mass m and velocity v in a
circular orbit of radius r in magnetic field B is that its angular momentum is γmvr = �, where m is the
rest mass of the electron in the B field, not necessarily the electron rest mass m0 in zero magnetic field,
and γ = 1/

√
1 − v2/c2. Then, Newton’s 2nd law tells us that γmv2/r = evB/c for an orbit in a plane

perpendicular to B. We now have that γmv = eBr/c, and hence that r2 = �c/eB, independent of the value
of m. For B = Bcritical = m2

0c
3/e�, the radius of the orbit is r = �/m0c, the Compton wavelength of an

electron of rest mass m0. For B > Bcritical, where the rest mass m becomes negative according to eq. (1),
there is no classical description of the electron.
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Then, if we “renormalize” the magnetic-field interaction energy μ ·Bext into the effective
rest energy of an electron, such that the effective mass of the electron in an external magnetic
field is just its rest mass m0 in zero magnetic field, the “mass shift” (1) plays no dynam-
ical role in electromagnetic interactions (or the gravitational interaction). It may remain
comforting to imagine the “mass shift” (1) as an explanation for where the magnetic-field
interaction energy (26) comes from, but it has no direct physical consequence.

However, this leaves the consideration of the energetics of a permanent magnetic moment
in an external, static magnetic field somewhat ambiguous. As noted in sec. 2 above, if a
permanent magnetic moment μ is drawn into an external, static magnetic field Bext with
μ parallel to Bext, then the moment takes on positive kinetic energy. To conserve energy,
some other energy must have decreased. The magnetic-field interaction energy μ · Bext

has increased, while the magnetic potential energy −μ · Bext has decreased. As noted in
secs. 4.3 and 5.1 of [9], the rate of exchange of energy between electric current density
J and the electromagnetic fields is J · E, with the implication that the magnetic field B
does not participate in the exchange of electromagnetic energy. Hence, the magnetic-field
interaction energy μ · Bext is of little relevance here, in contrast to the magnetic potential
energy −μ · Bext. We can take the view that the effective magnetic-field interaction energy
in work-energy considerations is −μ · Bext rather than μ · Bext. This notion is presented in
most textbooks, without discussion of the subtleties considered here.

Our attitude towards possible “renormalization” of the “mass shift” (1) into the rest
mass of the magnetic moment depends on how independent we consider the magnetic-field
interaction energy (10) to be from the “physical” magnetic moment.

3.3.1 The Magnetic-Field Interaction Energy for Two Permanent Magnetic Mo-
ments

We consider further the case of two permanent magnetic moments, mentioned at the end of
sec. 2 above, now assuming that they are electrically neutral (for example, neutrons). Again,
moment 2 is somehow held at rest, while moment 1 moves towards it. Then, there is no
electric field associated with moment 2, although the moving moment 1, with velocity v1,
does have an electric field of order μ1v1/c (as well as corrections of order 1/c to the static
approximation to the magnetic field of moment 1).

The density of energy in the electromagnetic field is uEM = (E2 + B2)/8π. As usual in
classical electromagnetism, we “renormalize” the self-field energies of the moments into their
rest masses, leaving the interaction energy density as,

uEM,int(r) =
E1 · E2 + B1 · B2

4π
(15)

In the case of the two magnetic moments, with E2 = 0, the interaction energy density is
just,

uEM,int(r) =
B1 · B2

4π
. (16)

This energy density is large only extremely close to the two moments, so it is not very distinct
from the rest energy of the moments.
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In particular, we consider the region close to moment 1, taking it to be at the origin
at the time of interest, with moment 2 at position −R x̂. We also suppose both magnetic
moment vectors are parallel to ẑ. Then, the magnetic fields close to moment 1 are,

B1(r) ≈ 3(μ1 · r̂) r̂ − μ1

r3
+

8π

3
μ1 δ3(r), B2(r) ≈ 3(μ2 · ẑ) ẑ − μ2

R3
=

2μ2 ẑ

R3
, (17)

recalling that for an Ampèrian “point” magnetic moment there is a delta function in the
magnetic field at the moment.12 The interaction energy density close to moment 1 is, in
spherical coordinates r, θ, φ with polar axis z,

uEM,int(r) ≈ μ1 ·B2(r = 0)

