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1 Problem

Deduce expressions for the force on a permanent Ampèrian magnetic dipole with moment mA

(due to a loop of electrical current), and for the force on a permanent Gilbertian magnetic
dipole mG (due to a pair of opposite magnetic charges), when the dipoles are (instantaneously
at rest in an external electromagnetic field.

Experiments have been performed1 to determine whether a neutron [6] has an Ampèrian
or a Gilbertian magnetic dipole moment, by studying the interaction of neutrons with mag-
netized foils. The conclusion is that the neutron has an Ampèrian magnetic moment. To
accommodate this case, your analysis should consider that the test moment m is inside a
magnetic material.

Consider also the case that the external fields include (possibly time-dependent) electric
fields, and comment on “hidden momentum” [7] of the system.

2 Solution

2.1 Electrodynamics with Both Electric and Magnetic Charges

This section follows [8].
When Heaviside [9] first presented Maxwell’s equations [10] in vector notation he assumed

that in addition to electric charge and current densities, ρe and Je, there existed magnetic
charge and current densities, ρm and Jm, although there remains no experimental evidence
for the latter.2 Maxwell’s equations for microscopic electrodynamics are then (in SI units),

∇ · ε0E = ρe, ∇ · B

μ0

= ρm, −c2∇ × ε0E =
∂

∂t

B

μ0

+ Jm, ∇ × B

μ0

=
∂ε0E

∂t
+ Je, (1)

where c = 1/
√

ε0μ0 is the speed of light in vacuum. In macroscopic electrodynamics we
consider media that contain volume densities of electric- and Ampèrian magnetic-dipole
moments, Pe and Me, respectively (often called the densities of polarization and magnetiza-
tion). Supposing that magnetic charges exist, the media could also contain volume densities
of (Gilbertian) electric- and magnetic-dipole moments, Pm and Mm, respectively. These
densities can be associated with bound charge and current densities, which together with
the “free” charge and current densities ρ̃e, J̃e, ρ̃m and J̃m comprise the total charge and
current densities, and are related by,

ρe = ρ̃e − ∇ · Pe, Je = J̃e +
∂Pe

∂t
+ ∇ × Me, (2)

1The pioneering experiments are [1]-[4]. For a review that emphasizes the physics principles, see [5].
2Heaviside seems to have regarded magnetic charges as “fictitious”, as indicated on p. 25 of [11].
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ρm = ρ̃m − ∇ · Mm, Jm = J̃m +
∂Mm

∂t
− c2∇ × Pm. (3)

It is customary in macroscopic electrodynamics to use versions of Maxwell’s equations in
which only “free” charge and current densities appear. For this we introduce the fields3

De = ε0E + Pe, He =
B

μ0

− Me, Dm =
E

μ0

− c2Pm, Hm =
B

μ0

+ Mm, (4)

such that De and Hm, and also He and Dm, have similar forms, and,

∇ · De = ρ̃e, ∇ · Hm = ρ̃m, −∇× Dm =
∂Hm

∂t
+ J̃m, ∇ × He =

∂De

∂t
+ J̃e. (5)

where in the absence of magnetic charges De and He are the familiar fields D and H.4

In static situations with no “free” currents J̃e or J̃m the curls of both Dm and He are
zero and these fields can be deduced from scalar potentials Ve and Vm,

∇ × Dm = 0 ⇔ Dm = −∇Ve, ∇ ×He = 0 ⇔ He = −∇Vm. (6)

We can associate potential energies,

Ue = μ0qeVe, Um = μ0qmVm, (7)

with electric and magnetic “test” charges qe and qm in scalar potentials due to other charges.
If those other charges are held fixed, the forces on the “test” charges can be written as,

Fe = −qe∇Ve = μ0qeDm, Fm = −qm∇Vm = μ0qmHe. (8)

The magnetic version of eq. (8) was introduced by Poisson [17], and Maxwell [16] reflected
this tradition by calling He = H the magnetic force (per unit magnetic charge) and B
the magnetic induction. Note that eq. (8) holds in media with nonzero, static densities Pe,
Pm, Me and Mm; the forces on charges inside static electromagnetic media are not qeE or
qmB/μ0.

5,6 This contrasts with force calculations for the effective magnetic-charge density,

3The forms (4) were suggested to the author by David Griffiths in a comment on an early draft of the
note [8]. Such “double” D and H fields were anticipated by Heaviside [12], who wrote H for He and h0 for
Hm near his eq. (88). Our eq. (4) appears as eq. (5.9) of [13], in Gaussian units, where P → Pe, M → Me,
P� → Pm, M� → Mm, D → De, H → He, E� → Dm, B� → Hm. See also in sec. 4 of [14], with the
identifications that ē → E, b̄ → B, p → Pe, m → Me, m� → Pm, p� → Mm, D → De, H → He, E → Dm,
B → Hm.

4The relation B = μ0(H+M) (or B = H+4πM in Gaussian units) seems to have been first introduced
by W. Thomson in 1871, eq. (r), p. 401 of [15], and appears in sec. 399 of Maxwell’s Treatise [16].

5The notion of the force on a static “test” charge inside a macroscopic medium is somewhat contradictory,
in that the macroscopic fields are based on averages over volumes larger than atoms/molecules. People often
suppose the test charge to be inside a cavity whose volume is at least as large as an atom/molecule, but
then the magnitude of the force depends on the shape of the cavity (pp. 290-293 of [17], sec. 517 of [15],
Arts. 395-400 of [16]). A more meaningful issue is the force on a “test” charge that moves through the
medium, thereby sampling the microscopic fields in a way that can be well approximated in terms of the
macroscopic fields. See also sec. 8 of [18].

6In sec. 400 of [16], Maxwell noted that (in Gaussian units) the H field inside a disk-shaped cavity with
axis parallel to B and H inside a magnetic medium has Hcavity = Bcavity = Bmedium = Hmedium + 4πM, so
that in this case one could say that the force on a magnetic charge qm in the cavity is Fm = qmHcavity =
qmBmedium. The led Maxwell to the characterization of B as the “actual magnetic force”, which this author
finds misleading.
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ρm,eff = −∇ ·Me, which represent effects of Ampèrian currents, as discussed in Appendix A
of [8].

As noted in [19] and on p. 429 of [20], if a magnetic charge qm could be made to move
around a loop some or all of which lies inside an Ampèrian magnetic material where B
does not equal μ0He (and hence ∇ × B is nonzero around the loop), then energy could
be extracted from the system each cycle if the force were qmB/μ0, and we would have a
perpetual-motion machine. Similarly, if an electric charge qe could be made to move around
a loop some or all of which lies inside a Gilbertian magnetic material where E does not equal
Dm/ε0 (and hence ∇×E is nonzero around the loop), then energy could be extracted from
the system each cycle if the force were qeE, and we would again have a perpetual-motion
machine.

The electromagnetic force on a moving electric charge qe and magnetic charge qm, each
with velocity v, is, in microscopic electrodynamics,7,8,9,10

Fe = qe(E + v ×B) = μ0qe (Dm + v × Hm) , (9)

Fm = qm

(
B − v

c2
× E

)
= μ0qm(He − v × De). (10)

It has been verified [32] that the deflection of high-energy electrically charged particles as
they pass through magnetized iron depends on B and not μ0He (assuming the magnetization
of iron is Ampèrian), nor on μ0Hm (assuming the magnetization of iron is Gilbertian, which
confirms eq. (9) and that the magnetization of iron, i.e., of electrons, is not Gilbertian (and
hence is Ampèrian). See also [33, 34, 35].

In macroscopic electrodynamics the Lorentz force law for the force density f on “free”
charge and current densities takes the forms,11,12

fe = ρ̃eE + J̃e × B, [and not μ0(ρ̃eDm + J̃e × Hm)], (11)

fm = μ0(ρ̃mHe − J̃m × De), [and not ρ̃mB − J̃m

c2
× E], (12)

7Lorentz advocated the form Fe = μ0qe(De + v × He) in eq. (V), sec. 12 of [21], although he seems
mainly to have considered its use in vacuum. See also eq. (23) of [22]. That is, Lorentz considered De and
He, rather than E and B, to be the microscopic electromagnetic fields.

8Maxwell discussed the “Lorentz” force law in Arts. 599-603 of [16], but made almost no use of it. It is
generally considered that Heaviside first gave the Lorentz force law (9) for electric charges in [23], but the
key insight is already visible for the electric case in [9] and for the magnetic case in [24]. The form of Fm in
terms of B and E is implicit in eq. (7) of [25] and explicit in sec. 28B of [26]. See also [27, 28].

9For the macroscopic equations to appear as in eq. (5), as given, for examples, in sec. 7.3.4 and prob. 7.60
of [29], the Lorentz force law must have the form (10) for magnetic charges. One can also redefine the strength
of magnetic charges, ρm → ρm/μ0, Jm → Jm/μ0, which leads to the forms given, for example, in sec. 6.11
of [30]. These alternative definitions echo a debate initiated by Clausius in 1882 [31].

