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1 Problem

Discuss the magnetic field outside, and the currents on the surface, of a perfectly conducting
cylinder that is in an external, static magnetic field which, in the absence of the cylinder, is
uniform and perpendicular to the axis of the cylinder.

Consider also the case that the cylinder has uniform velocity v � c perpendicular to
its axis and to the direction of the external magnetic field, where c is the speed of light in
vacuum. Discuss the flow of energy in a dynamo based on a perfectly conducting cylinder
that slides on a U-shaped track in a transverse magnetic field.

2 Solution

This problem is similar to that of a perfectly conducting cylinder in a uniform, static electric
field. Outside the cylinder, (and inside the sources of the external, static electric and mag-
netic fields E and B), we have that ∇ × E = 0 = ∇ × B, so the fields outside the cylinder
(or radius a) can be derived from a scalar potential Φ,

B(r > a) = −∇ΦB, E(r > a) = −∇ΦE , (1)

in a cylindrical coordinate system (r, θ, z) with the z-axis being that of the cylinder. Of
course, ∇×E = 0 everywhere for a static electric field, while at the surface of the perfectly
conducting cylinder ∇ × B is nonzero (and proportional to the surface current K on the
cylinder). Inside the perfectly conducting cylinder there can be no (static) currents, so
∇ × B = 0 there, and the magnetic scalar potential ΦB can have any constant value for
r < a. The electric scalar potential ΦE also has a constant value for r < a, which is equal
to the value of the potential at the surface r = a.

In addition, ∇ × B = 0 everywhere, while ∇ × E = 0 except on the surface r = a
which can support a nonzero surface charge density σ. Thus, for both r > a and r < a,
the scalar potentials obey Laplace’s equation ∇2Φ = 0, whose general solution in cylindrical
coordinates has the form (see, for example, sec. 2.11 of [11]),

Φ = a0 + b0 ln r +
∞∑

n=1

anr
n cos(nθ + αn) +

∞∑
n=1

bn

rn
cos(nθ + βn). (2)

At the surface of the perfectly conducting cylinder the magnetic field can have no radial
component, Br(r = a) = 0, and the electric field can have no tangential component,
Ez(r = a) = 0 = Eθ(r = a); otherwise there would be infinite surface currents on the
cylinder.
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We suppose that the external electric and magnetic fields E0 and B0 are in the +x-
direction, so they can be derived from the scalar potentials,

Φ0,E = −E0 x = −E0 r cos θ, Φ0,B = −B0 x = −B0 r cos θ. (3)

Then, the total potentials for r > a must have the forms,

ΦE = −E0 r cos θ +
E1 cos θ

r
, ΦB = −B0 r cos θ +

B1 cos θ

r
, (4)

referring to eq. (2). The field components for r > a are,

Er(Br) = −∂ΦE(B)

∂r
= E0(B0) cos θ +

E1(B1)

r2
cos θ , (5)

Eθ(Bθ) = −1

r

∂ΦE(B)

∂θ
= −E0(B0) sin θ +

E1(B1)

r2
sin θ . (6)

The tangential electric field, Eθ, and the perpendicular magnetic field, Br, vanish at the
surface r = a of a perfect conductor, so we learn that,

E1 = a2E0, and B1 = −a2B0. (7)

Hence, the fields for r > a are,

Er = E0 cos θ

(
1 +

a2

r2

)
, (8)

Eθ = −E0 sin θ

(
1 − a2

r2

)
, (9)

Br = B0 cos θ

(
1 − a2

r2

)
, (10)

Bθ = −B0 sin θ

(
1 +

a2

r2

)
. (11)

Since the electric and magnetic fields are zero inside the perfectly conducting cylinder, the
surface charge density σ at r = a is (in Gaussian units),

σ =
Er(r = a)

4π
=

E0

2π
cos θ, (12)

and the surface current K = (c/4π) r̂ × B(r = a) is,1

Kz =
c

4π
Bθ(r = a) = − c

2π
B0 sin θ. (13)

Both the total charge and current densities on the surface r = a are zero. The surface
current is in the −z direction for y > 0, and in the +z direction for y < 0. The magnetic
field due to these currents is in the −x direction for |y| < a, as needed to cancel the
external magnetic field B0 x̂ at the surface of the perfectly conducting cylinder, where the
perpendicular component (Bx at y = 0) of the magnetic field must be zero.