(
3 cos2 θ − 1

4πr3
+

2

3
δ3(r)

)
(18)

The volume integral of the first term of eq. (18) is zero for any sphere of radius a about
moment 1 such that eq. (18) is valid, and hence,

UEM,int(r < a) =

∫
r<a

uEM,int(r) dVol =
2

3
μ1 · B2(at μ1). (19)

That is, 2/3 of the interaction energy (13) is considered to be “inside” a permanent magnetic
moment in classical electrodynamics.

The suggestion here is to consider that the other 1/3 of that energy, while nominally
outside the moment, should be “renormalized” into the moment, and all of the interaction
energy (13) be regarded as part of the rest energy of the moment.

3.4 Magnetic Moment Maintained by a “Battery”

Is is less clear that the magnetic-field interaction energy should be “renormalized” into the
rest energy of the system when the electric currents (and associated magnetic moments)
are driven by a “battery”, when in an external magnetic field, as we have a better classical
model of such currents than of a permanent magnetic moment.

We note that Joule heating of the resistive medium depletes the stored energy of the
“battery”, which does experiences a tiny reduction of mass as a result, independent of the
“mass shift (1). For example, a 1.5-V AA battery has a mass of about 20 grams, and stored
electrical energy of about 2 Ah ≈ 104 joule = 1011 erg. The mass corresponding to this
stored energy is 1011/c2 ≈ 10−10 g, leading to a downward “mass shift” of about 5 parts per
trillion of the mass of the battery as it is depleted.

A Appendix: The Magnetic-Field Interaction Energy

In general, the magnetic field energy can be computed as,

UB =

∫
B2

8π
dVol. (20)

12See, for example, eq. (5.64) of [14].
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In the present example, B = Bµ + Bext, so the magnetic-field interaction energy is,

Uµ,Bext =

∫
Bµ · Bext

4π
dVol. (21)

For static magnetic Bext this energy can be rewritten as,

Uµ,Bext =

∫
Bext · ∇× Aµ

4π
dVol =

∫
Aµ · ∇× Bext

4π
dVol +

∫ ∇ · (Aµ ×Bext)

4π
dVol

=

∫
Jext · Aµ

c
dVol, (22)

where Aµ is the vector potential for moment μ, Jext is the electric current density that is the
source of Bext, and we suppose that A and J fall off sufficiently quickly at large distances so
that

∫ ∇ · (Aµ × Bext) dVol =
∮
∞ Aµ × Bext · dArea is negligible.

The vector potential of a magnetic moment μ was deduced by Thomson (Lord Kelvin)
in 1846 [32] as,13

Aµ =
μ × r̂

r2
. (23)

The external magnetic field Bext is nearly uniform in the region of the (small) magnetic
moment μ so for purposes of computation of the interaction field energy, it suffices to consider
a magnetic field that is uniform with a sphere of radius a centered on μ. As in Prob. 12(a)
of [34], this uniform magnetic field could be due to a uniform magnetization density M =
3Bext/8π, which is equivalent to a surface current density on the sphere of radius a,

Ke = cM sin θ φ̂ =
3cB

8π
sin θ φ̂, (24)

in a spherical coordinate system (r, φ, θ) with its z-axis along Bext = Bext ẑ. The interaction
field energy is then,

Uµ,Bext =

∫
Je · Aµ

c
dVol =

∫
Ke ·Aµ

c
dArea =

a2

c

∫ 2π

0

dφ

∫ 1

−1

d cos θ
3cBext

8π
sin θ φ̂ · μ × r̂

a2

=
3Bext

8π

∫ 2π

0

dφ

∫ 1

−1

sin θ d cos θ μ · r̂ × φ̂ = −3Bext

8π

∫ 2π

0

dφ

∫ 1

−1

sin θ d cos θ μ · θ̂.(25)

We have that −θ̂ = − cos θ cos φ x̂− cos θ sinφ ŷ + sin θ ẑ, which leads to,14

Uµ,Bext =
3μ ·Bext ẑ

8π

∫ 2π

0

dφ

∫ 1

−1

sin2 θ d cos θ = μ · Bext, (26)

13This was the first published use of a vector potential. Equation (23) also follows from a multipole
expansion of the vector potential, as on p. 84 of [33].

