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1 Introduction

From Newton’s 3" law of action and reaction, F;; = —F;; for any pair of masses i and j,
we infer that the total momentum of an isolated system must be zero. And, if F;; is along
the line of centers between 7 and j, we infer that the total angular momentum of a isolated
system is also zero.

A simple example of a violation of Newton’s 3" law is sketched in the figure below.
Charge e; moves with velocity vy and charge e; moves with velocity vy that is not parallel
to vi. The sum of the Lorentz forces is,
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in Gaussian units, with ¢ as the speed of light in vacuum.
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For low velocities where the Biot-Savart law is a good approximation, we have,
e;v; X f'ij
Bi(r;) = ng; (2)

where r;; = r; — r;. Using this in eq. (1), we find,
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which is nonzero when v; and v, are not parallel.?

'This note expands on pp. 286-290 of nttp://kirkmcd.princeton.edu/examples/ph501/ph501lecture24 . pdf

2 Ampere was aware of results like this, but insisted that magnetism obey Newton’s 3¢ law, and hence
rejected the Biot-Savart form, although he showed that the Biot-Savart force between closed, steady currents
was the same as that for the magnetic force law that he favored. Ampére’s insistence that magnetic forces
obey Newton’s 3'¢ law earned him the sobriquet by Maxwell, in Art. 528 of [1], of the “Newton of electricity”.
See, for example, historical appendix A.10 of [2].

Ampére’s authority held up acceptance of the “Lorentz” force law (stated obliquely by Maxwell in 1861 [3])

until efforts by Thomson [5] and Heaviside [7] in 1891 clarified that electromagnetic fields carry momentum
as well as energy (following the first clear statement of the “Lorentz” force law by Heaviside in 1885 [10].



We wish to show that, although Newton’s 3" law is violated in electromagnetism, the
total momentum of an isolated system is conserved once one considers electromagnetic mo-
mentum as well as mechanical momentum.

The concept of electromagnetic momentum was introduced by Maxwell in 1864, when he
identified this with Faraday’s “electronic state” in sec. 26 of [4], and clarified in sec. 57 that
the electromagnetic momentum of charge e in an external vector potential A is eA/c (in the
Coulomb gauge, as favored by Maxwell). For a collection of charges, we write,
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where superscript C is for Coulomb and M is for Maxwell. This formulation suggests that
electromagnetic momentum is a property of the charges, rather than of the electromagnetic
field.

As mentioned in footnote 2 above, in 1891 Thomson [5] and Heaviside [7] developed a
concept of electromagnetic momentum based on the electromagnetic fields E and B, relating
this to the Poynting vector S = (¢/4m)E x B [11]. We write this formulation as,

E x B
pl) = / 5 Vol = / 4X dVol, (5)
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but note that for a collection of (moving) point charges it includes (unphysical) infinite self
momenta. Hence, for point charges e; we consider only the interaction field momentum,

E; x B;
Pl = / %dvol. (6)
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That Maxwell’s electromagnetic momentum (4) is equivalent to the electromagnetic-field

momentum (6) of Thomson and Heaviside in quasistatic examples was first demonstrated
by Thomson [12]. See also [13].

In the rest of this note, we demonstrate that, for the example of two moving charges,
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to order v?/c?, which latter is often called the Darwin approximation [14].

2 The Darwin Approximation

The Lagrangian for a charge e of mass m (with no magnetic moment) that moves with
velocity v in an external electromagnetic field that is described by potentials V' and A can
be written as (see, for example, sec. 65 of [15] and sec. 12.6 of [16]),),

Ez—ch\/l—UQ/CQ—eV—i-e%-A. (8)



Darwin [14] worked in the Coulomb gauge, and kept term only to order v?/c*. Then, the
scalar and vector potentials due to a charge e that has velocity v are (see sec. 65 of [15] or
sec. 12.6 of [16]),
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where R is directed from the charge to the observer, whose (present) distance from the
charge is R.
The electric and magnetic fields of charge e at distance R from an observer follow in the
Darwin approximation from the potentials (9),
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where a = dv /dt is the (present) acceleration of the charge.® As the magnetic field (11) varies
as 1/R?, there is no radiation in the far zone in the Darwin approximation. However, the
Poynting vector S = (¢/47) E x B is nonzero, so there exists a flow of electromagnetic-field
energy around the moving charge.

The Lorentz force on a charge e; with velocity vi due to charge e, with velocity vs is, in
the Darwin approximation,
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This force depends on the acceleration as of the source charge ey, but not on the acceleration
a; of the charge e, and has noncentral terms (not along f2).*
The total force on the two charges is, noting that ro; = —ry9,
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using the vector identity a x (b x ¢) —b x (ax c) = (ax b) x c.

3Sec. 65 of [15] shows that in the Darwin approximation the Liénard-Wiechert potentials (Lorenz gauge)
reduce to VI = ¢/R + (e/2¢2)0?R/9t* and A" = ev/cR, from which egs. (10)-(11) also follow.
4For comparison, the (central) force law of Weber [18] (1846) is,
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both of which depend on the acceleration a; of the observing charge e;.



3 Use of P(El\fd)

The electromagnetic momentum of the combined system of charges e; and e is, according
to Maxwell and recalling eq. (9),
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To take the time derivative of eq. (16), we note that r; = v;, I12 = vo — vy, V; = a; and

T19 = T19 - (Vo — V1) via r3y = r%,. Then,
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which provides the first confirmation of eq. (7).

4 Use of P(Eff\)d

The demonstration of eq. (7) using the Poynting form (6) of electromagnetic momentum
is more intricate than that for Pg\ﬁ, although we expect that Pg\aI = Pg\ﬁ, as the present
example is “quasistatic” in the Darwin approximation.®

Our computation is to be accurate to order v?/c?, and since the magnetic field of eq. (11)

is of order v/c we need only consider the leading term in the electric field of eq. (10),
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where vector r(r’) is from charge 1(2) to the observation point.

°See, for example, [13].



The first term of eq. (18) is independent of angle ¢, and involves the factor r - r’ which
is related by,
2 +r?—r,

rip=r—1r, riy =1 +1% = 2r- 1, r-r':#. (19)

We adopt a spherical coordinate system (r, 6, ¢) with origin at charge 1 and z-axis along
r12, for which the volume element is dVol = r%dr sinfdf dp. The distance v’ from the
observation point to charge 2 is related by 12 = 72 — 2r 115 cos 6 + 7"%2, where 715 1S constant
during the integration. A clever trick from [20] is to note that on a sphere of constant radius r
we have " dr’ = rri9sin 6 df, so we can write the volume element as dVol = r ' dr dr' d¢/r1s.

The limits of the r’ integration depend on whether r is greater or less than ris,
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Then, the first integral in eq. (18) is
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To evaluate the second integral in eq. (18) we take velocity vy to be in the z-z plane.
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Then,

r = r(sin 6 cos ¢, sin @ cos ¢, cos ), r' = (rsinf cos ¢, rsinfcos g, rcosh —ria), (22)
(r' - vi)r = 7r(rvi, sin € cos ¢ + rvy, cos 6 — riav1,)(sin 6 cos ¢, sin 0 cos ¢, cosf).  (23)
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The third integral in eq. (18) is the same as the second but with index 1 — 2.
The remaining integrals are “elementary”, but very tedious to evaluate. So, we accept

without detailed confirmation that the result is Pg\aI = Pg\ﬁ,ﬁﬁ
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