1The surface charges and currents experience outward radial forces proportional to E2
r and B2

θ , respec-
tively. A nonclassical force is required to keep the charges and currents from leaving the surface. Here, we
simply assume that charges and currents can exist on the surface of a perfect conductor.
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2.1 Rotating Cylinder

This section added July 23, 2019, following a suggestion by J. Castro Paredes.
If the perfectly conducting cylinder rotates about its axis, the surface charge and current

distributions (12)-(13) remain the same in the lab frame, while the cylinder rotates with
respect to them. No energy is dissipated during this motion, which in principle could persist
forever.

2.1.1 Poor Conductor

It may be of interest to consider also the case of a poorly conducting cylinder, such that the
external magnetic field completely penetrates into the cylinder.2 In this section we suppose
that the external electric field E0 is zero, and we neglect the effect of magnetic fields induced
by currents in the poorly conducting cylinder, such that B ≈ B0. Then, if the cylinder is
not rotating, there are no charge or current distributions associated with the cylinder, and
the electric field remains zero.

If the cylinder rotates with angular velocity ω about its (z) axis, an axial eddy-current
density Jz(r, φ) is induced (plus radial currents at the ends of the long/infinite cylinder) by
the changing magnetic flux through loops that rotate with the cylinder. In particular, we
consider a “loop” consisting of the axis of the cylinder plus the line parallel (r0, φ0, z) to the
z-axis, which is completed by radial line segments at z = ±∞. If we define the normal to
this loop to be in the +φ̂ direction, then the magnetic flux Φ per unit length in z through
this loop is,

Φ(r0, φ0) ≈ −B0r0 sinφ0. (14)

As the loop rotates about the z-axis with angular velocity ω = dφ0/dt, an electric field is
induced along the line (r0, φ0, z) with strength,

Ez(r0, φ0) = − EMF
unit length

=
1

c

dΦ(r0, φ0)

dt
≈ B0r0ω cos φ0

c
. (15)

If the small, but nonzero, resistivity of the cylinder is 
, then the current density along the
line (r0, φ0, z) is,

Jz(r0, φ0) =
Ez(r0, φ0)



≈ B0r0ω cos φ0

c

. (16)

Note that the total current crossing any plane of constant z is zero.
The total power P per unit length dissipated by Joule heating is,

P = τω =

∫ a

0

r0 dr0

∫ 2π

0

dφ0 J2
z 
 ≈ πa4B2

0ω
2

4c2

=

a2B2
0ω

2

4c2R
, (17)

where τ ≈ a2B2
0ω/4c2R is the torque per unit length required to rotate the cylinder, and

R = 
/πa2 is the resistance per unit length of the cylinder to axial currents. Thus, power
PL would be required to keep a cylinder of length L rotating with angular velocity ω in the
presence of static magnetic field B0 perpendicular to its axis.

2The case of an infinite cylinder made of a good conductor with relative permeability μ is considered in
probs. 7.30-38 of [1], and in sec. 5.7 of [2]. Much of the technical literature on this theme emphasizes hollow
cylinders of finite length; see, for example [3]-[6]. Rotating spheres and ellipsoids are discussed in [7]-[9]. For
a general review, see [10]. It requires considerable effort to relate these analyses involving Bessel functions
of imaginary argument to the simple results of this section.
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3 The Cylinder Moves in the y-Direction at Constant

Speed

The preceding analysis assumed that the cylinder was at rest. Suppose instead that the
cylinder has speed v � c in the y-direction, where c is the speed of light in vacuum.