14Swapping subscripts μ and ext in eq. (22) leads to the alternative form, Uµ,Bext =
∫

Jµ · Aext dVol/c.
A derivation of Uµ,Bext = μ · Bext via this form is given in Sec. 4.3 of [9].
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independent of the radius a of the sphere within which the external field Bext is uniform.15

Of course, a must be large enough to contain the magnetic moment μ, so that the external
field is uniform over the entire moment.

For permanent Ampèrian magnets moments, their associated currents are constant and
they have no electrical resistance. In this case, we recall (for example, p. 115c of [35])
that the force on a moment can be written in terms of its magnetic interaction energy as
F = +∇Uµ,Bext = μ · Bext, in agreement with eq. (4).

B Appendix: J · E = 0 for Two Parallel, Permanent

Magnetic Moments

We consider further the case of two permanent magnetic moments, mentioned at the end of
sec. 2 above, now assuming that they are electrically neutral (for example, neutrons). Again,
moment 2 is somehow held at rest, while moment 1 moves towards it. Then, there is no
electric field associated with moment 2, although the moving moment 1, with velocity v1,
does have an electric field of order μ1v1/c (as well as corrections of order 1/c to the static
approximation to the magnetic field of moment 1).

The magnetic moments have no intrinsic electric-dipole moments when at rest, but in
general a moving magnetic moment appears to have an electric-dipole moment p = v/c×μ
for low velocity v, while the magnetic moment remains μ in the low-velocity limit.16 For
the present example, where μ1 and v are parallel, the apparent electric-dipole moment of
the moving moment μ1 is zero, and there is no electric field due to this effect.

We can also consider the electric field of the accelerating magnetic moment μ1, which is
given by eq. (24) of [38] as,17

E1(r, t) =
1

4πc2

d2

dt2

[
R̂ × (R̂ × μ1)

R

(
1 − 1

c

dR

dt

)]
+

1

4πc

d

dt

[
μ1 × R̂

R2

(
1 − 1

c

dR

dt

)]
, (27)

where the magnetic moment μ1 is at r′, with R = r− r′. This field vanishes at the moment
μ2 as μ1, μ̇1 and μ̈1 are parallel to R in the present example.

Hence,

J · E = J2 · E1 + J1 · E2 = 0, (28)

noting that E2 = 0 everywhere.

15A näıve inference is that the interaction field energy (26) is located within the magnetic moment μ if
the latter is spherical, and occupies the same volume as does the internal energy of the moment. However,
we should recall that there is nonzero magnetic field outside the sphere, corresponding to a magnetic dipole
of moment 4πa3M/3 = a3Bext/2, and this field contributes to the interaction energy (21). The portions
of the interaction energy, of density Bµ · Bext/4π, inside and outside the sphere of radius a varies with the
radius, but the total interaction energy is independent of a.

16The special relativistic transformation of electric and magnetic dipole moments was first given by
Lorentz (1910) [36]. Some elaboration of this theme is given in [37].

17The second term of eq. (27) corresponds to the field of the apparent electric-dipole moment of the
moving magnetic moment. The magnetic field of the accelerated magnetic moment includes terms of order
1/c and 1/c2 that were neglected in eq. (13) above.
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A general argument of Poynting [39] is that,

∂uEM

∂t
+ ∇ · S = −J · E, (29)

where uEM = (E2 + B2)/8π is the density of energy in the electromagnetic field.
From eqs. (28) and (29) we have that,

∂uEM,int

∂t
= −∇ · Sint, (30)

where the interaction Poynting vector, Sint = (c/4π)E1 ×B2 since E2 = 0, has a first-order
term, as well ones of order 1/c and higher.18

Thanks to Steve Adler, Sebastian Meuren, Antonino Di Piazza and Robert Wald for
e-discussions of this topic.
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