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Abstract

An everyday example of a nonholonomic mechanical system is a pencil rolling
on an inclined plane. Aspects of the motion are discussed in various approxi-
mations, of which the most realistic assumes rolling without sliding and that a
constant fraction of the pencil’s kinetic energy is retained after each collision
with the plane.

1 Introduction

The problem of the hexagonal pencil was drawn to the author’s attention by Amin Rezaee
Zadeh, who has performed experiments that demonstrate, for example, rolling motion of a
hollow plastic “pencil” whose faces have a width of 4 mm on planes with angles of inclination
as small as 2◦, leading to a terminal velocity of about 12 cm/s at the latter inclination. He
also observed that a “circular” pencil has a similar terminal velocity for rolling on a plane
of small inclination.

The existence of a terminal velocity indicates that this problem involves energy dissi-
pation, whether or not this is to be characterized as a kind of rolling friction. Also, the
existence of steady rolling for very small angles of inclination proves to be noteworthy.

If the angle θ of the inclined plane to the horizontal is too large, the pencil will slide
rather than roll. Indeed, if μ is the coefficient of static friction of the pencil on the plane,
then pure rolling can occur only for,

tan θ < μ. (1)

In practice, a mixture of rolling and sliding can be observed for inclinations larger than the
bound of eq. (1).

In the rest of this article we assume that pure rolling takes place, and that the pencil
never loses contact with the plane.

During one full revolution of the pencil each of its N edges serves in turn as the instan-
taneous axis of rotation. Thus, the pencil rotates by 1/N of a turn while any given edge
serves as the axis of rotation. For a sharp-edged pencil, the radius of curvature of an edge
is very small (compared to the width a of a face of the pencil), and rolling friction should
be negligible. However, at the end of each 1/N turn a face of the pencil collides with the
inclined plane, and energy will be lost during that collision. The pencil has an asymptotic
motion in which the potential energy gained as the pencil falls during each 1/N turn is lost
in the collision at the end of that turn.

We will see that the existence of a terminal velocity for “circular” pencils on planes of
small but finite inclination is not readily explained by supposing that a “circular” pencil
is the large-N limit of a structure with N faces and N sharp edges. Rather, the energy
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dissipation in case of a rolling circular pencil is of a different character than that of a rolling
hexagonal pencil.

The equation of motion of a sharp-edged pencil is simple, but it does not admit simple
analytic solutions, nor even simple approximations based on initial conditions. Examples of
the difficulties in integrating the equation of motion are given in the Appendix.

Section 2 gives a solution based on the assumption that energy dissipation in the collision
of a face of the pencil with the inclined plane can be described by a coefficient of (in)elasticity,
ε, which is the fraction of the pencil’s kinetic energy that is retained after a collision with the
plane. This approach introduces an unknown parameter, but appears to the author to be the
most appropriate simple description of a situation in which the elastic properties of materials
cannot be ignored. Section 3 discusses the rolling motion of circular pencils, in which it
appears more appropriate to consider a frictional torque that acts throughout the rotation.
Section 4 presents an elegant solution with no free parameters based on a problem from
the 1995 Boston Area Undergraduate Physics Competition [1] and the 1998 International
Physics Olympiad [2], which supposes (somewhat unrealistically) that the impulsive forces
during a collision of the pencil with the plane act entirely along one edge of the pencil, so
that angular momentum is conserved.

This problem is an extensive elaboration of considerations of impulsive motion given, for
example, by Routh [3].

2 Analysis for N = 6 via a Coefficient of (In)elasticity

If the plane has angle of inclination θ < π/6, the center of mass of a hexagonal pencil rises
during the first part of any 1/6 turn. Hence, the pencil will not roll down the plane from
rest unless θ > π/6.