10Consistency of the Lorentz force law with special relativity requires that either E and B or De and He

or Dm and Hm appear in Fe and in Fm (see Appendix B of [8]).
11A subtlety is that the field B in the first form of eq. (11) is not the total field, but rather the field at

the location of the free current that would exist in its absence. See, for example, [36], especially sec. 4.
12In 1908-10, Einstein argued that the Lorentz force law should take the form fe = μ0(ρ̃eDe + J̃e × He)

inside materials [37, 38, 39, 40], perhaps based on a misunderstanding discussed in [41], or that discussed in
sec. 2.3.1 below. This misunderstanding underlies the recent “paradox” of Mansuripur [42].
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based on a consistency argument involving Poynting’s theorem [8] (as also required not to
have magnetic perpetual-motion machines).13,14,15,16,17

In a search for an isolated magnetic charge qm in media that otherwise contain only
electric charges and currents, De → D, Dm → E/μ0, He → H, Hm → B/μ0, the Lorentz
force law reduces to,

Fe = qe(E + ve × B), Fm = μ0qm(H − vm × E). (15)

2.2 Force on an Ampèrian Magnetic Dipole at Rest

We can now evaluate the force on an Ampèrian magnetic dipole at rest, taking this to be a
loop of free electrical current density J̃e that is electrically neutral, perhaps due to a “lattice”
of opposite electrical charges at rest. Then, according to eq. (11) the force density on this
current is J̃e × μ0Hm,i dVol, where Hm,i is the “initial” field in the medium in the absence
of the magnetic dipole [43]. Ignoring variations of the external field over the thickness of

13The form (12) is also affirmed in [14] via considerations of a magnetic current in a “wire” surrounded by
a dielectric medium. The issues here are somewhat different from those for the force on individual moving
charges, but are similar to those considered in [43] for an electrical current in a wire inside a magnetic
medium.

14It is argued in [13] that a slowly moving magnetic charge perturbs electric polarization of a dielectric
medium in such a way that the velocity-dependent force is −qmv× ε0E, where E = D/ε is the electric field
in the absence of the moving magnetic charge. The argument of [13] seems to this author to be a variant of
sec. 400 of [16] in which it is supposed that the charge resides in a “cavity” whose surface details affect the
fields experienced by the charge. Such arguments assume that the charge occupies a volume at least equal
to one atom/molecule of the medium, which might have seemed reasonable to Maxwell but is not consistent
with our present understanding of the size of elementary charges. The results of [32] show that a moving
electric charges does not create a “cavity” inside a magnetic medium wherein the average B field differs from
the macroscopic average B field in the absence of the charge. See also [33, 34, 35]. We infer that a moving
magnetic charge would experience an average D inside a dielectric medium equal to the macroscopic average
D field in the absence of the charge.

15The Poynting vector is,

S = μ0Dm × He (all media), (13)

and the density u of stored energy associated with the electromagnetic fields is,

u = μ0

De · Dm + He · Hm

2
(linear media). (14)

That Poynting’s theorem retains its usual form when magnetic charges are present is discussed by Heaviside
in sec. 19 of [12]. That the form of the Lorentz force law for magnetic charge and current densities is given by
eqs. (11)-(12) is consistent with Heaviside’s argument; for example, his eq. (88), but is not explicitly stated.
See also sec. 50, p. 49 of [11].

16A peculiar argument that the “ordinary” form of Poynting’s theorem implies the existence of magnetic
charges is given in sec. 7.10 of [44]; thus misunderstanding is clarified in [45].

17The extension of Poynting’s theorem to momentum flow, with the implication that μ0De × Hm is the
density of stored momentum, as argued by Minkowski [46], remains valid if the Lorentz force law for magnetic
charges is given by eqs. (11)-(12), but not for other forms, as discussed in sec. V of [13]. See also Appendix
C of [8].
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the “wire” of the loop, we write the force density in the Biot-Savart form I dl×μ0Hm,i, and
note that the magnetic dipole moment is mA = IArea. Then, the force on this Ampèrian
loop of current is,18

FA = I

∮
dl × μ0Hm,i = I

∫
(dArea × ∇) × μ0Hm,i

= I

∫
∇(dArea · μ0Hm,i) − I

∫
dArea (∇ · μ0Hm,i)

= ∇(mA · μ0Hm,i) − mA(∇ · μ0Hm,i) = ∇(mA · μ0Hm,i) − μ0mAρ̃m,i

= (mA · ∇)μ0Hm,i + mA × (∇× μ0Hm,i) − μ0mAρ̃m,i (16)

= (mA · ∇)μ0Hm,i + mA × μ0

∂De,i

∂t
+ μ0mA × [J̃e,i + ∇ × (Mm,i + Me,i)] − μ0mAρ̃m,i,

via a variant of Stokes’ theorem [48], and eqs. (1)-(5).
If we suppose that the medium surrounding the magnetic dipole mA has no electric

polarization Pe, no free electrical current density J̃e, and no free magnetic charge density
ρ̃m, then,19

FA = ∇(mA · μ0Hm,i)

= (mA · ∇)μ0Hm,i + mA × 1

c2

∂Ei

∂t
+ mA × μ0[∇× (Mm,i + Me,i)] . (17)

If we also suppose that no magnetic charges/dipoles exist, i.e., that all magnetization is
Ampèrian, then (writing MA for Me),

20

FA = ∇(mA · Bi) = (mA · ∇)Bi + mA × 1

c2

∂Ei

∂t
+ mA × μ0(∇ × MA,i) , (18)

We consider the force on a moving Ampèrian magnetic dipole in sec. 2.6.

2.3 Force on a Gilbertian Magnetic Dipole at Rest

We consider a Gilbertian magnetic dipole mG at position x consisting of free magnetic
charges ±qm at positions x ± s/2 such that mG = qm s. The dipole is at rest, but the

18A more general argument would consider the magnetic dipole as due to a current density J̃e as in
sec. 12.4.1 of [47]. Then, the first term in the third line of eq. (16) would become mA,k∇μ0Hm,i,k. For a
constant magnetic moment mA this term readily transforms to ∇(mA ·μ0Hm,i), but for, say, a diamagnetic
moment, the alternative form should be used, leading to ∇(mA · μ0Hm,i/2).

19The form (17) is implicit in the quantum argument of Schwinger [49] (at age 19), but eq. (16) may have
first been given in eq. (5) of [45].

20While this note is primarily about permanent magnetic moments, we can also consider moments that
are affected by the magnetic field, such as mA = χBi, where χ < 0 corresponds to a diamagnetic moment
and χ > 0 is a paramagnetic moment. From the use of Stokes’ theorem in eq. (16), we see that the operator
∇ is not meant to act on the dipole mA in ∇(mA ·Bi) = (mA ·∇)Bi +mA × (∇×Bi). If mA = χBi then
∇(mA · Bi) = χ∇(B2

i ) = 2χ[(Bi · ∇)Bi + Bi × (∇ ×Bi)] = 2[(mA · ∇)Bi + mA × (∇ × Bi)] = 2FA.
If we write FA = −∇U , then U = −mA · Bi for fixed |mA|, but U = −mA · Bi/2 = −χB2

i /2 when
mA = χBi. This last result is deduced by rather different arguments in eq. (32.8) of [50], where Bi is
written as H.
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separation s could be changing with time (in magnitude and/or direction) such that,

dmG

dt
= qm

[
d(x + s/2)

dt
− d(x − s/2)

dt

]
= qm

ds

dt
. (19)

Associated with this time dependence is the free magnetic current density J̃m = qm ds/dt =
dmG/dt. The Lorentz force (12) on the Gilbertian dipole is then,

FG = μ0qm[He,i(x + s/2) − He,i(x− s/2)] − μ0

dmG

dt
× De,i

= (mG · ∇)μ0He,i − dmG

dt
× Ei

c2

= ∇(mG · μ0He,i) − mG × (∇ × μ0He,i) − dmG

dt
× Ei

c2

= ∇(mG · μ0He,i) − μ0mG × J̃e,i −mG × 1

c2

∂Ei

∂t
− dmG

dt
× Ei

c2

= ∇(mG · μ0He,i) − d

dt

mG × Ei

c2
, (20)

supposing that the medium surrounding the magnetic dipole has no electric polarization Pe

and no free electrical current J̃e,i.
21 If we also suppose that the last term in eq. (20) can be

ignored, then22

FG = ∇(mG · μ0He,i). (21)

If we keep the last term in eq. (20) but suppose that all magnetization is due to Gilbertian
dipoles, such that Me = MA = 0 and μ0He = B, then,

FG = (mG · ∇)Bi − dmG

dt
× Ei

c2

= ∇(mG · Bi) − d

dt

mG × Ei

c2
. (22)

2.3.1 The Einstein-Laub Force on Magnetic Dipoles

In 1908 Einstein and Laub gave the force density on magnetization M in a static case as
eq. (7) of [38],

fE−L = (M · ∇)μ0H. (23)

After their eq. (3) Einstein and Laub said: We think of electric and magnetic polarizations,
respectively, as consisting of spatial displacement of electric and magnetic mass particles
of dipoles that are bound to equilibrium positions. This appears to imply that in 1908
they considered that magnetization is Gilbertian, i.e., associated with pairs of opposite, true
magnetic charges, even though they use ∇ · B = 0 with its implication that isolated, true

21The first form of eq. (20) was given as eq. (6) of [45].
22The form (21) is implicit in the papers of Bloch [51, 52] that started the debate as to the relation

between character of the magnetic moment of the neutron and forces on it.
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magnetic charges do not exist. Their expression (23) assumes the force on a magnetic charge
qm (at rest) is Fm = μ0qmH as holds for true (Gilbertian) magnetic charges, rather than
Fm = qm,effB as holds for effective (fictitious) magnetic charges associated with Ampèrian
magnetization Me according to ρm,eff = −∇ · Me, as reviewed in the Appendix. However,
they seem to have missed the insight of Heaviside [12] that Gilbertian magnetization Mm

would be associated with a different field H field, Hm of eq. (4), than the “ordinary” field
He associated with Ampèrian magnetization Me.