In the rest frame of the cylinder, in which quantities are denoted with the superscript �,
the external fields are,

E� ≈ E0 +
v

c
×B0, B� ≈ B0 − v

c
× E0, (18)

for v � c. When the external field in the lab frame is either purely electric or purely
magnetic, we have that in the rest frame (whose velocity in the lab frame is v = v ŷ),

E�
0 ≈ E0 x̂, B�

0 ≈
v

c
E0 ẑ, or E�

0 ≈ −v

c
B0 ẑ, B�

0 ≈ B0 x̂. (19)

Then, the results of sec. 2 apply in the rest frame of the cylinder for the effects of the x-
components of the external fields, if we work in cylindrical coordinates (r′, θ′, z) with origin

at the instantaneous axis of the moving cylinder. Then, ŷ = sin θ′ r̂′ + cos θ′ θ̂′, etc.
The transformations of the fields from the rest frame to the lab frame are (for v � c),

E ≈ E� − v

c
× B�, B ≈ B� +

v

c
× E�. (20)

For an external field E0 x̂ in the lab frame, the magnetic field in the rest frame must
vanish inside the cylinder. To cancel the magnetic field B�

0 = vE0 ẑ/c the cylinder must have
an axial surface current,

K�
θ′ = − v

4π
E0, (21)

which creates axial field B�
z = −vE0/c inside the cylinder. In the idealization of an infinite

cylinder, this surface current creates vanishing small magnetic field outside the cylinder,
where the magnetic field remains B�

0. Hence, the fields in the lab frame for r′ ≥ a are,

Er′ = E�
r = E0 cos θ′

(
1 +

a2

r′2

)
, (22)

Eθ′ = E�
θ = −E0 sin θ′

(
1 − a2

r′2

)
, (23)

Bz =
v

c
E0 − v

c
(cos θ′E�

r − sin θ′E�
θ) = −v

c
E0

a2

r′2
cos 2θ′. (24)

The surface charge and current densities obey the transformations (for v � c),

σ ≈ σ� +
v · K�

c2
=

E0

2π
cos θ′

(
1 − v2

2c2

)
≈ E0

2π
cos θ′, (25)

K ≈ K� + σ�vθ′ =
vE0

4π
cos 2θ′ θ̂′, (26)
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recalling eq. (12). The lab-frame surface current (26) is the source of the external, lab-frame
magnetic field (24), and obeys the condition that B(r′ = a+) = (4π/c)K× r̂′, noting that B
vanishes inside the cylinder.

For the case of only an external magnetic field B0 x̂ in the lab frame, the electric field
inside the cylinder must vanish in its rest frame. To cancel the field E�

0 ≈ −vB0 ẑ/c the
cylinder takes on a surface charge density σ� = kz, which leads to an electric scalar potential
V � given by,

V �(r′, 0, z) =

∫ 2π

0

a dθ′
∫ ∞

−∞
dz′ kz′√

(z′ − z)2 + a2 + r′2 + 2ar′ cos θ′
= 2πakz. (27)

The corresponding electric field is E�
z = −2πak, so this cancels the axial electric field −vB0/c

everywhere in the rest frame of the cylinder for k = −vB0/2πac. Hence, the fields in the lab
frame are,

Br′ = B�
r = B0 cos θ′

(
1 − a2

r′2

)
, (28)

Bθ′ = B�
θ = −B0 sin θ′

(
1 +

a2

r′2

)
, (29)

Ez =
v

c
(cos θ′B�

r − sin θ′B�
θ) =

v

c
B0

(
1 − a2 cos 2θ′

r′2

)
, (30)

for r′ ≥ a. The surface charge and current densities in the lab frame are given by (for v � c),

σ ≈ σ� +
v · K�

c2
= −vB0z

2πac
, (31)

K ≈ K� + σ�vθ′ ≈ −cB0

2π
sin θ′ ẑ, (32)

recalling eq. (13).
It is noteworthy that the lab-frame electric field at the surface of the conducting cylinder,

Ez(r
′ = a) =

v

c
B0(1 − cos 2θ′) =

2v

c
B0 sin2 θ′, (33)

is tangential to the surface of the cylinder. Thus, we see that the condition that the
electric field be perpendicular to the surface of a perfectly conducting cylinder
holds only in the rest frame of the cylinder.3 Note also that the electric field (33) is
everywhere positive, while the surface current (32) is positive only for sin θ′ < 0. That is, in
a moving perfect conductor the signs of the surface current and surface electric
field are not correlated.

