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1 Problem

Discuss the frequency of small oscillations of a simple pendulum in orbit, say, about the
Earth, supposing that the point of support of the pendulum is much more massive than the
bob of the pendulum, and the support point is in a circular orbit.

2 Solution

The support point is taken to be at radius R from the center of the (spherical) Earth whose
mass is M . Then, this point moves with angular velocity Ω =

√
GM/R3 =

√
g/R with

respect to an inertial frame which the center of the Earth is at rest, where g = GM/R2 is
the acceleration due to gravity at radius R.1

We are perhaps most interested in the motion as would be reported by an observer at the
point of support of the pendulum, so we work in a rotating frame, centered on the Earth,
whose angular velocity is Ω, which is perpendicular to the plane of the orbit of the support
point. Of course, the support point is at rest in this frame.

We use a rectangular coordinate system centered on the support point (O in the figure
above, from [1]), with the z-axis along the vector R from the center of the Earth to the

1Note that the angular velocity of small oscillations of a pendulum of length l is ω =
√

g/l if its support
point is at rest in an inertial frame with acceleration g due to gravity.
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support point, and the x-axis in the plane of the orbit of the latter. Then, the angular
velocity of the rotating frame is Ω = Ω ŷ.

The (simple) pendulum has length l and a bob of mass m, and is at position x = (x, y, z)
where x2 + y2 + z2 = l2. The distance from the center of the Earth to the bob is,

xE = R + x = (x, y, z + R), xE ≈ R + z. (1)

The forces in the rotating frame on the bob are that due to gravity,

− GMmxE

x3
E

= −m Ω2R3xE

x3
E

≈ − m Ω2xE

(1 + z/R)3
≈ −m Ω2

(
1 − 3z

R

)
(x x̂ + y ŷ + R(1 + z/R) ẑ)

≈ −m Ω2(x x̂ + y ŷ + (R − 2z) ẑ), (2)

to the centrifugal force,

− mΩ× (Ω× xE) = m Ω2[x x̂ + (R + z) ẑ], (3)

to the Coriolis force,

2mΩ × ẋ = 2m Ω(ż x̂− ẋ ẑ), (4)

and to the tension T = −Tx in the massless rod/string of the pendulum.
To avoid need for knowledge of the constraint force T, we consider the torque, τ =

x ×Ftotal, and angular momentum, L = x ×mẋ of the bob, about the support point,

dL

dt
= mx× ẍ = m[(yz̈ − zÿ) x̂ + (zẍ − xz̈) ŷ + (xÿ − yẍ) ẑ]

= τ = x × m[−Ω2y ŷ + 3Ω2z ẑ + 2Ω(ż x̂ − ẋ ẑ) − T x̂]

= m[Ω2(yz x̂− xy ẑ) + 3Ω2(yz x̂ − xz ŷ) − 2Ω(yẋ x̂ + (xẋ − zż) ŷ + yż ẑ)]. (5)

Hence, the equations of motion can be written as,

yz̈ − zÿ = 4Ω2yz − 2Ω yẋ, (6)

zẍ− xz̈ = −3Ω2xz − 2Ω(xẋ − zż), (7)

xÿ − yẍ = −Ω2xy − 2Ω yż. (8)

The conditions for equilibrium, at which all time derivatives vanish, are xy = yz = xz = 0.
These are satisfied at the six locations (±l, 0, 0), (0,±l, 0) and (0, 0,±l) of the bob, as shown
in the figure on p. 1.

2.1 The Equilibria at (±l, 0, 0) are Unstable

For motion near these equilibrium points, both ẋ and ẍ are small.
For motion in the x-y plane (with z = 0), eq. (8) implies that ÿ = −Ω2y, so small

oscillations can exist in y.
However, for motion in the x-z plane (with y = 0), eq. (7) implies that z̈ = 4Ω2z, so any

small perturbation in z would grow exponentially with time.
Hence, these equilibria are unstable.
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2.2 The Equilibria at (0,±l, 0) are Unstable

For motion near these equilibrium points, both ẏ and ÿ are small.
For motion in the x-y plane (with z = 0), eq. (8) implies that ẍ = Ω2x, so any small

perturbation in x would grow exponentially with time.
For motion in the y-z plane (with x = 0), eq. (6) implies that z̈ = 4Ω2z, so any small

perturbation in z would grow exponentially with time.
Hence, these equilibria are unstable.