As such, their force law (23) for magnetization agrees with none of eqs. (17)-(18) or (22)
in the static limit. It does agree with the second line of eq. (20) under the physically doubtful
hypothesis that the test magnetization is Gilbertian, but the H field is that (He) associated
with Ampèrian magnetization.23

2.4 Interactions of Neutrons with Magnetized Foils

The experiments on neutron scattering by magnetized foils [1]-[4] were interpreted via quan-
tum scattering computations [49, 51]-[54] in the Born approximation, which are based on
interaction potentials rather than forces. If we ignore the possibility of spin-flip interactions,
the forces (17) and (21) correspond to interaction potentials,

UA = −mA · μ0Hm,i, and UG = −mG · μ0He,i. (24)

Most discussions of the experiments tacitly assume that the magnetization of the foils is
Ampèrian, in which case,

UA = −mA · Bi, UG = −mG · μ0He,i = −mG · μ0Hi (Ampèrian magnetization),(25)

and the debate is often characterized as whether the neutron magnetic moment couples to
B or to H. However, it could be that the magnetization is Gilbertian, in which case,

UA = −mA · μ0Hm,i, UG = −mG · Bi (Gilbertian magnetization). (26)

Thus, it is not immediately obvious whether the character of the neutron magnetic mo-
ment can be determined by the scattering experiments unless the character of the magneti-
zation known.

2.4.1 The Scattering Experiments

One of the neutron-scattering experiments involved reflection [1, 2], and the other involved
transmission [3, 4]. In both experiments the neutrons were randomly polarized, i.e., the
direction of the magnetic momentum m varied randomly from event to event. The foils were
placed inside a large external magnetic field B0 = μ0H0, parallel to the plane of the foil,
such that the magnetization M of the foils was in the plane of the foils. Hence, we expect
that B, He and Hm inside the foil all lie in its plane. The direction of B0/H0, and hence of
M, could be varied within the plane of the foils.

23The form (23) would be a useful hypothesis in a search for isolated Gilbertian dipoles inside a magnetic
material that consists predominantly of Ampèrian dipoles.
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Neutron scattering was observed for various directions of M, and various scattering an-
gles, all of which were small in the reflection experiment [1, 2]. The interpretation of the
results in terms of forces, rather than via Born-approximation integrals over the interaction
potentials, is more straightforward for the reflection experiment (as noted in [5]).

2.4.2 Ampèrian Magnetization

If the magnetization of the foil is Ampèrian, Mi = Me,i, and ∇ × He,i = 0 according
to eq. (5), so the tangential component of He,i = Hi is continuous across the surface of
the foil. Outside the foil, Hi ≈ H0, which is tangential, so we infer that Hi ≈ H0 and
Bi = μ0(H0 + Me,i) inside the foil. Thus, Hi = H0 everywhere, while Bi = μ0Hm,i is
different inside and outside the foil. According to eq. (17) a neutron with Ampèrian moment
mA would be affected by such magnetization, whereas according to eq. (21) neutrons with
Gilbertian moment mG would show no effect.

A simplified interpretation of the data [1, 2] is that the magnetization of the foil does
have an effect on the small-angle reflective scattering, so if the magnetization is Ampèrian,
the magnetic moment of the neutron is also Ampèrian.

2.4.3 Gilbertian Magnetization

If the magnetization of the foil is Gilbertian, such that Me,i = 0, then Bi = μ0He,i, and
∇ × Bi = ∇ × μ0He,i = 0. Hence, the tangential component of Bi is continuous at the foil
surface, and since outside the foil Bi = B0, which is tangential, we infer that Bi = μ0He,i =
B0 everywhere. In this case, there would again be no force on a Gilbertian magnetic moment
mG according to eq. (21), but since Hm,i = B0/μ0 − Mm,i is different inside and outside of
the foil, there would again be a force on an Ampèrian magnetic moment mA according to
eq. (17).

Since the data show that the neutron was affected by the magnetization of the foil, we
again conclude that the magnetic moment of the neutron is Ampèrian, even if the magneti-
zation of the foil is Gilbertian.

Thus, from the reflection experiment alone, we infer that the neutron has an Ampèrian
magnetic moment, but we cannot decide whether the magnetization of the foil is Ampèrian
or Gilbertian.

2.4.4 Comments

Fermi [55] gave a quantum argument in 1930 that details of the hyperfine interaction imply
that the magnetic moment of nuclei (including the proton) is Ampèrian.24 This preceded
the “discovery” of the neutron [6], and apparently most people did not make the connection
that Fermi’s argument implies that the magnetic moment of the neutron is Ampèrian.

24Fermi’s argument is reviewed in secs. 5.6-7 of [30], and in greater detail in [56] (which also reviews
neutron scattering assuming the foils have Ampèrian magnetization). Doubt as to the validity of Fermi’s
argument is expressed in [57], using a classical model of electrons in atoms as moving in loops, which seems
irrelevant to the S-wave hyperfine interaction.
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As noted in [56], Fermi’s argument can also be applied to positronium (e+e−) and to
muonium (e±μ∓), in which cases the “nucleus” is an electron or muon, such that the data
indicate the magnetic moments of electrons and muons to be Ampèrian.

The experiment of Rasetti [32] (a former student of Fermi) in 1944 indicated that the
force on a moving electric charge is qv×Bi inside magnetized iron, with the implication that
magnetization of iron is Ampèrian (as noted on p. 3, after eq. (10)), although this appears
to have been little recognized at the time.25 See also [33, 34, 35].

2.5 “Hidden” Momentum

It remains to discuss the versions of eqs. (17) and (20) that exhibit effects of time-varying
electric fields (which are irrelevant to the experiments with static, magnetized foils). We first
consider the medium surrounding the dipole to be vacuum, in which case He,i = Hm,i = Bi,
and eqs. (17) and (20) become,

FA = ∇(mA · Bi) = (mA · ∇)Bi + mA × 1

c2

∂Ei

∂t
, (27)

and,

FG = ∇(mG · Bi) − d

dt

mG × Ei

c2
= (mG · ∇)Bi − dmG

dt
× Ei

c2
. (28)

According to Newton, force is related to time rate of change of momentum, so we are led
to suppose that the difference between eqs. (27) and (28), d/dt)(m × Ei/c

2, is associated
with the difference in the electromagnetic momentum of the Ampèrian and the Gilbertian
magnetic dipoles in the external fields Ei and Bi, as remarked in [45] (after eq. (6) there).

In 1904, J.J. Thomson [58, 59, 60, 61], deduced via two different methods that the field
momentum of an Ampèrian magnetic dipole is,

PEM,A =
Ei ×mG

c2
, (29)

and that the field momentum of a Gilbertian dipole is zero,26

PEM,G = 0. (30)

However, these results were little noticed until 1969 [63], after the notion of “hidden momen-
tum” had been introduced in 1967 by Shockley [7]. That is, an Ampèrian magnetic dipole at
rest in a static electric field has nonzero field momentum according to eq. (29), so Shockley
inferred that this system must also contain a “hidden” mechanical momentum,

Pmech,hidden =
mA × Ei

c2
, (31)

25An otherwise thoughtful text by Fano, Chu and Adler [44] claimed that no experiment could decide
whether permanent magnetism is Ampèrian or Gilbertian, and recommends the student to consider it to be
Gilbertian.

26As emphasized in [62], electromagnetic field momentum is nonzero only in examples in which there
are moving (electric and/or magnetic) charges. The case of a Gilbertian magnetic dipole at rest in a static
electric field has no moving charges, and no field momentum.
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such that the total momentum of the system is zero when “at rest”.
In this view, the force on a dipole equals the rate of change if its total mechanical

momentum, such that for an Ampèrian magnetic dipole of mass MG and velocity vG,

dPmech,A

dt
=

d

dt

(
MAvA +

mA × Ei

c2

)
= FA = ∇(mA · Bi) = (mA · ∇)Bi + mA × 1

c2

∂Ei

∂t
,(32)

MA
dvA

dt
= ∇(mA · Bi) − d

dt

(
mA × Ei

c

)
= (mA · ∇)Bi − dmA

dt
× Ei

c2
, (33)

while for a Gilbertian magnetic dipole,

dPmech,G

dt
= MG

dvG

dt
= FG = ∇(mG ·Bi) − d

dt

mG ×Ei

c2
= (mG · ∇)Bi − dmG

dt
× Ei

c2
. (34)

That is, the “visible” effect, dv/dt, of the forces (27) and (28) on the motion of Ampèrian and
Gilbertian magnetic dipoles has the same form, eqs. (33) and (34), and the difference between
these forces affects only the “hidden” mechanical momentum of the Ampèrian dipole.27,28,29

2.5.1 Magnetic Media

We now return to the case of a magnetic dipole inside a magnetic medium, as in the classic
neutron-scattering experiments [1]-[4].

In view of the preceding discussion about the electromagnetic field momentum (29) of
an Ampèrian magnetic dipole mA at rest in an electric field Ei, we rewrite eq. (17) as,

FA = (mA · ∇)μ0Hm,i +
d

dt

mA × Ei

c2
− dmA

dt
× Ei

c2
+ μ0mA × [∇× (Mm,i + Me,i)]

=
d

dt

(
MAvA +

mA × Ei

c2

)
, (35)

whence,

MA
dvA

dt
= (mA · ∇)μ0Hm,i − dmA

dt
× Ei

c2
+ mA × μ0[∇× (Mm,i + Me,i)]. (36)

Meanwhile, the corresponding relation for a Gilbertian magnetic dipole reverts to,

MG
dvG

dt
= (mG · ∇)μ0He,i − dmG

dt
× Ei

c2
. (37)

27The similarity of the forms for Mdv/dt = Ma for Ampèrian and Gilbertian magnetic dipoles was
perhaps first noted in [64], where, however, Ma was called the force F. A version of this argument also
appears on pp. 49-55 of [65].