3The condition that the magnetic field have no component normal to the surface of a perfect conductor
holds in any frame, in that the electric field in the rest frame is normal to the surface, so its transform
∝ v ×E⊥ to a magnetic field in a frame with velocity v also has no normal component. Hence, lines of the
magnetic field can never cross a perfect conductor, whether at rest or in motion, since they would need to
be normal to the surface at some point if they were to cross. An implication for the present example is that
the total magnetic flux in y “above” and “below” the perfectly conducting cylinder remains constant as the
cylinder moves. Only for an external field of infinite extent in y can that field remain constant during the
motion of the cylinder, as tacitly assumed here.
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3.1 Stored Electromagnetic Energy

The volume density u of electromagnetic energy stored in the fields is given by,

u =
E2 + B2

8π
=

(E0 + Ea)
2 + (B0 + Ba)

2

8π
≡ E2

0 + B2
0

8π
+ ua, (34)

where Ea, Ba and ua are the changes to the fields and stored energy when a perfectly
conducting cylinder of radius a is present (and moving with velocity v ŷ); these terms all
include factors of a or v.

For the case of an external electric field, we have from eqs. (22)-(24) that (to order v/c),

ua =
E2

0

8π

(
2a2

r′2
cos 2θ′ +

a4

r′4
.

)
(35)

Similarly, for the case of an external magnetic field, we have from eqs. (28)-(30) that (to
order v/c),

ua =
B2

0

8π

(
−2a2

r′2
cos 2θ′ +

a4

r′4
.

)
(36)

For nonzero v these energy densities are time dependent, so there must be a flow of energy
in the vicinity of the cylinder in these cases.

3.2 Energy Flow

When the cylinder is in motion, we can expect it to be associated with a flow of electromag-
netic energy. To discuss this, we consider the Poynting vector S,

S =
c

4π
E × B =

c

4π

[
(Eθ′Bz − EzBθ′) r̂′ + (EzBr′ − Er′Bz) θ̂′ + (Er′Bθ′ − E ′

θzBr′) ẑ
]
,(37)

which implements conservation of energy according to,

∇ · S = −∂u

∂t
, (38)

for r′ > a.
For the case of an external electric field, we have from eqs. (22)-(24) that,

S = −vE2
0

4π

a2

r′2
cos 2θ′

[
sin θ′

(
1 − a2

r′2

)
r̂′ + cos θ′

(
1 +

a2

r′2

)
θ̂′

]
. (39)

In the limit a → 0 there is no flow of energy in the lab frame, where there is only a constant
electric field plus a moving charged wire that (perhaps surprisingly) produces no E or B
fields.

Similarly, for the case of an external magnetic field, we have from eqs. (28)-(30) that,

S =
vB2

0

4π

(
1 − a2

r′2
cos 2θ′

) [
sin θ′

(
1 +

a2

r′2

)
r̂′ − cos θ′

(
1 − a2

r′2

)
θ̂′

]
. (40)
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In the limit a → 0 the energy flow is nonzero, S = −vE2
0 ŷ/4π, since according to eq. (30) the

moving, perfectly conducting wire is associated with a uniform electric field Ez = −vB0/c
in the lab frame.

Note that Sr′(r
′ = a) is nonzero for the case of a moving cylinder in a magnetic field, while

averaging to zero over azimuth θ′. A perfect conductor at rest cannot have any Poynting flux
perpendicular to its surface, but we see that this is not necessarily so for a perfect conductor
in motion. This is an example of the relativity of steady energy flow, which is explored
further in sec. 4 below.