2.3 The Equilibria at (0, 0,±l) are Stable

For motion near these equilibrium points, both ż and z̈ are small.
For motion in the x-z plane (with y = 0), eq. (7) implies that ẍ = −3Ω2x,2 so small

oscillations in x can exist with angular frequency ωxz =
√

3Ω =
√

3g/R .

For motion in the y-z plane (with x = 0), eq. (6) implies that ÿ = −4Ω2y, so small

oscillations in y can exist with angular frequency ωyz = 2Ω = 2
√

g/R .

That the two frequencies ωxz and ωyz are different is a consequence of the different
symmetries of the gravitational and centrifugal forces; the former is spherically symmetric
while the latter is axially symmetric (about y).

The periods 2π/
√

3Ω and π/Ω of these oscillations are independent of the length l of the
pendulum, and are of the same order as the period 2π/Ω (≈ 90 min) of the (low-Earth-)
orbital motion.3 Hence, astronauts in a space station would tend to say that a pendulum
does not oscillate (according to their expectations of period 2π

√
l/g =

√
l/R 2π/Ω ≈ 1 s

from experience on Earth).4

The equations of motion for oscillations in the x-z or y-z planes have no terms (at first
order in ẋ or ẏ) associated with the Coriolis force, so the small oscillations of a pendulum
in orbit do not exhibit the precession first discussed by Foucault [3]. However, since the
frequencies of oscillation in x-z and y-z planes are incommensurate, the general motion of
the pendulum over long times would be considered as “chaotic” by an astronaut, even for
small oscillations (unless the oscillation were purely in the x-z or in the y-z planes).

A Appendix: Shorter Derivation of Motion in the Plane

of the Orbit of the Support Point

A somewhat briefer derivation was given in Appendix 17 of [4], using conservation of energy,
E = T + V , to deduce the motion in the plane of the orbit of the support point from the
time derivative Ė = Ṫ + V̇ = 0.

2There is also a second-order, Coriolis term 2Ω(ż −xẋ/l) that we neglect for small oscillations in the x-z
plane about (0, 0,±l).

3These results agree with those found in [1], where a clever variant of Lagrange’s method was employed
using a Lagrange multiplier, considering the relation x2 +y2 +z2 = l2 to be a constraint. Lagrange’s method
was also used in [2], for spherical coordinates.

4See, for example, https://www.quora.com/Would-a-pendulum-swing-in-orbit.
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The potential energy V of the bob of mass m at distance r from the center of the Earth
is, in the rotating frame where the centrifugal can be related to the centrifugal potential,5

V = −GMm

r
− m(Ω× r)2

2
≈ −mΩ2

(
r2

2
+

R3

r

)
, V̇ ≈ −mΩ2ṙ

(
r − R3

r2

)
, (9)

where the approximation holds for a pendulum of length l � R.
Anticipating that the pendulum might oscillate about the “vertical” from the center of

the Earth to the support point, we use a spherical coordinate system (ρ, θ, φ) (in the rotating
frame) whose origin is at the support point, whose z-axis points away from the center of
the Earth, and with φ = 0 and π in the plane of the orbit of the support point. Then, the
kinetic energy of the bob of the pendulum of length l is,

T =
ml2

2
(θ̇

2
+ φ̇

2
sin2 θ), Ṫ = ml2(θ̇θ̈ + φ̇φ̈ sin2 θ + φ̇

2
θ̇ sin 2θ). (10)

Furthermore, to a very good approximation, r = R + l cos θ, so ṙ = −lθ̇ sin θ, and,

V̇ ≈ mΩ2Rlθ̇ sin θ

{
1 + (l/R) cos θ +

1

[1 + (l/R) cos θ]2

}
≈ 3mΩ2l2 sin θ cos θ. (11)

Then, for motion in the plane of the orbit of the support point, φ̇ = 0,

0 = Ṫ + V̇ = ml2θ̇(θ̈ + 3Ω2 sin θ cos θ). (12)

For θ = ε or π + ε and small ε, we have that,

0 ≈ ε̈ + 3Ω2ε. (13)

The the angular velocity of small oscillations of the pendulum in the plane of the orbit of the
support point, about either θ = 0 or π, is

√
3Ω =

√
3g/R, as found previously in sec. 2.3.

Note how eq. (12) also shows that θ = π and 3π/2 correspond to the unstable equilibria
of sec. 2.1.
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