28For a broader view of “hidden” momentum, see [66].
29In the Aharonov-Casher experiment [67], a neutron moves past a static electric line charge in zero

magnetic field, with quantum interference effects between passage to the “left” and “right” of the line
charge. In the frame of the neutron, the electric field is time dependent, so eq. (32) suggests that there is
a classical force that would affect the motion Mdv/dt [68, 69], whereas eq. (33) indicates that the classical
force does not affect the motion (while it does affect the “hidden” mechanical motion of the system, as noted
in [70]).

10



The form of eq. (36) for an Ampèrian dipole differs from eq. (34) for a Gilbertian dipole
by the presence in the former of the term,

mA × μ0[∇ × (Mm,i + Me,i)]. (38)

In, for example, the magnetized foils of the neutron-scattering experiments, the magne-
tization is uniform inside them, so ∇ × M = 0 there, but the discontinuity of the magneti-
zation at the foil surface leads to the term (38) being nonzero. As noted in eq. (2), the term
∇×Me is part of the total Ampèrian current density Je. However, the term ∇×Mm does
not correspond to a piece of the Gilbertian current density Jm of eq. (3).30

2.6 Force on a Moving Ampèrian Magnetic Dipole

In this section we consider the lab-frame force F on an electrically neutral object that has
mass M , Ampèrian magnetic moment m0 and (Gilbertian) electric dipole moment p0 (both
moments of fixed magnitude)31 in its rest frame. We restrict the discussion to the case that
the surrounding medium has zero electric and magnetic polarization densities, and that the
velocity v of the object in the lab frame has magnitude much less than the speed of light c.

Gaussian units are employed in this section, and rest-frame quantities (other than the
dipole moments m0 and p0) are denoted with a ′, while lab-frame quantities are unprimed.

2.6.1 F = dPmech,total/dt

The lab-frame force F does not equal mass times acceleration, but rather equals the rate of
change of the total mechanical momentum of the object,

F =
dPmech,total

dt
=

d(Mv)

dt
+

dPmech,hidden

dt
= Ma +

d

dt

m ×Ei

c

= Ma +
ṁ × Ei

c
+

m

c
×
(

∂Ei

∂t
+ (v · ∇)Ei

)
. (39)

noting that in Gaussian units the “hidden” mechanical momentum (31) has the form,

Pmech,hidden =
m0 × E′

i

c
≈ 1

c

(
m +

v

c
× p

)
×
(
Ei +

v

c
× Bi

)
≈ m × Ei

c
, (40)

which holds for v � c in quasistatic electric field Ei.
32 The precession ṁ = dm/dt of

the magnetic moment (whose magnitude m0 is constant in the rest frame of the object) is
discussed in sec. 2.6.5.

30Comparison of eqs. (36)-(37) does not provide special insight into the issue of Ampèrian vs. Gilbertian
moments in magnetic materials, although as noted in sec. 2.4, the difference between these forms has been
used to show that the magnetic moment of a neutron is Ampèrian.

31Strictly, the discussion is limited to dipoles whose moment does not depend on the position of their
center of mass, such that the gradient operator with respect to this position does not act on the moment. I
believe that this means that the moments must have constant magnitude in their rest frame, but they can
rotate. In particular, the electric and magnetic polarizabilities are taken to be zero; α = 0 = αm in the
relations p0 = αE′

i and m0 = αmB′
i.

32See sec. 4.1.4 of [66].
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2.6.2 Force on a Dipole “at Rest”

The force F′ on a magnetic dipole m0 in its instantaneous rest frame33 follows from eq. (18)
as,

F′
m = ∇′(m0 · B′

i), (41)

even if the magnetic moment is changing in magnitude or direction. In this, the operator
∇′ acts only on the magnetic fields.

The usual argument34 for an electric dipole p0 = qd “at rest” with electric charges ±q
at x′

± = x′ ± d/2 is that,

F′
p = qE′

i(x
′ + d/2) − qE′

i(x
′ − d/2) = q[(d/2 − (−d/2)) · ∇′]E′

i = (p0 · ∇′)E′
i. (42)

This argument is typically made before the magnetic field and the Lorentz force law have
been introduced, so no consideration is given to the possibility that the charges ±q are in
motion even if the center of mass of the dipole is at rest. But, if “at rest” means only that
the center of mass of the dipole is at rest, while the charges ±q can be in motion relative to
the center of mass, there also exists the Lorentz force,35

F′′
p =

qv′
+ − qv′

−
c

× B′
i =

q

c

∂d

∂t′
×B′

i =
∂p0

∂t′
× B′

i

c
, (43)

such that the total force on an electric dipole “at rest” is actually,36

F′
p = (p0 · ∇′)E′

i +
∂p0

∂t′
× B′

i

c
= ∇′(p0 ·E′

i) − p0 × (∇′ × E′
i) +

∂p0

∂t′
× B′

i

c

= ∇′(p0 · E′
i) + p0 × 1

c

∂B′
i

∂t′
+

∂p0

∂t′
× B′

i

c
= ∇′(p0 · E′

i) +
∂

∂t′
p0 × B′

i

c
. (44)

The force on an object “at rest” with both electric and magnetic dipole moments is then,

F′ = ∇′(m0 ·B′
i) + ∇′(p0 · E′

i) +
∂

∂t′
p0 × B′

i

c
. (45)

Ma′ = ∇′(m0 ·B′
i) + ∇′(p0 · E′

i) +
∂

∂t′

(
p0 × B′

i

c
− m0 × E′

i

c

)
. (46)

33Strictly, by rest frame we mean the inertial frame with velocity v in the lab frame, and axes parallel
to those of the lab frame. It is sometimes convenient to consider the comoving rest frame whose z′ axis is
parallel to v, as discussed, for example, in [71, 72], but we do not use this frame here.

34See, for example, sec. 4.1.3 of [29].
35The equivalent of relation (43) for a Gilbertian magnetic dipole was deduced in eq. (6) of [45] (as given

in eqs. (19)-(20) of sec. 2.3), but its application to an electric dipole moment was not discussed.
36The assumption that |p0| is constant implies that the operator ∇′ does not act on p0. For example,

if p0 = αE′
i, where the constant α is the polarizability, then (p0 · ∇)E′

i = α(E′
i · ∇′)E′

i = ∇′(p0 · E′
i)/2 +

p0/c × ∂B′
i/∂t.
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2.6.3 Transformation of the Rest-Frame Force to the Lab Frame

In the low-velocity approximation, v � c, the transformations of the various rest-frame
quantities in eq. (45) to the lab frame are,

F′ = F, ∇′ = ∇,
∂

dt′
=

∂

∂t
+ v · ∇ =

d

dt
, B′

i = Bi − v

c
× Ei, E′

i = Ei +
v

c
× Bi,(47)

and the lab-frame dipole moments m and p are related by37

m0 = m +
v

c
× p, p0 = p− v

c
× m, m = m0 − v

c
× p0, p = p0 +

v

c
×m0. (48)

The physical significance of the lab-frame dipole moments m and p of a moving object is not
crisp [73], and a good practice is to consider the lab-frame force in terms of the lab-frame
fields but the rest-frame moments m0 and p0. Nonetheless, we can now rewrite eq. (45)
entirely in terms of lab-frame quantities, to order 1/c,38 as39

F = ∇(m · Bi) −∇
(
m · v

c
× Ei

)
+ ∇

(v

c
× p · Bi

)
∇(p · Ei) + ∇

(
p · v

c
× Bi

)
− ∇

(v

c
× m · Ei

)
+

d

dt

p× Bi

c

= ∇(m · Bi) + ∇(p · Ei) +
d

dt

p× Bi

c
, (49)

The equation of motion for the center of mass of the object can now be written as

Ma = F − dPmech,hidden

dt
= ∇(m · Bi) + ∇(p · Ei) − d

dt

m× Ei

c
+

d

dt

p× Bi

c
. (50)

We also note that if either p or Bi vanishes, then the force (49) can be deduced from a
potential,40

F = −∇U, U = −m ·Bi − p ·Ei (p or Bi = 0). (51)

There is an erratic history of derivations of the lab-frame force F on moving dipoles.

37See, for example, eq. (2) of [73].
38Strictly, considering terms only to order 1/c is distinct from the low-velocity approximation that v � c.

Further, in our expressions “to order 1/c”, we suppose that magnetic fields and moments are of order c0.
This procedure has been called the “semirelativistic approximation” in [74].

39As remarked on p. 32 of [75], the term (d/dt)(p×Bi/c) in their eq. (4.22), our eq. (49), suggests that p×
Bi/c is part of the momentum of the system. Indeed, it is related to the electromagnetic field momentum of
the electric dipole plus external magnetic field. However, this term is not a “hidden” mechanical momentum
of the dipole, and does not contribute to Pmech,total of eq. (39).

40The term −p · Ei in the potential U holds only assuming that the magnitude of p does not depend on
Ei. For example, if p = αEi, where the constant α is the polarizability, then (p · ∇)Ei = α(Ei · ∇)Ei =
∇(p ·Ei)/2 + p/c× ∂Bi/∂t, with the implication that the term in the potential is −p · Ei/2.
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DeGroot and Suttorp [74] gave a lengthy discussions of forces on moving dipoles, starting from the
basic definition of dipoles in their rest frame, and then considering transformations to the lab frame. Their
low-velocity result, eq. (A118), p. 233, agrees with our eq. (46) in the rest frame, but differs slightly from
our lab-frame expression (50).