The flow of energy described by eqs. (39) and (40) falls off at least as fast as 1/r′2 (in
cylindrical coordinates), and does not correspond to “radiation to infinity”. The energy
flow is significant only in the “near zone”, whose extent is a few times the radius a of the
cylinder. Within this “near zone” the stored electromagnetic energy is rearranged as the
cylinder moves, and the Poynting vector S describes the details of this rearrangement.

3.3 Forces on the Cylinder

As discussed elsewhere [12], the least ambiguous method to calculate force F on a rigid body
in an electromagnetic field is via the Maxwell stress tensor Tij, which relates to the force Fi

on a surface element dAreaj according to,

Fi =

∫ ∑
k

Tij dAreaj, (41)

where,

Tij =
EiDj + BiHj

4π
− δij

E · D + B · H
8π

. (42)

For the case of an external electric field, we have from eqs. (22)-(24) that at the surface
r′ = a of the moving cylinder,⎛
⎜⎜⎜⎝

Tr′r′ Tr′θ′ Tr′z

Tθ′r′ Tθ′θ′ Tθ′z

Tzr′ Tzθ′ Tzz

⎞
⎟⎟⎟⎠ =

E2
0 cos2 θ′

2π

⎛
⎜⎜⎜⎝

1 − v2

c2
cos2 θ′ 0 0

0 −1 − v2

c2
cos2 θ′ 0

0 0 −1 + v2

c2
cos2 θ′

⎞
⎟⎟⎟⎠ ,(43)

which is independent of the speed v of the cylinder at order v/c.
The area element is dArea = a dθ′ dz r̂′, so the only nonzero force element on the surface

is (to order v/c),4

dFr′ = Tr′r′ dArear′ =
aE2

0 cos2 θ′

2π
dθ′ dz =

σEr′

2
a dθ′ dz. (44)

The x- and y-force elements are related by,

dFx = dFr′ cos θ′ − dFθ′ sin θ′ =
aE2

0 cos3 θ′

2π
dθ′ dz =

aE2
0(3 cos θ′ + cos 3θ′)

8π
dθ′ dz , (45)

dFy = dFr′ sin θ′ + dFθ′ cos θ′ =
aE2

0 sin θ′ cos2 θ′

2π
dθ′ dz =

aE2
0(sin θ′ + sin 3θ′)

8π
dθ′ dz . (46)

4Note that the radial force (44) is the product of the surface charge density and 1/2 the surface field Er′ .
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Integrating over θ′, we find that Fx = Fy = 0.
For the case of an external magnetic field, we have from eqs. (28)-(30) that at the surface

r′ = a of the moving cylinder,

⎛
⎜⎜⎜⎝

Tr′r′ Tr′θ′ Tr′z

Tθ′r′ Tθ′θ′ Tθ′z

Tzr′ Tzθ′ Tzz

⎞
⎟⎟⎟⎠ =

B2
0 sin2 θ′

2π

⎛
⎜⎜⎜⎝

−1 − v2

c2
sin2 θ′ 0 0

0 1 − v2

c2
sin2 θ′ 0

0 0 −1 + v2

c2
sin2 θ′

⎞
⎟⎟⎟⎠ , (47)

which is independent of the speed v of the cylinder at order v/c.
The area element is dArea = a dθ′ dz r̂′, so the only nonzero force element on the surface

is (to order v/c)5

dFr′ = Tr′r′ dArear′ = −aB2
0 sin2 θ′

2π
dθ′ dz = −KzBθ′

2c
a dθ′ dz. (48)

The x- and y-force elements are related by,

dFx = dFr′ cos θ′ − dFθ′ sin θ′ =
aB2

0 cos θ′ sin2 θ′

2π
dθ′ dz =

aB2
0(cos θ′ − cos 3θ′)

8π
dθ′ dz , (49)

dFy = dFr′ sin θ′ + dFθ′ cos θ′ =
aB2

0 sin3 θ′

2π
dθ′ dz =

aB2
0(3 sin θ′ − sin 3θ′)

8π
dθ′ dz . (50)

Integrating over θ′, we find that Fx = Fy = 0.
Thus, no external force is required for uniform motion of a perfectly conducting cylinder

through an external, static electric or magnetic field that is perpendicular to the axis of the
cylinder.