2.1 θ > π/6

In this case a (sharp-edged) pencil rolls down the plane spontaneously from rest.1

The equation of motion of the rotating pencil is,

τ = Iα̈ = mga sinα, (2)

where, as shown in Fig. 1, α is the angle to the vertical of line from the instantaneous axis
of rotation of the pencil to its center of mass, a is the width of each of the six faces of the
pencil, m is the mass of the pencil, I is the moment of inertia of the pencil about an edge,
and g is the acceleration due to gravity. During each 1/6 turn,

θ − π/6 ≤ α ≤ θ + π/6. (3)

The equation of motion (2) is a so-called Mathieu equation, which does not lend itself to
analytic solution. Instead, we use an energy analysis to estimate the asymptotic linear and
angular velocity of the rolling pencil.

1Typical hexagonal pencils have rounded edges such that spontaneous rolling commences for θ ≈ π/9.
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Figure 1: A hexagonal pencil whose edges have width a rolling about a
temporarily fixed edge on a plane of inclination θ to the horizontal. The
plane containing the axis of the pencil and the instantaneous axis of rotation
makes angle α to the vertical.

During each 1/6 turn, the center of mass of the pencil falls by height a sin θ, as shown in
Fig. 2. Thus, gravity adds energy,

ΔE = mga sin θ (4)

to the pencil each 1/6 turn.

Figure 2: The center of mass of a hexagonal pencil falls through height a sin θ
during each 1/6 turn, where a is the width of a face of the pencil. For an
N -sided pencil whose faces have width b, the center of mass falls by b sin θ
during each 1/N turn.

At the end of each 1/6 turn, the pencil collides with the surface of the inclined plane.
Let ε (0 ≤ ε ≤ 1) be the coefficient of (in)elasticity for this collision, meaning that if the
pencil has kinetic energy E just before a collision, it has kinetic energy εE just after the
collision. The parameter ε is essentially the square of the coefficient of restitution defined
for one-dimensional collisions.

Then, at the beginning of the second 1/6 turn, the pencil has kinetic energy E2 = εΔE,
assuming that the pencil starts from rest. By induction, the energy at the beginning of the
third 1/6 turn is E3 = ε(ε +1)ΔE = (ε2 + ε)ΔE, and the energy at the beginning of the nth
1/6 turn is,

En = εΔE(1 + ε + ε2 + ... + εn−2) = εΔE
1 − εn−1

1 − ε
. (5)
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For any value of ε less than one, the kinetic energy of the pencil at the beginning of a
1/6 turn approaches the asymptotic value,

E∞ =
ε

1 − ε
ΔE. (6)

Hence, the kinetic energy at the end of each 1/6 turn approaches the value,

E ′
∞ = E∞ + ΔE =

1

1 − ε
ΔE. (7)

The asymptotic time-average linear velocity 〈v∞〉 of the pencil is related to the asymptotic
time-average angular velocity 〈ω∞〉 by noting that the pencil advances distance 6a during
one full turn whose period is 2π/ 〈ω∞〉,

〈v∞〉 =
3

π
a 〈ω∞〉 . (8)

The asymptotic time-average angular velocity is related to the asymptotic time-average
kinetic energy of the pencil by,

1

2
I 〈ω∞〉2 = 〈E∞〉 (9)

where I = kma2 is the moment of inertia of a hexagonal pencil about an edge,

k =
17

12
(solid hexagon), k =

11

6
(hexagonal shell). (10)

One way to estimate the time-average asymptotic kinetic energy is to replace the average
over time by an average over angle α,

〈E∞〉 ≈ E∞+
3

π

∫ θ+π/6

θ−π/6

mga[cos(θ−π/6)−cos α] dα =
mga

2

[
1 + ε

1 − ε
sin θ −

(
6

π
−

√
3

)
cos θ

]
,

(11)
recalling Fig. 1. This analysis suggests that there is a minimum angle θmin for steady rolling
given by,

tan θmin =
1 − ε

1 + ε

(
6

π
−

√
3

)
= 0.178

1 − ε

1 + ε
. (12)

The empirical evidence that steady rolling can exist for very small θ suggests that the
coefficient of (in)elasticity ε is close to unity. However, we will find a slightly more restrictive
limit on θmin in sec. 2.2.