Schwinger et al. [75] worked only in the lab frame and considered a collection of electric charges with
electric dipole moment p =

∑
qiri and magnetic dipole moment m =

∑
qi(ri − r) × (vi − v), where r and

v are the position and velocity of the center of mass of the system. Schwinger’s p and m are not quite
the same as transforms (48) of the moments p0 and m0 in the rest frame of the system, and he arrives at
his eq. (4.22), our eq. (49), only with the neglect of a term Bi/c × (v · ∇)p. A difficulty with the use of
Schwinger’s definition of the lab-frame magnetic moment is discussed in sec. 2.1 of [73]. Such difficulties may
have first been discussed in [76].

Vekstein [77] worked in the lab frame, and defined the electric and magnetic dipoles as integrals of the
lab-frame densities P and M of electric and magnetic polarization (which were considered to be the Lorentz
transformations of the rest-frame densities P0 and M0), i.e., p =

∫
P dVol and m =

∫
M dVol. Vekstein

made the unreasonable assumption (which contradicts the existence of Thomas precession [78, 79]), that the
dipole moments cannot change direction (or magnitude) in their rest frame, leading to his eq. (9) instead of
our eq. (49),

FVekstein = ∇(m · Bi) + (p · ∇)Ei +
p
c
× (v · ∇)Bi = ∇(m · Bi) + ∇(p · Ei) +

p
c
× dBi

dt
. (52)

Kholmetskii et al. [80] argued that Vekstein’s expression (52) was wrong, and offered their version,

FKholmetskii = ∇(m · Bi) + ∇(p · Ei) +
∂

∂t

p × Bi

c
, (53)

which agrees with our eq. (49) if the ∂/∂t is replaced by d/dt, as was done by Kholmetskii et al. in eq. (5)
of [81] in response to a criticism by Hnizdo [82].

Hnizdo [82] argued that Kholmetskii et al. were wrong, and offered an expression only in the case of
static, lab-frame, external fields,

FHnizdo = ∇(m · Bi) + ∇(p · Ei) +
d

dt

p0 × Bi

c
, (54)

noting that Hnizdo’s eq. (4) is for Ma rather than the lab-frame force F. To order 1/c the rest-frame moment
p0 in eq. (54) can be replaced by the lab-frame moment p, leading to agreement with with our eq. (49).
Despite that fact that the stated assumption of Hnizdo’s method (that the lab-frame interaction energy can
be written as in eq. (51) is not generally valid, correct equations of motion were deduced, as will be clarified
in sec. 2.6.4.

Zangwill [47] gave an expression for the lab-frame force on a medium with polarization densities M and
P in sec. 15.9, p. 526, and then considered lab-frame dipole moments m and p as in the manner of chap. 4
of [75], arriving at eq. (15.137), which includes the extra term deftly ignored by Schwinger in his eq. (4.22).
As such, Zangwill’s eq. (15.137) differs slightly from our eq. (49).

Zangwill [47] also presented a Lagrangian derivation based on the interaction energy ρ ϕi − J · Ai/c in
Ex. 24.2, p. 922, where ρ is the electric charge density, ϕi is the external electric scalar potential and Ai is
the external magnetic vector potential. The derivation appears to be performed in the lab frame, and the
result agrees with his eq. (15.137) (although this is not stated). Zangwill supposed that the electric dipole
moment can have time dependence, but implied that the magnetic moment does not, which is physically
implausible. And, while Zangwill noted that a moving (electric) polarization is associated with an apparent
magnetization, he omitted that a moving magnetization is associated with an apparent polarization. The
author’s version of Zangwill’s derivation will be given in sec. 2.6.4, which will confirm our eq. (49).
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2.6.4 Lagrangian Approach

An alternative derivation of the force on a moving dipole, based on a Lagrangian approach
in the lab frame can be given following [47].41

The derivation is based on the lab-frame interaction energy,

Uint =

∫ (
ρ ϕi −

J

c
· Ai

)
dVol. (55)

In the rest frame of the object, taken to be a “point” dipole, its electric charge density is,

ρ0 = −∇′ · P0 = −∇′ · p0 δ3(r′ − r′0) = −p0 · ∇′δ3(r′ − r′0), (56)

and its electric current density is,

J0 =
∂P0

∂t′
+ c∇′ ×M0 =

∂p0

∂t′
δ3(r′ − r′0) + c∇′ × m0 δ3(r′ − r′0)

=
∂p0

∂t′
δ3(r′ − r′0) − cm0 × ∇′δ3(r′ − r′0), (57)

In the low-velocity approximation, the lab-frame charge and current densities are, to order
1/c, and recalling eq. (48),

ρ = ρ0 +
v · J0

c2
= −p0 · ∇δ3(r − r0) − v

c
·m0 × ∇δ3(r − r′0)

= −
(
p− v

c
× m

)
· ∇δ3(r − r0) − v

c
· m ×∇δ3(r − r′0) = −p · ∇δ3(r − r0), (58)

J = J0 + ρ0v =
∂p0

∂t
δ3(r − r0) − cm0 × ∇δ3(r − r0) − (p0 · ∇δ3(r − r0))v (59)

=
∂

∂t

(
p− v

c
× m

)
δ3(r − r0) − c

(
m +

v

c
× p

)
×∇δ3(r − r0) − (p · ∇δ3(r − r0))v.

Then, the lab-frame interaction energy is, to order 1/c,

Uint =

∫ (
ρϕi −

J

c
· Ai

)
dVol

= −
∫

ϕi p · ∇δ3(r − r0) dVol −
∫

Ai

c
· ∂p

∂t
δ3(r − r0) dVol

+

∫
Ai ·

(
m +

v

c
× p

)
× ∇δ3(r − r0) dVol +

∫ (v

c
· Ai

)
(p · ∇δ3(r − r0)) dVol

= p · ∇ϕi −
Ai

c
· ∂p

∂t
− ∇ ·

[
Ai ×

(
m +

v

c
× p

)]
− ∇ ·

[(v

c
· Ai

)
p
]

= p · ∇ϕi −
Ai

c
· ∂p

∂t
−
(
m +

v

c
× p

)
· Bi − p · ∇

(v

c
· Ai

)
= p · ∇ϕi −

Ai

c
· ∂p

∂t
−
(
m +

v

c
× p

)
· Bi − p

c
· [(v · ∇)Ai + v × Bi]

41The approach of Ex. 24.2 of [47] is valid, although the derivation there contained some errors, in this
author’s view.
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= −m · Bi + p · ∇ϕi −
Ai

c
· ∂p

∂t
+ p · 1

c

∂Ai

∂t
− p · 1

c

∂Ai

∂t
− p ·

[
(v · ∇)

Ai

c

]

= −m · Bi − p · Ei − Ai

c
· ∂p

∂t
− p · 1

c

∂Ai

∂t
− (v · ∇)

p · Ai

c

= −m · Bi − p · Ei − d

dt

p · Ai

c
→ −m · Bi − p · Ei, (60)

noting that the total (convective) derivative of a function f associated with the moving
object is df/dt = ∂f/∂t + (v ·∇)f , that Ei = −∇ϕi − (1/c)∂Ai/∂t and Bi = ∇×Ai, and
that a total derivative term in a Lagrangian does not affect the equations of motion.42

The total derivative term in eq. (60) vanishes if either p = 0 or Bi = 0. Hence, as claimed
at eq. (51), the interaction energy/potential has the form U = −m · Bi − p · Ei only when
these conditions are met.43 Hence, even in the general case this potential can be used in a
Lagrangian to deduce the equations of motion (as was done by Hnizdo [82] without detailed
justification).

Thus, the general Lagrangian is effectively,

L = T − U =
Mv2

2
+ m · Bi + p · Ei

=
Mv2

2
+ m0 ·Bi − v · p0 × Bi

c
+ p0 · Ei + v · m0 × Ei

c
, (61)

and the equations of motion are,

d

dt

∂L
∂v

= ∇L =
d

dt

(
Mv − p0 ×Bi

c
+

m0 × Ei

c

)
= −∇U = ∇(m · Bi) + ∇(p · Ei), (62)

To order 1/c, we can replace m0 and p0 by m and p in eq. (62). Then,

Ma = ∇(m · Bi) + ∇(p · Ei) +
1

c

d

dt
(p× Bi − m ×Ei), (63)

Ma +
d

dt

m × Ei

c
=

dPmech,total

dt
= F = ∇(m · Bi) + ∇(p · Ei) +

d

dt

p ×Bi

c
, (64)

as found previously in eq. (50).

2.6.5 Precession of the Dipole Moments

The torque on a (moving) dipole, relative to a fixed origin in its rest frame, is given by
standard arguments as,44

τ ′ = r′ × F′ + p0 × E′
i + m0 × B′

i. (65)

42See, for example, p. 918 of [47].
43To order 1/c, p · Ai/c = p0 · Ai/c, so it suffices that either p0 or Bi for eq. (51) to be an effective

potential.
44Textbooks typically compute the torque about the center of mass of the dipole. See, for example,

secs. 4.1.3 and 6.1.2 of [29].
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The effect of this torque is to change the mechanical angular momentum of the dipole,

τ ′ =
dL′

mech

dt′
(66)

If the dipole can be described by an inertia tensor I′ measured with respect to its center of
mass (at position r′), then its angular momentum can be written as,

L′ = r′ × P′
mech + I′ · ω′ = r′ × (Mv′ + P′

mech,hidden) + I′ · ω′, (67)

where v′ = 0 in the rest frame, ω is the angular velocity of the dipole in its rest frame, and
P′

mech,hidden = m0×E′
i/c is the “hidden” mechanical momentum of the dipole. Recalling that

F′ = dP′
mech/dt′, we combine eqs. (65)-(67) to find the rotational equation of motion in the

rest frame of the dipole,

d

dt′
I′ · ω′ = p0 × E′

i + m0 × B′
i. (68)

To go further, we must have a model for the inertia tensor I′. If the dipole is an extended
object, and is mass distribution is known, such a model can be given, but in general there
will be little relation between the inertia tensor and the dipole moments m0 and p0. So, we
restrict our attention to “point” dipoles, particularly to electrons, and recall that “point”
dipoles do not have intrinsic electric dipole moments, as far as is known.45 That is, we only
consider the precession of charged particle with an intrinsic magnetic moment in this section.