4 Use of a Perfectly Conducting Cylinder in a Dynamo

A conceptually simple dynamo consists of a perfectly conducting cylinder that slides with
velocity v ŷ along a U-shaped track whose cross piece (of length l) is a resistive load R,
subject to external magnetic field B0 x̂. as shown in the sketch below. For an interesting
example of such a dynamo, see [13].

5Note that the force (48) is the product of the surface current density and 1/2 the surface field Bθ′ .
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The magnetic flux through this partially moving circuit increases linearly with time,
ΦM = B0 lvt, so application of Faraday’s law6 indicates that there should be an EMF =
−B0 lv/c around the circuit, which drives a clockwise current I = B0 lv/cR.7

The methods used in the preceding sections for a moving, perfectly conducting cylinder
applies to this configuration, to a good approximation, if the length of the cross piece/load,
and its distance from the moving conductor, are large compared to the radius a of the
conductor. Then, the effect on the sliding bar of the magnetic field of the currents in the U
can be neglected.

The z-component of the electric field along the surface of the sliding, perfectly conducting
cylinder varies with azimuth as sin2 θ′ according to eq. (33), which vanishes at θ′ = π where
the sliding cylinder contacts the U-shaped conductor. Hence, we might infer that there is no
EMF =

∫
Ezdl between the long conductors of the U, and no current flows in the circuit.

However, this analysis does not agree with our expectation from Faraday’s law.
Instead, we suppose that the field relevant for a calculation of the potential difference

ΔV = −〈Ez〉 l is the average electric field, 〈Ez〉 = vB0/c, along the perfectly conducting
cylinder. Then, ΔV = −vB0 l/c, and the current in the resistor is in the +z direction with
magnitude,

I =
vB0 l

cR
. (51)

This current flows throughout the circuit, and adds a surface current ΔKz = −If(θ′)/πa to

the moving cylinder (in the −z direction) for some even function f(θ′) that obeys
∫ 2π

0
f(θ′) dθ′

= π. As a result, there is an additional azimuthal magnetic field outside this cylinder, such
that the nonzero components of the electric and magnetic fields at the surface of the cylinder
are now, recalling eqs. (29)-(30) and (32), and that B(r′ = a+) = (4π/c)K × r̂′,

Bθ′(r
′ = a+) = −2B0 sin θ′ − 4If

ac
, (52)

Ez(r
′ = a+) = −vBθ′(r

′ = a+) sin θ′

c
, (53)

as the total surface current density is,

Kz = −cB0 sin θ′

2π
− If

πa
=

c

4π
Bθ′(r

′ = a+). (54)

The electric field does work on the surface current at the rate,

PE = l

∫ 2π

0

a dθ′ KzEz = −alv

4π

∫ 2π

0

dθ′ B2
θ′(r

′ = a+) sin θ′ = −4lvB0I

πc

∫ 2π

0

dθ′ f sin2 θ′, (55)

noting that f is an even function of θ′.

6See [14] for discussion of the use of Faraday’s law for circuits with moving parts.
7If R = 0 such that the circuit consists entirely of perfect conductors, the magnetic field cannot enter

the circuit as it would need a component perpendicular to the surface of the sliding bar to do so. See also
footnote 2. Hence, there would be no EMF and no net current flowing in the circuit in this case.
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The Poynting vector at the surface has only the radial component,

Sr′(r
′ = a+) = − c

4π
EzBθ′ =

v

4π
B2

θ′(r
′ = a+) sin θ′

=
vB2

0 sin3 θ′

π
+

4vB0If sin2 θ′

πac
+

4vI2f2 sin θ′

πa2c2
. (56)

The total power flowing off the moving cylinder is, noting that f(θ′) is an even function,

P = l

∫ 2π

0

Sr′(r
′ = a+) a dθ′ =

4lvB0I

πc

∫ 2π

0

f sin2 θ′ dθ′ = −PE

= I2R

⎧⎨
⎩

2 (f = 1/2),

1 (f = cos2 θ′),
(57)

recalling eq. (51). With f = cos2 θ′ we have that P = I2R, as seems reasonable (while with
f = 1/2, for azimuthally symmetric ΔKz as näıvely expected, we obtain P = 2I2R.)

