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1 Problem

Magnets used in the transport of charged-particle beams are often long compared to the size
of their aperture. Consider the idealization of 2-dimensional magnetic fields inside a cylinder
of radius a due to currents on the surface of the cylinder and parallel to its axis. Such surface
currents can be well approximated by superconductors.

Deduce the vector potential, and the magnetic field, for a single current filament at
azimuthal angle φ0, and then for the case that the current varies with angle as cos mφ0.

2 Solution1

2.1 Single Current Filament

For a steady current I in the filament at (a, φ0, z) in a cylindrical coordinate system whose
axis is that of the cylinder of radius a, the magnetic field B at (r, φ, z) is azimuthal about
the filament, with magnitude B = μ0I/2πR (in SI units) as follows from Ampère’s law
∇ × B = μ0J, where J is the current density, and,

R =
√

a2 + r2 − 2ar cos(φ − φ0), (1)

is the transverse distance between the filament and the observation point.
We briefly consider a cylindrical coordinate system (R, φ′, z) whose axis is the current

filament, such that the relation B = ∇×A implies that (in the Coulomb gauge) the vector
potential A(x) =

∫
μ0J(x′) dVol′/ |x − x′| has only a z-component, which is azimuthally

symmetric in this coordinate system. Hence,

Bφ′ =
μ0I

2πR
= −∂Az

∂R
, Az = −μ0I

2π
lnR + const. (2)

Returning to the coordinate system (r, φ, z), we define the vector potential to be zero on
its axis, such that,

Az = −μ0I

2π
ln

R

a
= −μ0I

2π
ln

(
1 +

r2

a2
− 2

a

r
cos(φ − φ0)

)
. (3)

For r < a the vector potential has the Taylor-series expansion,

Az(r < a) =
μ0I

2π

∞∑
n=1

1

n

rn

an
cos n(φ − φ0), (4)

1This solution follows [1].
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as can be found by consulting, for example, https://www.wolframalpha.com about
taylor series log(sqrt(1 - 2 x cos(a) + x^2)).

We can confirm eq. (4) by noting that,

R2

a2
=

(
1 − r

a
ei(φ−φ0)

)(
1 − r

a
e−i(φ−φ0)

)
, (5)

ln(1 − ε) = −
∞∑

n=1

εn

n
, (6)

ln
R

a
=

1
2

ln
(
1 − r

a
ei(φ−φ0)

)
+

1
2

ln
(
1 − r

a
e−i(φ−φ0)

)
=

∞∑
n=1

1
n

rn

an

eni(φ−φ0) + e−ni(φ−φ0)

2

=
∞∑

n=1

1
n

rn

an
cos n(φ − φ0). (7)

We could also expand the vector potential for r > a, but this is of less interest in that long, practical
magnets have iron yokes outside their currents to shield nearby apparatus from their external magnetic field.
If no such iron were present, the vector potential Az(r > a) is given, for example, in sec. 2.1 of [1].

The magnetic field for r < a follows from eq. (4),

Br(r < a) =
1

r

∂Az

∂φ
=

μ0I

2πr

∞∑
n=1

rn

an
sinn(φ − φ0), (8)

Bφ(r < a) = −∂Az

∂r
= −μ0I

2πr

∞∑
n=1

rn

an
cosn(φ − φ0). (9)

Equations (4) and (8)-(9) can be called multipole expansions.

2.2 The Surface Current Varies as cos mφ0

For filamentary currents at r = a of the form I(φ) = I0 cos mφ, the vector potential for r < a
has the Taylor-series/multipole expansion,

A(m)
z (r < a) =

μ0I0

2π

∞∑
n=1

1

n

rn

an

∫ 2π

0

cosn(φ − φ0) cos mφ0 dφ0

=
μ0I0

2π

∞∑
n=1

1

n

rn

an

∫ 2π

0

(cos nφ cos nφ0 − sinnφ sinnφ0) cos mφ0 dφ0

=
μ0I0

2m

rm

am
cosmφ, (10)

recalling that
∫ 2π

0
cos mφ cosnφ dφ = πδmn and

∫ 2π

0
sinmφ cos nφdφ = 0.