As first deduced by Larmor [85] in 1897, an Ampèrian magnetic moment m0 due to a
current of electric charges e with rest mass M has (orbital) angular momentum s0 about the
center of mass of the moment in its rest frame related by,

m0 =
ge

2Mc
s0, (69)

where g = 1 in a classical model.46

Apparently, Voigt [87] (1902) was the first to consider that an electron would have a magnetic moment
if it is a rotating, charged object. That such an intrinsic magnetic moment would affect atomic spectroscopy
was first discussed by Ritz [88] (1907), and pursued more by Weiss [89, 90], who coined the term magneton

and noted the emerging awareness that the electron magnetic moment has something to do with � (three

45“Point” electric dipoles do not appear to exist in Nature, while electrons can be considered as examples
of “point”, Ampèrian magnetic dipoles. Objects with finite size (water molecules, for example) can have
electric dipole moments in their rest frame.

As remarked by Purcell and Ramsey [83], the only vector associated with an elementary particle at rest is
its spin s, and the magnetic moment m0 of the particle is along this direction. If the particle were to have
an electric dipole moment this would have to be parallel to the spin, p0 ∝ s. But then, an interaction energy
of the form −p0 · E ∝ s · E violates the discrete symmetries of time reversal (T) and space inversion (P =
parity), whereas the interaction −m0 ·B ∝ s ·B is P and T invariant. As such, it is unlikely that elementary
particles will have electric dipole moments.

The present limit [84] on the electric dipole moment p0 = ed of the electron (of charge e) is that d < 10−28

cm, some 15 orders of magnitude smaller than the Compton radius of the electron.
46The g-factor was introduced by Landé [86] in 1921, in the context of the Bohr-Sommerfeld quantum

theory.
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years before Bohr [91] identified this as the quantum of orbital angular momentum). However, in the 1910’s
most consideration was given to the magnetic moment associated with orbital motion of an electron, rather
than to its possible intrinsic magnetic moment. Compton [92] (1921) revived the notion that an electron
might have an intrinsic magnetic moment equal to the (orbital) Bohr magneton g = 1 and s0 = �. In 1925,
Uhlenbeck and Goudsmit [93] proposed that s0 = �/2 and g = 2 for an electron. A theoretical justification
of this was given by Dirac [94] in 1928 via his famous 4-spinor equation for a quantum electron.

The precession of the magnetic moment of an electron in an external electromagnetic
field was famously considered by Thomas [78, 79] in 1926. A textbook review of this topic is
given in secs. 11.8 and 11.11 of [30]. The subtle result is that the direction of the lab-frame
magnetic moment (and spin vector) has an additional precession beyond that due to the
torque on the dipole moment. In the low-velocity approximation the rate of change of the
spin angular momentum of an electron is,

ds

dt
= m ×

(
Bi − v

c
× Ei

)
+

m

2
×
(v

c
× Ei

)
. (70)

The first term on the right side of eq. (70) is the nominal torque on the magnetic dipole,
and the second term is the Thomas precession. Finally,

dm

dt
=

ge

2Mc

ds

dt
≈ m × ge

2Mc
Bi = ω × m, ω = − ge

2Mc
Bi, (71)

where the approximation holds to order 1/c, and ω is the Larmor frequency for an electron.

A Appendix: Effective Magnetic Charge Density

ρm,eff = −∇ ·M
So far as is presently known, magnetic charges do not exist, and all magnetic effects can be
associated with electrical currents, as first advocated by Ampère [95]. For materials with
magnetization density Me = M the associated (macroscopic) electrical current density is,

Je = ∇ × M, (72)

and on the surface of such materials there is the surface current density,

Ke = n̂× M, (73)

where n̂ is the outward unit vector normal to the surface.
Alternatively, we can suppose the magnetization is associated with densities of effective

magnetic charges. Some care is required to use this approach, since a true (Gilbertian)
magnetic charge density ρm would obey ∇·B = μ0ρm as in eq. (1), and the static force density
on these charges would be Fm = μ0ρmHe. However, in Nature ∇ ·B = 0 = ∇ · μ0(H + M),
so we can write,

∇ · H = −∇ · M = ρm,eff , (74)

and identify,
ρm,eff = −∇ · M (75)
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as the volume density of effective (Ampèrian) magnetic charges.
Inside linear magnetic media, where B = μH, the Maxwell equation ∇ · B = 0 then

implies that ρm,eff = 0. However, a surface density σm,eff of effective magnetic charges can
exist on an interface between two media, and we see that Gauss’ law for the field H implies
that,

σm,eff = (H2 − H1) · n̂, (76)

where unit normal n̂ points across the interface from medium 1 to medium 2. The magnetic
surface charge density can also be written in terms of the magnetization M = B/μ0 −H as,

σm,eff = (M1 − M2) · n̂, (77)

since ∇ · B = 0 insures that the normal component of B is continuous at the interface.
The force on the surface density of effective magnetic charges is,

F = σm,effB, (78)

since the effective magnetic charges, which are a representation of effects of electrical currents,
couple to the magnetic field B, as in eq. (9).47

The total force on a linear medium is, in this view, the sum of the force on the conduction
current plus the force on the effective magnetic surface charges. Care is required to implement
such a computation of the force, as discussed in [43], where eq. (78) is affirmed by example.

The key result of this Appendix is that while “true” (Gilbertian, and nonexistent in
Nature) magnetic charges p obey the force law Fm,true = μ0pH, the effective (Ampèrian)
magnetic charges (which are a representation of effects of electrical currents) obey Fm,eff =
peffB.

For “effective” Ampèrian magnetic charges the magnetic fields obey ∇ · B/μ0 = 0 and
∇ · He = ρm,eff inside magnetic materials, while for “true” Gilbertian magnetic charges the
fields obey ∇ ·B/μ0 = ρm,true and ∇ ·Hm = 0 inside magnetic materials where there are no
“free”, “true” magnetic charges. Hence, the roles of B/μ0 and H are reversed in magnetic
materials that contain “true” or “effective” magnetic charges. We illustrate this below for
the fields of a uniformly magnetized sphere.

A.1 Fields of a Uniformly Magnetized Sphere

In this subappendix we deduce the static magnetic fields associated with uniform spheres
of radius a with either uniform Gilbertian magnetization density Mm or uniform Ampèrian
(effective) magnetization density Me.

47Equation (78) is in agreement with prob. 5.20 of [30], recalling the different convention for factors of μ0

used there. However, the Coulomb Committee in their eq. (1.3-4) [96], and Jefimenko in his eq. (14-9.9a,b)
[97], recommends that the field H/μ0 be used rather than B when using the method of effective magnetic
charges, which would imply a force μ0/μ times that of eq. (78) for linear media.
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A.1.1 Uniform Ampèrian Magnetization Density Me

The total magnetic moment of the sphere is,

me =
4πMea

3

3
. (79)

We speed up the derivation by noting that the fields inside the sphere are uniform, and the
fields outside the sphere are the same at those of a point magnetic dipole of strength me,

B(r > a)

μ0

= He(r > a) = Hm(r > a) =
3(me · r̂)r̂ − me

4πr3
=

Mea
3(2 cos θ r̂ − sin θ θ̂)

3r3
, (80)

in a spherical coordinate system with origin at the center of the sphere and z-axis parallel
to Me.

To characterize the fields inside the sphere, we note use the method of effective magnetic
charges (Appendix A). Since Me is constant inside the sphere, there is no net effective
magnetic charge density there, ρe,eff(r < a) = −∇ · Me(r < a) = 0, while there is a nonzero
surface density of effective magnetic charge,

σe,eff(r = a) = Me · r̂ = Me cos θ. (81)

The boundary condition on the magnetic field He at the surface of the sphere is that,

He,r(r = a+) − He,r(r = a−) = σe,eff(r = a), (82)

and hence,

He,r(r = a−) = He,r(r < a) = He(r < a) cos θ = He,r(r = a+) − σe,eff(r = a)

=
2Me cos θ

3
− Me cos θ = −Me cos θ

3
, (83)

He(r < a) = −Me

3
, Hm(r < a) =

B(r < a)

μ0

= He(r < a) + Me(r < a) =
2Me

3
. (84)

The result (84) for B/μ0 implies that the magnetic field for the idealization of a “point”,
“effective” (Ampèrian) magnetic dipole me would be,

B

μ0

=
3(me · r̂)r̂ − me

4πr3
+

2me

3
δ3(r). (85)

A.1.2 Uniform Gilbertian Magnetization Density Mm

The total magnetic moment of the sphere for this case is,

mm =
4πMma3

3
. (86)
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As in sec. D.1.1,we speed up the derivation by noting that the fields inside the sphere are
uniform, and the fields outside the sphere are the same at those of a point magnetic dipole
of strength mm,

B(r > a)

μ0

= He(r > a) = Hm(r > a) =
3(mm · r̂)r̂ − me

4πr3
=

Mma3(2 cos θ r̂ − sin θ θ̂)

3r3
. (87)