Because of the surface current on the cylinder, it experiences a Lorentz force,

F = l

∫ 2π

0

a dθ′
Kz ẑ

c
× Bθ′

2
=

al

8π

∫ 2π

0

dθ′
(

2B0 sin θ′ +
4If

ac

)2

ẑ× (− sin θ′ x̂ + cos θ′ ŷ)

= − al

8π

∫ 2π

0

dθ′
(

2B0 sin θ′ +
4If

ac

)2

(sin θ′ ŷ + cos θ′ x̂) = −2lB0I

πc

∫ 2π

0

dθ′ f sin2 θ′ ŷ

= − P

2v
ŷ, (58)

noting that the average magnetic field on the surface current is 1/2 the magnetic field just
outside the surface. To keep the cylinder in steady motion, some mechanical agent must
provide an opposing force, which delivers energy into the system at rate,8

Pmech = −Fyv =
P

2
= I2R

⎧⎨
⎩

1 (f = 1/2),

1/2 (f = cos2 θ′).
(59)

We expect that in the lab frame the mechanical force on the moving, perfectly conducting
cylinder provides the power I2R dissipated by the load resistor, which suggests that f =
1/2, i.e., the additional current density ΔKz is azimuthally symmetric. But, then the
electromagnetic power P flowing off the cylinder is double the power dissipated in the load
resistor, as if the system emits “radiation to infinity”.

Thus, the moving cylinder acts as a transducer of mechanical power to electromagnetic
power, according to the above analysis in the lab frame.9

8If we used the full field Bθ′ in the Lorentz-force calculation (59), rather than half this value, then use of
f = cos2 θ′ would lead to Pmech = I2R, consistent with eq. (57). However, using the Maxwell stress tensor
to calculate the force leads to Tr′r′ = −B2

θ′/8π (neglecting the term in E2
z ∝ B2

θ′v2/c2), which confirms the
use of Bθ′/2 in eq. (58).

9The currents in this problem are steady, but the magnetic flux through the circuit varies with time,
so we expect an EMF in the (moving) circuit according to a broad interpretations of Faraday’s law. The
resulting power dissipated in the resistor agreeably flows in the form of electromagnetic energy out from the
surface of the sliding bar. But this analysis gives no microscopic picture of how that energy flow arises.
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The above analysis is almost, but not quite, satisfactory. Taking f = 1/2, corresponding
to azimuthally symmetric current I in the sliding bar, we have that the mechanical power
equals the power I2R dissipated in the load resistor. I would have expected that the power
transferred from the conduction electrons to the electromagnetic fields would also be I2R,
and that the power leaving the surface of the sliding bar would be I2R. But instead these
are both 2I2R – which doesn’t make sense to me.

4.1 Analysis in the Rest Frame of the Cylinder

In the rest frame of the perfectly conducting cylinder it can have no electric field component
along it surface, and in this frame the Poynting vector has no component perpendicular to
the surface. Hence, in this frame we cannot say that the cylinder is the source/transducer
of the power dissipated in the resistor.

Instead, we note that in the rest frame of the cylinder the magnet that provides the
external field B0 = B0 x̂ has velocity −v ŷ. This magnet exerts total force F′ = F = Fy ŷ
on the cylinder, so there is a reaction force −F′ on the magnet. A mechanical force −(−F′)
is required in the lab frame to keep the magnet at rest there, and in the rest frame of the
cylinder this force does work on the moving magnet at rate −v ŷ ·F′ = −vFy = I2R. Thus,
in the rest frame of the cylinder, we are led to say that the magnet acts as the transducer of
mechanical power to electromagnetic power. This is an example of the relativity of steady
energy flow (also discussed in [16]).
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