Combining eqs. (8), (9) and (11) we estimate the asymptotic linear velocity to be,

〈v∞〉 =
3

π
a 〈ω∞〉 ≈ 3

π

√
ag

k

√
1 + ε

1 − ε
sin θ − 0.178 cos θ, (13)

which vanishes for θ = θmin.
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Figure 3: When a hexagonal pencil is at rest on a plane whose inclination is
θ < π/6, the center of mass of the pencil is at height a cos[π/2 − (θ + π/3)] =
a cos(π/6 − θ) above its lowest point.

2.2 θ < π/6

In this case the pencil will not roll unless it is given an initial kinetic energy,

E1 > mga[1− cos(π/6 − θ)], (14)

such that the center of mass of the pencil can rise to the vertical during the first 1/6 turn,
as shown in Fig. 3.

The pencil will not continue to roll through a second 1/6 turn unless sufficient energy
remains after its collision with the plane. That is, we need the energy at the beginning of
the second 1/6 turn to satisfy,

E2 = ε(E1 + ΔE) > mga[1 − cos(π/6 − θ)]. (15)

Similarly, the energy at the beginning of the nth 1/6 turn must satisfy,

En = εn−1E1 + εΔE
1 − εn−1

1 − ε
> mga[1− cos(π/6 − θ)], (16)

recalling the argument that led to eq. (5). The asymptotic condition is that,

ε

1 − ε
ΔE =

ε

1 − ε
mga sin θ > mga[1 − cos(π/6 − θ)], (17)

or,

ε >
1

1 + sin θ
1−cos(π/6−θ)

. (18)

For small θ we must have,

ε >
1

1 + θ
1−√

3/2

≈ 1

1 + 7.46 θ
. (19)

The value of ε can be determined from eq. (18), taken as an equality for the smallest
angle of inclination θmin at which the pencil continues to roll after being given an initial
velocity. This leads to the relation,

tan θmin =
1 − ε

1 + ε

(
2

cos θmin
−

√
3

)
≈ 0.268

1 − ε

1 + ε
, (20)
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where the approximation holds for small θmin. This relation implies larger values of θmin

than given by our previous estimate (12).
If conditions (14) and (19) are both satisfied, then the energetics of the asymptotic

rolling motion of the pencil are again described by eqs. (4)-(9), and we can again estimate
the asymptotic linear velocity of rolling by eq. (13). In particular, the smallest asymptotic
velocity occurs for a plane of inclination θmin, and we estimate,

〈v∞〉min ≈ 1.1

π

√
ag

k

√
cos θmin ≈ 1.1

π

√
ag

k
, (21)

which is essentially independent of the parameter ε.
For a hollow pencil with faces of length a = 4 mm, eq. (21) predicts an asymptotic rolling

velocity of 5 cm/s.

2.3 Will the Pencil Lose Contact with the Plane?

If the normal force of the inclined plane on the pencil goes to zero, the pencil will lose contact
with the plane.2 The limiting case is that the component mg cos θ of the force of gravity
perpendicular to the plane is just sufficient to provide the acceleration of the center of mass
of the pencil in this direction. Since the perpendicular distance of the center of mass from
the plane is a cos(α − θ), as shown in Fig. 4, the acceleration of the center of mass towards
the plane is,

aα̈ cos(α − θ) =
mga2

I
sinα cos(α − θ) =

g

k
sin α cos(α − θ), (22)

recalling eq. (2).
The limiting condition is that, at the maximum angle θmax of inclination for rolling

without slipping, m times the acceleration (22) equals the normal component of mg, or,

k cos θmax = sinα cos(α − θmax). (23)

Since angle α is never far from θ, the condition (23) is roughly that,

tan θmax ≈ k, (24)

which is weaker than the condition (1), tan θ < μ, for realistic values of the coefficient of
static friction μ.

3 The Large-N Limit (“Circular” Pencil)

Suppose the pencil has N sides, where N is large. In this case, the effective radius of
curvature of an edge becomes large compared to the width of a face, and rolling friction
becomes more important that collisional energy loss.

Nonetheless, we first suppose that rolling friction can be neglected.