To characterize the fields inside the sphere, we note use the method of effective magnetic
charges (Appendix A). Since Mm is constant inside the sphere, there is no net true magnetic
charge density there, ρm(r < a) = −∇ · Mm(r < a) = 0, while there is a nonzero surface
density of true magnetic charge,

σm(r = a) = Mm · r̂ = Mm cos θ. (88)

The boundary condition on the magnetic field B at the surface of the sphere is that,

Br(r = a+) − Br(r = a−) = μ0σm(r = a), (89)

and hence,

Br(r = a−)

μ0

=
Br(r < a)

μ0

=
B(r < a) cos θ

μ0

=
Br(r = a+)

μ0

− σr(r = a)

=
2Mm cos θ

3
− Mm cos θ = −Mm cos θ

3
, (90)

B(r < a)

μ0

= He(r < a) = −Mm

3
, Hm(r < a) =

B(r < a)

μ0

+ Me(r < a) =
2Me

3
. (91)

Comparing with eqs. (83)-(84) we see that the roles of B and H are reversed in the case of
uniform true and effective magnetization. In particular, the sign of B inside the magnetized
sphere is opposite for the cases of Ampèrian and Gilbertian magnetization, although B is
the same outside the sphere in the two cases.48

The result (91) for B/μ0 implies that the magnetic field for the idealization of a “point”,
“true” (Gilbertian) magnetic dipole mm would be,

B

μ0

=
3(mm · r̂)r̂ − mm

4πr3
− mm

3
δ3(r). (92)

B Appendix: Lab-Frame Fields to order 1/c

Gaussian units are used in this Appendix.
We consider an object that has total charge Q, dipole moments m0 and p0 in its rest

frame, and no other multipole moments. At the time of interest, we take the object to be at
r′0.

49

48For the case of a cylinder with uniform transverse magnetization, see [98], where the interior B field is
equal and opposite for Ampèrian and Gilbertian magnetization.

49In this Appendix, quantities other than Q, m0 and p0 are indicated with a prime.
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The magnetic dipole moment is taken to be Ampèrian [95], while the electric dipole
moment is Gilbertian [99],50 meaning that for “point” dipoles “at rest” at the origin, their
electromagnetic fields can be written as,

B′(r′) =
3(m0 · R̂′)R̂′ − m0

R′3 +
8πm0

3
δ3(R′), E′(r′) =

3(p0 · R̂′)R̂′ − p0

R′3 − 4πp0

3
δ3(R′),(93)

where R′ = r − r′0 and R̂′ = |bfR′/R′. That is, the electric dipole is equivalent to a pair
of electric charges ±q separated by distance d′ where p0 = qd′, while the magnetic dipole is
equivalent to a small loop of electrical current I , with area A, such that m0 = IA/c. The
electric field between the charges ±q is opposite to the direction of p0, while the magnetic
field in the interior of the current loop is in the same direction as m0.

While the center of mass of the object is, by definition, at rest in its rest frame, the center
of mass may be acceleration, and the object may be rotating and/or deforming such that
the rest-frame dipole moments have nonzero time derivatives.

To display the electromagnetic fields of the object in its rest frame (and in the lab frame)
to order 1/c, we first consider the potentials and fields of a single electric charge, Appendix
B.1, and then.....

B.1 The Potentials and Fields for a Single Electric Charge

The Liénard-Wiechert potentials [101, 102] in the Lorenz gauge [103] can be written for
continuous charge and current densities as,

ϕ =

∫
ρ(r, t −R/c)

R
dVol, A =

∫
J(r, t− R/c)

cR
dVol, (94)

where distance R points from the source to the observer. If we are interested in the fields
only to order 1/c, the potentials (94) can be approximated as (see, for example, sec. 65 of
[104]),

ϕ ≈
∫

ρ

R
dVol − 1

c

d

dt

∫
ρ dVol =

∫
ρ

R
dVol, A =

∫
J

cR
dVol, (95)

noting that the total charge,
∫

ρ dVol, is conserved.
Specializing to the case of a single charge e at position r with velocity v = dr/dt, the

Lorenz-gauge potentials to order 1/c are,

ϕ =
e

R
, A =

ev

cR
. (96)

The lab-frame electric and magnetic fields to order 1/c follow as,

E = −∇ϕ − ∂A

∂ct
= −∇ϕ =

e R̂

R2
, B = ∇ × A =

ev × R̂

cR2
, (97)

where unit vector R̂ = R/R is directed from the charge to the observer.
Of course, the results of this section also hold in the rest frame of the charge, where

v′ = 0 so that A′ and B′ vanish, while ϕ′ = e/R′ and E′ = e R̂′/R′2.

50The notion that a magnet consists of a pair of opposite “poles” (= magnetic charges) was perhaps first
expressed by Peregrinus [100] in 1269.
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B.2 The Potentials of a Localized Collection of Charges

The fields of a collection of charges ei with masses Mi at positions r′i + r′0, where r0 is the
position of the center of mass of the system, with velocities v′

i in the rest frame of the object
are, of course, the superpositions of the fields of the individual charges. The fields can be
deduced from the potentials, so we emphasize the latter here.

The distance R′
i from charge i to the observer at r′ is related by R′

i = r′−r′i−r′0 ≡ R′−r′,
where R′ = r′ − r0 is the distance from the center of mass of the object to the observer.
Then,

1

R′
i

=
1

|R′ − r′i|
=

1

(R′2 − 2R′ · r′i + r′2i
=

1

R′(1 − 2R̂′ · r′i/R′ + r′2i /R′2)1/2

≈ 1

R′ +
R̂′ · r′i
R′2 +

3(R̂′ · r′i) R̂′ − r′i
2R′3 + · · · (98)

The rest-frame scalar potential (in the Lorenz gauge) is just,

ϕ′ =
∑ ei

R′
i

≈
∑

ei

R′ + R̂′ ·
∑

eir
′
i

R′2 + · · · =
Q

R′ +
R̂′ · p0

R′2 + · · · , (99)

where Q =
∑

ei is the total charge, and,

p0 =
∑

eir
′
i (100)

is the electric dipole moment in the rest frame of the object.
Similarly, the rest-frame vector potential (in the Lorenz gauge) is,

A′ =
∑ eiv

′
i

cR′
i

≈
∑

eiv
′
i

cR′ +

∑
eiv

′
i(R̂

′ · r′i)
cR′2 + · · ·

=

∑
eiv

′
i

cR′ +
1

cR′2
∑(ei

2
[v′

i(R̂
′ · r′i) − r′i(R̂

′ · v′
i)] +

ei

2
[v′

i(R̂
′ · r′i) + r′i(R̂

′ · v′
i)]
)

+ · · ·

=
1

cr′
∂p0

∂t′
+

1

cR′2
∑(

r′i × eiv
′
i

2
× R̂′ +

ei

2
[v′

i(R̂
′ · r′i) + r′i(R̂

′ · v′
i)]

)
+ · · · , (101)

noting that for an object at rest there is no difference between the operations d/dt′ and
∂/∂t′.

The second term in the last line of eq. (101) can be rewritten as,

1

cR′2
∑ r′i × eiv

′
i

2
× R̂′ =

∑ r′i × eiv
′
i

2c
× R̂′

R′2 =
m0 × R̂′

R′2 , (102)

where we identify the rest-frame magnetic moment as,

m0 =
∑ r′i × eiv

′
i

2c
. (103)
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Thus, the rest-frame vector potential (in the Lorenz gauge) of an object with no multipole
moments higher than dipoles is,51

A′ =
1

cR′
∂p0

∂t′
+

m0 × R̂′

R′2 +

∑
ei[v

′
i(R̂

′ · r′i) + r′i(R̂
′ · v′

i)]

2cR′2 ≡ 1

cR′
∂p0

∂t′
+

m0 × R̂′

R′2 + As.(104)

We now consider the electromagnetic fields in the rest frame of the object to order 1/c.
Here, we encounter a famous difficulty in classical electrodynamics, that some objects in
Nature, such as electrons, have an intrinsic magnetic moment. In particular, a semiclassical
model of an electron as a rotating sphere of charge of radius roughly the Compton wavelength
λ = �/Mc of the electron requires the equatorial velocity to exceed the speed of light.52

Without committing to such a model, we infer that the rest frame magnetic moment m0

should not be considered as of order 1/c, despite the result (103). Rather, in the following
we consider the magnetic moment m0 to be of order c0, while the center-of-mass velocities
of all charges have vi � c. This is called the semirelativistic approximation in [74].

The rest-frame electric and magnetic fields to order 1/c (in the semirelativistic approx-
imation), and for observers at distance R′ large compared to the spatial size of the source
object, follow as,

E′ = −∇′ϕ′ − ∂A′

∂ct′
=

e R̂′

R′2 +
3(p0 · R̂′)R̂′ − p0

R′3 +
∂

∂t′
m0 × R̂′

cR′2 , (105)

B′ = ∇′ × A′ =
∂p0

∂t′
× R̂′

cR′2 +
3(m0 · R̂′)R̂′ −m0

R′3 + As × R̂′

R′ . (106)

B.3 Transformation of the Rest-Frame Fields to the Lab Frame

In the lab frame the object has center-of-mass velocity v = v0 = dr0/dt, where r0 is the
position of its center of mass. To order 1/c, position and time are the same in the lab frame
as in the rest frame, r′ = r and t′ = t, while the derivative operators are related by ∇′ = ∇
and ∂/∂t′ = ∂/∂t + (v · ∇ = d/dt. Then, recalling (the inverse of) eq. (47), the lab-frame
fields in terms of the rest-frame dipole moments are,

E = E′ − v

c
×B′ =

e R̂

R2
+

3(p0 · R̂)R̂ − p0

R3
+

d

dt

m0 × R̂

cR2
− v

c
× 3(m0 · R̂)R̂ − m0

R3
,(107)

B = B′ +
v

c
× E′ =

dp0

dt
× R̂

cR2
+

3(m0 · R̂)R̂− m0

R3
+ As × R̂

R

+
v

c
×
(

e R̂

R2
+

3(p0 · R̂)R̂ − p0

R3

)
, (108)

where R = r− r0 is the distance from the center of mass of the object to the fixed observer.
We can also express the rest-frame dipole moments in terms of their lab-frame values

using the Lorentz transformation (48) in the semirelativistic approximation,

m0 = m +
v

c
× p, p0 = p− v

c
× m, m = m0 − v

c
× p0, p = p0 +

v

c
× m0, (48)

51The last term, As, in eq. (104) is symmetric. Decomposition of the vector potential into symmetric and
antisymmetric pieces is advocated in prob. 6.22 of [30]. See also [73].