The magnetic field for r < a is then,

B(m)
r (r < a) = −μ0I0r

m−1

2am
sin mφ, B

(m)
φ (r < a) = −μ0I0r

m−1

2am
cos mφ. (11)
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The field components in rectangular coordinates are, for r < a,

B(m)
x (r < a) = B(m)

r cos φ − B
(m)
φ sin φ = −μ0I0r

m−1

2am
(sinmφ cosφ − cos mφ sinφ)

= −μ0I0r
m−1

2am
sin(m− 1)φ, (12)

B(m)
y (r < a) = B(m)

r sin φ + B
(m)
φ cos φ = −μ0I0r

m−1

2am
(sinmφ sinφ + cos mφ cosφ)

= −μ0I0r
m−1

2am
cos(m − 1)φ. (13)

For m = 1 (dipole),

B(1)
x (r < a) = 0, B(1)

y (r < a) = −μ0I

2a
= B0. (14)

For m = 2 (quadrupole),

B(2)
x (r < a) = −μ0I0

2a2
r sinφ = −μ0I0y

2a2
, B(2)

y (r < a) = −μ0I0

2a2
r cos φ = −μ0I0x

2a2
. (15)

For m = 3 (sextupole),2

B(3)
x (r < a) = −μ0I0

2a3
r2 sin 2φ = −μ0I0

a3
r2 sin φ cosφ = −μ0I0xy

a3
, (16)

B(3)
y (r < a) = −μ0I0

2a3
r2 cos 2φ = −μ0I0

2a3
r2(cos2 φ − sin2 φ) = −μ0I0

2a3
(x2 − y2) . (17)

The field patterns of the three lowest nontrivial multipoles are shown below (from [1]).3

The field of multipole m has the approximate character of that associated with 2m filaments
(poles) on the cylinder of radius a, with adjacent filaments having opposite signs of their
currents.

2.3 Nomenclature for Two- vs. Three-Dimensional Multipoles

The multipole expansion considered here arose in a 2-dimensional context, where a series
expansion of the form

∑
m am cos mφ is useful. In contrast, in 3-dimensional cases one

2An early discussion of sextupole magnets is in [2].
3The “trivial” case of m = 0 has uniform current on the cylinder of radius a, and no magnetic field inside

that cylinder.
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often considers expansions of the form
∑

l Pl(cos θ) or
∑

l,m cl,mY m
l (θ, φ) where Pl(cos θ) is

a Legendre polynomial and Y m
l is a spherical harmonic. In 3-dimensional expansions, one

describes terms of order l as monopole, dipole, quadrupole, octupole, hexadecupole, ....,
for l = 0,1,2,3,4, ..., whereas in 2-dimensional expansions the names dipole, quadrupole,
sextupole, octupole, decupole, are associated with terms of order m = 1,2,3,4,5 ...4

The figure below, illustrating a multipole expansion of a three-dimensional charge distri-
bution, indicates how the lowest multipole with an intrinsically three-dimensional character
is the octupole. Hence, the lowest two-dimensional multipole to have a different character
than the three-dimensional multipole of the same order is the sextupole (of order 3).

While the 2-dimensional multipole of order m has the character of 2m filaments/poles in a
circular array, the 3-dimensional multiple of order l has the character of 2l point charges/poles
on a cubical lattice.

A Appendix: Two-Dimensional Electric Multipoles

For completeness, we note that line charges on the surface of a cylinder lead to two-
dimensional electric-field multipoles very similar to the magnetic multipoles found above.

A.1 Single Line Charge

For a fixed charge λ per unit length along a filament at (a, φ0, z) in a cylindrical coordinate
system whose axis is that of the cylinder of radius a, the electric field E at (r, φ, z) is radial
with respect to the filament, with magnitude E = λ/2πε0R as follows from ∇ · E = ρ/ε0,
where ρ is the electric current density, and R of eq. (2) is the transverse distance between
the filament and the observation point.

We again briefly consider a cylindrical coordinate system (R, φ′, z) whose axis is the
current filament, such that the relation E = −∇V implies that (in the Coulomb gauge) the
scalar potential V is related by, Hence,

Br′ =
λ

2πε0R
= −∂V

∂R
, V = − λ

2πε0
lnR + const. (18)

4In two dimensions, the vector potential of a single current filament not at the origin is given by eq. (4),
which contains multipoles of every nonzero order. Hence, one does not speak of a monopole (m = 0) in the
2-dimensional multipole expansion.

4



Returning to the coordinate system (r, φ, z), we define the scalar potential to be zero on
its axis, such that,

V = − λ

2πε0

ln
R

a
= − λ

2πε0

ln

(
1 +

r2

a2
− 2

a

r
cos(φ − φ0)

)
. (19)

For r < a the scalar potential has the Taylor-series expansion,

V (r < a) =
λ

2πε0

∞∑
n=1

1

n

rn

an
cos n(φ − φ0). (20)

The electric field for r < a follows from eq. (20),

Er(r < a) = −∂V

∂r
= − λ

2πε0r

∞∑
n=1

rn

an
cos n(φ − φ0), (21)

Eφ(r < a) = −1

r

∂V

∂φ
=

λ

2πε0r

∞∑
n=1

rn

an
sinn(φ − φ0). (22)

Equations (20) and (21)-(22) can be called electric multipole expansions.