2In [1] it is argued that the pencil will lose contact with the plane if the force of gravity on the pencil is
insufficient to provide the centripetal acceleration of the center of mass of the pencil about the instantaneous
axis of rotation. However, the frictional force parallel to the plane that acts on this axis to keep the pencil
from slipping also contributes to the centripetal force, so the argument of [1] does not hold.
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Figure 4: When the radius of length a of the pencil makes angle α to the
vertical, the perpendicular distance from the center of mass to the inclined
plane is a cos(α − θ).

3.1 Analysis Neglecting Rolling Friction

Then, so long as the angle of inclination obeys θ > π/N , the pencil will roll spontaneously
from rest. In the large-N limit, the pencil always rolls spontaneously from rest, so we use
an analysis similar to that of sec. 2 to deduce the asymptotic rolling motion.

If the radius of the pencil is a, then the width of each of the N faces of the pencil is
approximately 2πa/N .

During each 1/N turn, the center of mass of the pencil falls by height (2π/N)a sin θ.
Hence, the kinetic energy of the pencil increases by,

ΔE =
2π

N
mga sin θ. (25)

As in sec. 2.1, we find that the asymptotic energies at the beginning and end of each 1/N
turn are,

E∞ =
ε

1 − ε
ΔE, and E ′

∞ =
1

1 − ε
ΔE. (26)

Again, we estimate the asymptotic time-average kinetic energy as the average with respect
to angle α according to,

1

2
I 〈ω∞〉2 = 〈E∞〉 ≈ E∞ +

N

2π

∫ θ+π/N

θ−π/N

mga[cos(θ − π/N) − cos α] dα ≈ 2π

N

mga

2

1 + ε

1 − ε
sin θ,

(27)
where I = kma2 with k ≈ 3/2 for a solid pencil and k ≈ 2 for a pencil in the form of a
hollow shell. The asymptotic linear velocity 〈v∞〉 of the pencil is,

〈v∞〉 = a 〈ω∞〉 =

√
2a2 〈E∞〉

I
≈

√
2πag

Nk

√
1 + ε

1 − ε
sin θ. (28)

If the coefficient of restitution ε has a value less than 1 independent of N (a doubtful
assumption), our model predicts that the pencil rolls very slowly in the large-N limit. On
the other hand, if ε = 1, there is no finite asymptotic velocity to the rolling motion.

7



In practice, the rolling motion of a “circular” pencil on an inclined plane appears to have
a finite asymptotic velocity. This suggests that our neglect of rolling friction is inappropriate
for this case.

3.2 Analysis Including Rolling Friction and Neglecting Collisional

Losses

While the pencil is rotating about one of its N edges, there is in general a frictional torque
τ friction = −Kωp ≈ −Kvp/ap ≡ −Cvp that we have neglected thus far, where p is a constant
in the range 1-2. Adding this to the equation of motion (1), and noting that in the large-N
limit the angle α is essentially the same as angle θ at all times, we have,

Iα̈ = mga sinα −Kωp ≈ mga sin θ − Cvp. (29)

If we neglect collisional energy losses at the end of each 1/N turn, then the terminal velocity
of the pencil according to eq. (29) is,

〈v∞〉 =

(
mga sin θ

C

)1/p

. (30)

This result is much more satisfactory than eq. (28), and indicates that rolling friction is
important for a “circular” pencil, while collisional energy losses are important for a hexagonal
pencil.

4 Analysis Assuming the Impulse Acts Only Along the

Edge Newly in Contact with the Plane

This assumption was used in [1], but in an inconsistent manner. A more consistent analysis
was given in [2].

4.1 Asymptotic Velocities at the Beginning and End of a 1/N Turn

If the pencil has N faces, then the angle between adjacent major radii is β = 2π/N , as
shown in Fig. 5. If a major radius has length a, then the width of a face is b = 2a sin(β/2) =
2a sin(π/N).

At the end of a 1/N turn the center of mass of the pencil has velocity vector v perpendic-
ular to the major radius from the center of mass to the edge that is the (old) instantaneous
axis of rotation, as shown in Fig. 6. As the face of the pencil collides with the plane the
instantaneous axis shifts to the adjacent major radius, and an impulsive force is exerted over
the colliding face.

