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1 Problem

Current enters an infinite plane conducting sheet at some point p and leaves at infinity. A
circular hole, exclusive of p, is cut anywhere in the sheet and filled with a material of a
different conductivity. Show that the potential difference between any two points on the
edge of the hole is twice that between the same two points before the hole was cut, if the
conductivity of the material in the hole is zero [1].

Consider also a three-dimensional version of this problem.

2 Solution

We take the hole to have radius a, which is less than the distance b from the center of the
hole to the point p where the current enters the sheet.

We use a polar coordinate system with its origin at the center of the hole, and point p
at (r, φ) = (b, 0).

The electric scalar potential V is taken to be V = V0 + V1, where V0 is the potential in
the absence of the hole, and V1 is a correction that vanishes at large radius r (and is finite
at r = 0).

In the absence of the hole, the current density J0 flows radially outward from point p.
Let ρ =

√
r2 + b2 − 2rb cos φ be the distance from point p to the point (r, φ), and ρ̂ be a

unit vector pointing away from p. Then the current density J0 is given by,

J0 =
I

2πρ
ρ̂ = σE0 = −σ∇V0, (1)

where σ is the electrical conductivity of the sheet at r > a. Solving for the potential V0, we
find,

V0 = − I

2πσ
ln ρ + K. (2)

Note that the potential V0 is the same as that due to a line of linear charge density λ = I/4πσ
(in Gaussian units) perpendicular to the (r, φ) plane at point p. Indeed, following sec. 4-10
of [1] or sec. 4.02 of [2], we can rewrite V0 (ignoring the constant K) as,

V0(r, φ) =
I

2πσ

⎧⎨
⎩

∑∞
n=1

1
n

(
r
b

)n
cos nφ − ln b, r < b,∑∞

n=1
1
n

(
b
r

)n
cos nφ − ln r, r > b.

(3)

The hole perturbs the potential V0 by the addition of potential V1. This correction to
the potential vanishes for large r, is finite at r = 0, and is independent of angle φ. Hence,
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we can write (ignoring the constant term in the potential),

V1(r, φ) =

⎧⎨
⎩

∑∞
n=1 An

(
r
a

)n
cosnφ, r < a,∑∞

n=1 An

(
a
r

)n
cosnφ, r > a.

(4)

The radial component of the (steady) current density is continuous across the boundary
r = a, which implies that the radial component of the electric field obeys σEr(r = a+) =
σ′Er(r = a−), where σ′ is the electrical conductivity of the material at r < a.1 This constrains
the radial derivative of the potential at r = a,

σ
∂V (r = a+)

∂r
= σ

I

2πσ

∞∑
n=1

1

a

(a

b

)n

cos nφ − σ
∞∑

n=1

n

a
An cos nφ

= σ′∂V (r = a−)

∂r
= σ′ I

2πσ

∞∑
n=1

1

a

(a

b

)n

cos nφ + σ′
∞∑

n=1

n

a
An cos nφ (5)

using the forms (3)-(4). Hence, the Fourier coefficients An are given by,

An =
σ − σ′

σ + σ′
I

2nπσ

(a

b

)n

. (6)

The potential V1 is therefore given by,

V1(r, φ) =
σ − σ′

σ + σ′
I

2πσ

⎧⎨
⎩

∑∞
n=1

1
n

(
r
b

)n
cos nφ, r < a,∑∞

n=1
1
n

(
a2/b

r

)n

cosnφ, r > a.
(7)

In particular, on the rim of the hole (as well as inside the hole) the potential V1 is given by,

V1(r ≤ a, φ) =
σ − σ′

σ + σ′V0(r ≤ a, φ) +
σ − σ′

σ + σ′
I

2πσ
ln b, (8)

and so,

V (r ≤ a, φ) =
2σ

σ + σ′V0(r ≤ a, φ) − 2σ′

σ + σ′
I

2πσ
ln b. (9)

Hence, the potential difference between any two points on the rim of the hole (or within the
hole) is 2σ/(σ + σ′) times that in the absence of the hole. If σ′ = 0 then potential difference
is twice that in the absence of the hole.

Inside the hole, the functional form of the potential is that same (to within an additive
constant) as that in its absence, so the equipotentials are circles centered on point p. Hence,
the electric field lines (and lines of current density J = σ′E) for r < a radiate from point
p. Since the electric field is not continuous at r = a, there must be a distribution of fixed
charges along the rim to support the field lines that cross the hole.

1If σ′ = 0 then the radial electric field vanishes at r = a+, while Er can be nonzero for r < a.
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The potential and fields within the sheet at r > a can be understood via an image model
with a source and a sink at r < a. From eq. (3) we can write,

V1(r > a, φ) =
I

2πσ

[ ∞∑
n=1

1

n

(
a2/b

r

)n

cos nφ − ln r

]
+

I

2πσ
ln r. (10)

Comparing with eq. (3) for r > b, we see that the potential V1(r > a) can be thought of a due
to a current source located at point p′ = (a2/b, 0) in a conducting sheet with no hole, plus
a current sink at the origin. The image source and sink have magnitudes (σ − σ′)/(σ + σ′)
that of the current source at point p. The electric field at an arbitrary point at r > a is
therefore given by,

E(r > a) =
I

2πσ

(
ρ̂

ρ
+

σ − σ′

σ + σ′
ρ̂′

ρ′ −
σ − σ′

σ + σ′
r̂

r

)
, (11)

where ρ̂′ is the unit vector along the line from point p′ to the arbitrary point, and ρ′ is the
distance between these two points.2