A.2 The Surface Charge Varies as cos mφ0

For surface charge density at r = a of the form λ(φ) = λ0 cos mφ, the scalar potential for
r < a has the Taylor-series expansion,

V (m)(r < a) =
λ

2πε0

∞∑
n=1

1

n

rn

an

∫ 2π

0

cosn(φ − φ0) cos mφ0 dφ0

=
λ

2πε0

∞∑
n=1

1

n

rn

an

∫ 2π

0

(cos nφ cos nφ0 − sin nφ sinnφ0) cos mφ0 dφ0

=
λ

2ε0m

rm

am
cosmφ. (23)

The electric field for r < a is then,

E(m)
r (r < a) = −λ0r

m−1

2ε0am
cosmφ, E

(m)
φ (r < a) =

λ0r
m−1

2ε0am
sin mφ. (24)

The field components in rectangular coordinates are, for r < a,

E(m)
x (r < a) = E(m)

r cos φ− E
(m)
φ sin φ = −λ0r

m−1

2ε0am
(cosmφ cos φ + sinmφ sinφ)

= −λ0r
m−1

2ε0am
cos(m − 1)φ, (25)

E(m)
y (r < a) = E(m)

r sinφ + E
(m)
φ cos φ =

λ0r
m−1

2ε0am
(− cos mφ sinφ + sinmφ cosφ)

=
λ0r

m−1

2ε0am
sin(m − 1)φ. (26)
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For m = 1 (dipole),

E(1)
x (r < a) = − λ0

2ε0a
= E0, E(1)

y (r < a) = 0. (27)

For m = 2 (quadrupole),

E(2)
x (r < a) = − λ0

2ε0a2
r cosφ = − λ0

2ε0a2
x, E(2)

y (r < a) =
λ0

2ε0a2
r sinφ =

λ0

2ε0a2
y. (28)

For m = 3 (sextupole),

E(3)
x (r < a) = − λ0

2ε0a3
r2 cos 2φ = − λ0

2ε0a3
r2(cos2 φ − sin2 φ) = − λ0

ε0a3

x2 − y2

2
, (29)

E(3)
y (r < a) =

λ0

2ε0a3
r2 sin 2φ =

λ0

ε0a3
r2 sinφ cos φ =

λ0

ε0a3
xy. (30)

The electric field pattern of order m is rotated counterclockwise by π/2m with respect
to the magnetic pattern.

B Appendix: Magnetic Scalar Potential

In regions where the electric current density J is zero, and the electromagnetic fields are
steady, such as r < a in the present example, we have that ∇×B = 0, with the implication
that the magnetic field can be related to a scalar potential VM according to B = −∇VM .

For filamentary currents on the cylinder r = a that vary as cos mφ0, we then can write
eq. (11) as,

B(m)
r (r < a) = −μ0I0r

m−1

2am
sin mφ = −∂V

(m)
M

∂r
, (31)

B
(m)
φ (r < a) = −μ0I0r

m−1

2am
cos mφ = −1

r

∂V
(m)
M

∂φ
, (32)

where the magnetic scalar potential is,

V
(m)
M (r < a) =

μ0I0r
m

2mam
sin mφ. (33)

Is seems, however, that there is no simple method to arrive at eq. (33) without knowing
the magnetic field B(m)(r < a).5

5We could return to the case of a single filament, as in sec. 2.1, and note that the scalar potential,

VM (r < a) =
μ0I

2π

∞∑
n=1

1
n

rn

an
sin n(φ − φ0), (34)
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C Appendix: Two-Dimensional Multipoles via

Conjugate Functions

As noted by Maxwell in Art. 183 of [3], any analytic function f(z) = U + i V of the complex
variable z = x + i y obeys,

∂2U

∂x2
+

∂2U

∂y2
= 0 =

∂2V

∂x2
+

∂2V

∂y2
, (36)

and hence both U(x, y) and V (x, y) are solutions to Laplace’s equation in two dimensions.
Thus, both U and V are possible electrostatic and magnetostatic potentials in regions free
of electric charges and currents.

The simple case of f = zm = (r eiφ)m = rm cos mφ+ i rm sinmφ was discussed in Art. 317
of [4]. We recognize that V (m) ∝ rm cosmφ (or rm sinmφ) constitutes a set of possible
potentials, which for positive integers m correspond to the two-dimensional multipoles found
above.6
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would lead to the form (33) upon integration (as in eq. (10)) over the current distribution I(a, φ0) =
I0 cosmφ0. For a single filament, we could again consider a cylindrical coordinate system (R, φ′, z) whose
axis is that of the filament,

Bφ′ =
μ0I

2πR
= − 1

R

∂VM

∂φ′ , VM = −μ0I

2π
φ′. (35)

Then, in the coordinate system (r, φ, z) the sine law tells us that sinφ′ = (r/R) sin(φ − φ0), but the Taylor
series for sin−1 φ′ is not readily seen to have the form of eq. (34).

6This method was used to deduce the sextupole fields in [2].
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