An idealization is that this impulsive force is concentrated along the edge that becomes
the new instantaneous axis. This assumption is not too plausible, but it leads to an analysis
that has no free parameters (for given a and N of the pencil and angle of inclination θ).

Since the impulsive force acts by assumption only on the new axis of rotation, angular
momentum L is conserved about this axis. If we label the velocity of the center of mass
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Figure 5: A pencil with N faces and major radius a has faces of width
b = 2a sin(π/N).

Figure 6: Just before a collision of the pencil with the plane, the center-of-
mass velocity v is perpendicular to the radius to the old instantaneous axis
of motion. Vector v⊥ is the component of v perpendicular to the new axis
of rotation. The momentum impulse P, assumed to occur at the new axis of
rotation, has component P‖ along the radius that intercepts this axis.

just after the collision as v′ = aω′, then the angular momentum just after the collision is
L′ = Iω′, where I = kma2 is the moment of inertia of the pencil about an edge, and,

ksolid =
7

6
+

1

3
cos2 π

N
, kshell =

2

3

(
2 + cos2 π

N

)
. (31)

For a hexagonal pencil, ksolid = 17/12 and kshell = 11/6, while in the large-N limit, ksolid =
3/2 and kshell = 2 as expected.

Just before the collision the angular momentum about the new axis is calculated as the
sum of the angular momentum about the axis of the pencil plus the angular momentum of
the motion of the center of mass about the new axis. If v = aω is the velocity of the center
of mass just before the collision, the component of this velocity transverse to the new axis is
v⊥ = v cos β = aω cosβ. The moment of inertia of the pencil about its axis is ICM = I−ma2

using the parallel-axis theorem. Hence, the angular momentum of the pencil about the new
axis just before the collision is,

L = ICMω + mav⊥ = (k − 1 + cos β)ma2ω = L′ = kma2ω′, (32)

invoking conservation of angular momentum about the new axis. Thus,

ω′

ω
=

v′

v
=

k − 1 + cosβ

k
= 1 − 1 − cos 2π

N

k
. (33)
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For example, ω′/ω = 11/17 for a solid hexagonal pencil (cosβ = 1/2), ω′/ω = 8/11 for
a hollow hexagonal pencil, and ω′/ω = 1 in the limit of a circular pencil whether solid or
hollow.

We can confirm the result (33) by an analysis that includes the impulse on the edge newly
in contact with the inclined plane. As shown in Fig. 6, we let P‖ be the component of the
impulse along the line from the edge to the axis of the pencil, and P⊥ be the component
transverse to this line. The changes in linear momentum of the pencil caused by these
impulses are,

P‖ = mv sinβ = maω sin β, (34)

P⊥ = mv cosβ −mv′ = ma(ω cos β − ω′), (35)

while the change in angular momentum about the axis of the pencil is given by

(k − 1)ma2(ω − ω′) = ICM (ω − ω′) = −aP⊥ = ma2(ω′ − ω cos β), (36)

which leads again to eq. (33).
The solution given in [1] seems to be based on the assumption that P⊥ = 0, in which

case eq. (35) implies that ω′ = ω cos β, as claimed there. However, this assumption is
inconsistent with conservation of angular momentum about the edge newly in contact with
the plane (eqs. (32)-(33)), and also inconsistent with the torque analysis (36) about the axis
of the pencil.

The kinetic energy lost in the collision is given by,

ΔE =
1

2
I(ω2 − ω′2) =

kmv2

2

(
1 − ω′2

ω2

)
, (37)

where v is the velocity of the center of mass of the pencil just before the collision. In the
large-N limit where ω′ = ω, no energy is lost during the collision.

During each 1/N turn the center of mass of the pencil falls by height h = b sin θ, recalling
Fig. 2, and gravitational potential energy mgh is converted into kinetic energy. The asymp-
totic condition is that the potential energy gained during each 1/N turn equals the kinetic
energy lost during the collision at the end of that turn.