2.1 Solution Using Eq. (2) Rather Than (3)

If we did not recall the expansion (3) of the logarithmic potential (2), we could evaluate the
constraint (5) at the rim of the hole as,

0 = Er(r = a+) = −∂V (r = a+)

∂r
=

I

2πσ

a − b cosφ

a2 + b2 − 2ab cosφ
+

∞∑
n=1

n

a
An cos nφ. (12)

The Fourier coefficients An are then given by,

An = − aI

2nπ2σ

∫ 2π

0

a − b cos θ

a2 + b2 − 2ab cos φ
cos nθ dφ

= − I

nπ2σ

a2

a2 + b2

∫ π

0

cos nθ − b
2a

cos(n + 1)φ − b
2a

cos(n − 1)φ

1 − 2ab
a2+b2

cos θ
dφ

=
I

2nπσ

(a

b

)n

, (13)

using Dwight 858.536 [4], which tells us that for b > a,

∫ π

0

cos nφ

1 − 2ab
a2+b2

cos φ
dφ =

π√
1 − (

2ab
a2+b2

)2

⎛
⎝1 −

√
1 − (

2ab
a2+b2

)2

2ab
a2+b2

⎞
⎠

n

= π
b2 + a2

b2 − a2

(a

b

)n

. (14)

We now wish to show that the azimuthal electric field at r = a+ due to the potential V1

is the same as that due to potential V0, i.e.,

− ∂V0(a, φ)

∂φ
= −∂V1(a, φ)

∂φ
. (15)

2The solution found here is identical to that for a charged wire in vacuum outside a cylinder of (relative)
dielectric constant ε = σ′/σ. See sec. 2.2 of [3].
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From eq. (2) we have,

− ∂V0(a, φ)

∂φ
=

I

2πσ

b sinφ

a2 + b2 − 2ab cos φ
, (16)

and from eq. (4) we have,

− ∂φ1(a, φ)

∂φ
=

∞∑
n=0

n

a
An sinnφ. (17)

If eq. (15) is to be valid, eqs. (16) and (17) imply that the Fourier coefficients An can also
be calculated according to,

An =
aI

2nπ2σ

∫ 2π

0

b sin φ

a2 + b2 − 2ab cos φ
sinnφ dφ

=
I

2nπ2σ

ab

a2 + b2

∫ π

0

cos(n − 1)φ − cos(n + 1)φ

1 − 2ab
a2+b2

cosφ
dφ

=
I

2nπσ

(a

b

)n

. (18)

Since calculations (13) and (18) give the same results for An we again conclude that the
potential between any two points on the rim of the hole is twice that in its absence.

3 Three-Dimensional Version of the Problem

In a three-dimensional version of this problem the hole is a sphere of radius a centered on
the origin and the current enters at (r, θ, φ) = (b, 0, 0) in a spherical coordinate system. The
fields and potentials in this problem are independent of the azimuth φ.

In the absence of the hole, the current density J0 flows radially outward from point p.
Let ρ =

√
r2 + b2 − 2rb cos φ be the distance from point p to the point (r, θ, φ), and ρ̂ be a

unit vector pointing away from p. The current density J0 is now given by,

J0 =
I

4πρ2
ρ̂ = σE0 = −σ∇V0, (19)

where σ is the electrical conductivity of the medium outside the hole. Solving for the potential
V0, we find,

V0 =
I

4πσρ
+ K. (20)

Note that the potential V0 is the same as that due to a charge q = I/4πσ at point p.
Following sec. 5-2 of [1] or sec. 5.16 of [2], we can rewrite V0 (ignoring the constant K) as,

V0(r, θ) =
I

4πσb

⎧⎨
⎩

∑∞
n=1

(
r
b

)n
Pn(cos θ), r < b,∑∞

n=1

(
b
r

)n+1
Pn(cos θ), r > b.

(21)
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The hole perturbs the potential V0 by the addition of potential V1. This correction to
the potential vanishes for large r, is finite at r = 0, and is independent of angle φ. Hence,
we can write (ignoring the constant term in the potential),

V1(r, θ) =

⎧⎨
⎩

∑∞
n=1 An

(
r
a

)n
Pn(cos θ), r < a,∑∞

n=1 An

(
a
r

)n+1
Pn(cos θ), r > a.

(22)

The radial component of the (steady) current density is continuous across the boundary
r = a, which implies that the radial component of the electric field obeys σEr(r = a+) =
σ′Er(r = a−), where σ′ is the electrical conductivity of the material at r < a. This constrains
the radial derivative of the potential at r = a,

σ
∂V (r = a+)

∂r
= σ

I

4πσb

∞∑
n=1

n

a

(a

b

)n

Pn(cos θ) − σ

∞∑
n=1

n + 1

a
AnPn(cos θ)

= σ′∂V (r = a−)

∂r
= σ′ I

4πσb

∞∑
n=1

n

a

(a

b

)n

Pn(cos θ) + σ′
∞∑

n=1

n

a
AnPn(cos θ), (23)

using the forms (21)-(22). Hence, the Fourier coefficients An are given by,

An =
n(σ − σ′)

(n + 1)(σ + σ′)
I

4πσb

(a

b

)n

. (24)

The potential V1 is therefore given by,

V1(r, θ) =
(σ − σ′)I

4πσb

⎧⎨
⎩

∑∞
n=1

n
(n+1)(σ+σ′)

(
r
b

)n
Pn(cos θ), r < a,

b
a

∑∞
n=1

n
(n+1)(σ+σ′)

(
a2/b

r

)n+1

Pn(cos θ), r > a.
(25)

This completes a series expansion of the potential for arbitrary conductivity σ′ at r < a, but
the form of V1 does not admit interpetation via an image method.3
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