52See, for example, prob. 12 of [105].
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leading to,

E =
e R̂

R2
+

3(p · R̂)R̂ − p

R3
− 2v

c
× 3(m · R̂)R̂ −m

R3
+

d

dt

m × r̂

cr2
, (109)

B =
v

c
× e R̂

R2
+

3(m · R̂)0R̂ − m

R3
+ As × R̂

R
+

2v

c
× 3(p · R̂)R̂ − p

R3
+

dp

dt
× r̂

cr2
. (110)

where to order 1/c,

As =

∑
ei[v

′
i(R̂

′ · r′i) + r′i(R̂
′ · v′

i)]

2cR′2 =

∑
ei[v

′
i(R̂ · r′i) + r′i(R̂ · v′

i)]

2cR2
. (111)

Note that the dipole contributions to the lab-frame fields are not simply the forms
[3(p · R̂)R̂− p]/R3 and [3(m · R̂)R̂−m]/R3 as might have been expected näıvely. Nor are
they the forms [3(p0 · R̂)R̂−p0]/R

3 and [3(m0 · R̂)R̂−m0]/R
3 as might have been expected

in a slightly more sophisticated view.
A general conclusion is that the interpretation of dipole (and higher multipole) moments

is only straightforward in the rest frame of a system of charges.

For completeness, we also display the transformation of the Lorenz-gauge potentials into
the lab frame, in the semirelativistic approximation:

ϕ = ϕ′ +
v

c
· A′ =

Q

R
+

r̂ · p0

R2
+

v

c
· m0 × R̂

R2

=
Q

R
+

R̂ · p
R2

, (112)

A = A′ +
v

c
ϕ′ =

1

cR

dp0

dt
+

m0 × R̂

R2
+ As +

Qv

cR
+

(R̂ · p0)v

cR2

=
1

cR

dp

dt
+

m × R̂

R2
+
(v

c
× p

)
× R̂

R2
+ As +

Qv

cR
+

(R̂ · p)v

cR2

=
Qv

cR
+

1

cR

dp

dt
+

m × r̂

R2
+

(R̂ · v)p

cR2
+ As . (113)

While the lab-frame scalar potential (112) has an appealing form, the lab-frame vector
potential (113) has three terms in addition to the first two that might have been näıvely
expected.

B.4 Lab-Frame Analysis

It is irresistibly tempting to perform an analysis like that of Appendix B.2 in the lab frame
rather than in the rest frame.

Taking the center of mass of the object to be at r0 at the time under consideration, the
distance Ri from charge i at ri = r0 + Δri to the observer at r is related by Ri = r − ri =
r− r0 −Δri = R− r′i, where R = r− r0 is the distance from the center of mass of the object
to the observer. To order 1/c, the separation between charge i and the center of mass of
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the object is the same in the lab frame as in the rest frame of the object; that is, Δri = r′i.
Then,

1

Ri
=

1

|R − r′i|
=

1

(R2 − 2R · r′) + r′2i
=

1

R(1 − 2R̂ · r′i/R + r′2i /R2)1/2

≈ 1

R
+

R̂ · r′i
R2

+
3(R̂ · r′i) R̂ − r′i

2R3
+ · · · (114)

The lab-frame scalar potential (in the Lorenz gauge, and to order 1/c recalling the argu-
ment of Appendix B.1) is just,

ϕ =
∑ ei

Ri
≈
∑

ei

R
+ R̂ ·

∑
eir

′
i

R2
+ · · · =

Q

R
+ R̂ ·

∑
eir

′
i

R2
+ · · · =

Q

R
+

R̂ · p̃
R2

+ · · · ,(115)

where Q =
∑

ei is the total charge, and,

p̃ =
∑

eir
′
i =

∑
eiΔri (116)

seems to be a “natural” definition of the electric dipole moment in the lab frame. However,
since Δri = r′i, we see that p̃ = p0, with the implication that the lab-frame electric dipole
moment is that same as that in the rest frame. This contradicts the Lorentz transformation
(48), so the apparently straightforward analysis of the lab-frame scalar potential is to be
regarded with suspicion.

Surprisingly, the lab-frame electric dipole moment is sometimes defined as,

p̆ =
∑

eiri =
∑

ei(r0 + r′i) = Qr + p̃, (117)

which implies that a single charge Q has an electric dipole moment when not at the origin.
See, for example, the bottom right column of p. 1528 of [106], and eq. (15.129) of [47].

Similarly, the lab-frame vector potential (in the Lorenz gauge) is,

A =
∑ eivi

cRi
≈
∑

eivi

cR
+

∑
eivi(R̂ · ri)

cR2
+ · · ·

=
1

cR

dp̆

dt
+

1

cR2

∑(ei

2
[vi(R̂ · ri) − ri(R̂ · vi)] +

ei

2
[vi(R̂ · ri) + ri(R̂ · vi)]

)
+ · · ·

=
1

cR

dp̆

dt
+
∑ ri × eivi

2c
× R̂

R2
+

∑
ei[vi(R̂ · ri) + ri(R̂ · vi)]

2cR2
. + · · ·

=
1

cR

dp̆

dt
+ m̆× R̂

R2
+ As + · · · (118)

where As is given in eq. (111), and some people define the lab-frame magnetic dipole moment
as53,54

m̆ =
∑ ri × eivi

2c
, (121)

53See, for example, eq. (15.134) of [47]. The definition (121) seems to be implied by eq. (44.2) of [104], but
Landau introduces his sec. 44 with the restriction that it applies only to “a system of charges in stationary
motion”. The center of mass of a “system in stationary motion” is at rest, so Landau’s eq. (44.2) holds only
in the rest frame of the system, and not in the lab frame.

54In sec. III of [106] it is claimed that the magnetic moment of a point electric dipole p0 (and m0 = 0)
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although this attributes a nonzero magnetic moment to a single electric charge moving along
a straight line.

Noting that the velocity vi of charge i can be written as vi = v + v′
i, where v′

i is the
velocity of the charge relative to the center of mass of the object (and, of course, also equal
to the velocity of the charge in the rest frame of the object), we can write,

m̆ =
∑ ri × eivi

2c
=
∑ (r0 + r′i) × ei(v + v′

i)

2c

= m̃ − v

2c
× p̃ + r0 × Qv

2c
+

r0

2c
× dp̃

dt
, (122)

where,

m̃ =
∑ r′i × eiv

′
i

2c
= m0 , (123)

is the lab-frame magnetic dipole moment defined in terms of quantities relative to the center
of mass of the charge distribution.56 Neither m̆ nor m̃ are related to the lab-frame dipole
moments according to the Lorentz transformation (48).

Then, recalling eq. (117), the lab-frame vector potential (in the Lorenz gauge and in the
semirelativistic approximation) of an object with no multipole moments higher than dipoles
is,

A =
Qv

cR
+

1

cR

dp̃

dt
+

(
m̃ − v

2c
× p̃ + r0 × Qv

2c
+

r0

2c
× dp̃

dt

)
× R̂

R2
+ As (124)

=
Qv

cR
+

1

cR

dp̃

dt
+

m̃ × R̂

R2
+

(R̂ · p̃)v − (R̂ · v)p̃

2cR2
+

(
r0 × Qv

2c
+

r0

2c
× dp̃

dt

)
× R̂

R2
+ As.

However, this form does not agree well with eq. (113).
In sum, it is misleading to perform multipole expansions in the lab-frame of a system of

charges, rather than in its rest frame, despite the apparent elegance of a lab-frame analysis.

which moves with lab-frame velocity v can be calculated according to,

m̆ =
1
2c

∫
r × J dVol =

1
2c

∫
r × ρ0v dVol = − v

2c
×
∫

ρ0r dVol = − v
2c

× p0, (119)

which differs from eq. (48) by a factor of 2.
Furthermore, support for this result appears to be given in probs. 6.21, 6.22 and 11.27 of [30].
However, we should recall that the origin of the first equality in (119) is a multipole expansion of the

(quasistatic) vector potential of a current distribution. See, for example, sec. 5.6 of [30]. That form depends
on the current density J having zero divergence. In general,

∇ · J = −∂ρ

∂t
, (120)

where ρ is the electric charge density.55 The charge density of a moving electric dipole is time dependent,
such that ∇ · J 	= 0, and we cannot expect the analysis of eq. (119) to be valid. Thanks to Grigory Vekstein
for pointing this out.

See [73] for additional discussion.
56See, for example, eq. (4.19) of [75].
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(Paris) 6, 661 (1907), http://kirkmcd.princeton.edu/examples/EM/weiss_jp_6_661_07.pdf
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