The asymptotic velocity ve of the center of mass at the end of a 1/N turn is given by,

mgb sin θ = ΔE =
kmv2

e

2

(
1 − ω′2

ω2

)
. (38)

or,

v2
e =

4ag

k

sin π
N

1 − ω′2/ω2
sin θ. (39)

Since ΔE → 0 in the large-N limit, there is no finite asymptotic velocity for any nonzero
value of the inclination θ in this limit.

The asymptotic velocity vb of the center of mass at the beginning of a 1/N turn is the
same as the asymptotic velocity just after a collision,

v2
b = v2

e

ω′2

ω2
=

4ag

k

ω′2
ω2 sin π

N

1 − ω′2/ω2
sin θ. (40)
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4.2 Asymptotic Average Linear Velocity

We now estimate the asymptotic average linear velocity 〈v∞〉 of the pencil parallel to the
inclined plane.

If the angle of inclination obeys θ < β/2 = π/N , then the center of mass of the pencil
first rises and then falls during a 1/N turn, and hence the center-of-mass velocity first falls
below vb and then rises to ve. In contrast, if θ > β/2, then the center of mass always falls
and the velocity of the center of mass increases monotonically with time from vb to ve.

4.2.1 θ > π/N

In this case the center of mass velocity increases monotonically during a 1/N turn, and we
estimate the asymptotic average velocity 〈v∞〉 parallel to the inclined plane as,

〈
v2
∞

〉 ≈ v2
b + v2

e

2
=

2ag

k

1 + ω′2/ω2

1 − ω′2/ω2
sin

π

N
sin θ, (41)

recalling eqs. (39) and (40).
In the large-N limit no energy is lost during collisions according to the model of this

section, so the asymptotic average velocity diverges, in contrast to the predictions of the
models of secs. 2 and 3.

4.2.2 θ < π/N

In this case the pencil has minimum angular velocity when angle α = 0 and the center of
mass is directly above the point of contact.

The dependence of angular velocity ω on angle α can be found from conservation of
energy. Noting that the angle αe at the end of a 1/N turn is,

αe = θ +
β

2
= θ +

π

N
, (42)

we have,
1

2
Iω2(α) =

1

2
Iω2

e −mga(cosα − cosαe), (43)

or,

ω2(α) = ω2
e −

2g

ak
(cosα − cos αe). (44)

Thus, the minimum angular velocity follows from eq. (44) as,

ω2
min = ω2

e −
2g

ak
(1 − cos αe). (45)
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The minimum angle θmin of inclination such that asymptotic rolling motion can exist corre-
sponds to ωmin = 0 and follows from eqs. (39), (42) and (45) as,

sin θmin =
1 − ω′2/ω2

2 sin π
N

[
1 − cos

(
θmin +

π

N

)]
. (46)

In the large-N limit θmin ≈ (π/N)3, which is negligible. For a hexagonal pencil (N = 6),
eq. (46) leads to the relation,

1 −
(

4k2

4k − 1
− 1

2

)
sin θmin =

√
3

2
cos θmin, (47)

or,
θmin = 6.6◦ (solid hexagon), θmin = 4.8◦ (hollow hexagon), (48)

The result (48) tells us that the present analysis is not a good approximation to the motion
of real pencils, which exhibit asymptotic rolling motion even for angles of inclination as little
as 2◦.

Nonetheless, we complete the analysis by supposing that θmin < θ < π/N , for which we
estimate the average asymptotic angular velocity 〈ω∞〉 as,

〈
ω2
∞

〉 ≈ ω2
min + ω2

e + ω2
b

3
=

2g

3ak

[
2
2 + ω′2/ω2

1 − ω′2/ω2
sin

π

N
sin θ + cos

(
θ +

π

N

)
− 1

]
. (49)

During one full turn the pencil advances distance Nb along the plane, so,

〈v∞〉 =
Nb

T∞
=

Nb 〈ω∞〉
2π

=
N

π
sin

π

N
a 〈ω∞〉 , (50)

and our estimate of the asymptotic average linear velocity is,

〈v∞〉 ≈ N

π
sin

π

N

√
2ag

3k

[
2
2 + ω′2/ω2

1 − ω′2/ω2
sin

π

N
sin θ + cos

(
θ +

π

N

)
− 1

]
. (51)

For a hexagonal pencil, we find,

〈v∞〉 ≈ 3

π

√
2ag

3k

[
12k2 − 4k + 1

4k − 1
sin θ + cos

(
θ +

π

6

)
− 1

]
(hexagonal pencil). (52)

5 Summary

Observations of asymptotic rolling of a hexagonal pencil on inclined planes of angles as small
at 2◦ to the horizontal are not consistent with the model (sec. 4) that angular momentum
is conserved in the collisions of the pencil with the plane. A better model (sec. 2) is that a
constant fraction ε of the pencil’s kinetic energy is retained after each collision. This model
indicates that ε ≈ 0.8 for the pencil that could still roll down a 2◦ plane. However, the model
of nearly elastic collision of the pencil with the plane does not predict a finite asymptotic
velocity for rolling of a “circular” pencil; rather rolling friction limits the velocity in this case
(sec. 3).
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6 Appendix: Approximate Solution to the Equation of

Motion of a Hexagonal Pencil for Small θ

If we knew the period T∞ of a 1/6 turn during the asymptotic rolling motion, we could
calculate the asymptotic linear velocity according to,

〈v∞〉 =
a

T∞
, (53)

since the pencil advances distance a along the incline during each 1/6 turn. Here, we estimate
the period T∞ via various approximate solutions to the equation of motion (2). However,
these estimates are not better than eq. (13) which was obtained by the energy method.

The largest value of angle α during a 1/6 turn is π/6+θ, so the approximation sinα ≈ α is
still reasonably valid for small θ (< π/6). Hence, the equation of motion (2) is approximately,

Iα̈ = kma2α̈ = mga sinα ≈ mgaα, (θ 	 1) (54)

and we obtain the approximate solution,

α ≈ Ae
√

g/ka t + Be−
√

g/ka t = (A + B) cosh

√
g

ka
t + (A − B) sinh

√
g

ka
t. (55)

The constants A and B can be determined from the initial conditions. We define time t = 0
to be the beginning of a 1/6 turn, so,

α(0) = A + B = θ − π

6
. (56)

The angular velocity at the beginning of a 1/6 turn is,

ω(0) = α̇(0) =

√
g

ka
(A − B). (57)

This varies from turn to turn, so the integration of the equation of motion must be supple-
mented by a model of the collision as the end of each 1/6 turn.

In the rest of this Appendix we restrict our attention to the asymptotic rolling motion,
for which in the model of sec. 2,

ω∞(0) =

√
2E∞

I
=

√
g

ka

√
2ε sin θ

1 − ε
. (58)

recalling eqs. (4) and (6). Thus,

A − B =

√
2ε sin θ

1 − ε
, (59)

and,

α ≈
(
θ − π

6

)
cosh

√
g

ka
t +

√
2ε sin θ

1 − ε
sinh

√
g

ka
t (60)

13



The asymptotic period T∞ of a 1/6 turn, which ends with α = θ + π/6, is related by
eq. (60) as, √

2ε sin θ

1 − ε
sinh

√
g

ka
T∞ ≈ π

6

(
1 + cosh

√
g

ka
T∞

)
, (61)

or,

tanh

√
g

ka

T∞
2

≈ π

6

√
1 − ε

2ε sin θ
, (62)

where we suppose that θ 	 π/6.
If we also use the approximation of eq. (20) that 2ε sin θmin/(1− ε) ≈ 0.27, then we have,

tanh

√
g

ka

T∞,max

2
≈ 1, (63)

which provides no meaningful estimate of T∞,max for rolling motion on a plane of minimal
inclination θmin.

We actually do better to use only the first-order approximation that tanh x = x, for
which eq. (62) implies,

T∞ ≈ π

3

√
ka

g

√
1 − ε

2ε sin θ
, (64)

and hence,

〈v∞〉 =
a

T∞
=

3

π

√
ag

k

√
2ε sin θ

1 − ε
. (65)

In sum, it appears that estimates of the asymptotic rolling velocity of a hexagonal pencil
based on integration of its equation of motion are not superior to those given in sec. 2.
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