
Princeton University 1996 Ph101 Laboratory 4 1

4 The Behavior of a Simple Pendulum

and a Precision Measurement of g

Introduction

The simple pendulum (Fig. 1) is one of the oldest known precision devices. Lore has it that
Galileo was the first to note how the uniformity of the period of oscillation of a pendulum
could be the basis of a clock.

Figure 1: A simple pendulum consisting of a compact mass m suspended from
a string of length l (measured from the pivot point to the center of mass). The
pendulum is launched at angle θ0 to the vertical.

The period T of the pendulum is the time to complete a swing: the mass returns to
the same position and is moving again in its original direction after one period. Note that
the pendulum passes through each point along its path twice per period (except for the two
extreme points at large angles).

If you have not encountered an analysis of the simple pendulum in the course yet, you
may wish to read the Appendix to this Lab which discusses how a relation for the period of
the pendulum can be deduced without F = ma.

An advanced analysis of the simple pendulum tells us that the period T is
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For ‘small enough’ launch angles θ0 the terms sin2(θ0/2), etc., are very small and we have

T ≈ 2π
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, (2)

independent of the (small) launch angle.
In this Lab you will investigate the validity of expressions (1) and (2), and then use the

latter to deduce g according to

g = 4π2 l

T 2
. (3)
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An error analysis of eq. (3) relates the expected error σg on g to those on your measure-
ments of length and time:
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For a pendulum of length l ≈ 1 m the measurement error σl will be about 1 mm when
using a standard meter stick; hence we expect σl/l ≈ 0.001. The period of such a pendulum
should be about 2 sec according to eq. (2), while the measurement error with the computer
electronic timer should be less than 0.001 sec. By measuring not one but ten periods, we
expect σt/t ≈ 0.0003. Hence if you are careful your error on g should be only

σg

g
≈ 0.001. (5)

That is, expect to measure values of g between 9.79 and 9.81 m/s2.
The measurements in this Lab proceed in three steps as follows.

4.1 Variation of Period with Angle

In this part you will explore the dependence of the period of a simple pendulum on the
launch angle, for a fixed length. According to eq. (1) there is a small variation of period
with launch angle, but there exists a minimum period for a given length l that we will call
Tmin:

Tmin = 2π
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If we take the ratio of the observed period at launch angle θ0 to that observed at very small
angles, we predict
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Thus if you plot T (θ)/Tmin vs. sin2(θ0/2) for ‘small’ angles you should find a straight line
with intercept 1 and slope 1/4; at larger angles the plot should turn upwards.

Use a pendulum consisting of a steel ball and string of length 1 m, measured from the
pivot point to the center of the ball. The center of the ball should intercept the light path
from LED to photodiode on the photogate when the pendulum is at rest. The center of
the protractor should be well aligned with the pivot point of the pendulum, and the string
should be aligned with 0◦ on the protractor when the pendulum is at rest.

First measure the duration of one period for a launch angle of 5◦, which should be about 2
sec. Use the photogate for this, with the computer running the timer program pt of directory
c:\timer. Use Miscellaneous Timer Modes from the main menu, then Pendulum Timer, then
Normal Time Display. In this timing mode the computer records the times between the first
and third blockages of the LED beam, which is just what is needed to measure a complete
period of pendulum motion. (Do you see why this is so?)

To gain precision, all further data should be be taken for at least 10 periods. After the
10th period press Enter/Return to stop data collection, then select Display Table of Data to
view the data plus a statistical summary. The standard deviation, SD, gives the best measure
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thus far in the Ph101 Lab of the accuracy of the computer timer. When satisfied with the
quality of the data, Print Table of Data for your lab book.

Now make a measurement of 10 periods at each of the launch angles 10, 20, 30, 40, 50◦.
If the string lengthens during the measurements because the clamp is not tight enough,

the data are invalid.
You or your partner should watch the angle of the pendulum during the measurement to

see if it decreases significantly compared to the launch value. If so, record the value at the
end of the 10th period, and use the average of the initial and final angles in later analysis.
(Or, repeat the measurement at a launch angle larger than nominal by 1/2 the amount the
angle decreased.)

Exit program pt and start Windows to use the StatMost program to do the calculations
and produce the graph. Start a new spreadsheet and enter the angles θ0 in column A and the
periods T in column B. Use Data, then Transform, then Simple Math to create new columns
containing T (θ0)/T (5◦) and sin2(θ0/2). Since StatMost uses radian measure for angles, if you
entered the angles in degrees, include a division by 1 rad = 57.296◦ in your math expression
before taking the sine. That is, type in a Formula: SSQ=(SIN(A/2/57.296))^2 if the angles
are in column A. Plot a graph and a polynomial fit using Analyses, then Polynomial Regression
of Order: 2.

The defaults for numerical axis labels in StatMost are poor for the vertical axis, T (θ0)/T (5◦),
which varies over only a small range. You might wish to improve the appearance of your
plot by double clicking on the left vertical axis to bring up the window 2D Axis Properties.
Some useful settings might be Minimum = 0.99, Maximum = 1.05, MajorNum = 6, MinorNum
= 0, and Precision = 2. (There are several other graph-modifications windows that can be
activated by double clicking on various portions of the graph.)

Compare the value of the order-1 fit coefficient to the prediction of 1/4 in eq. (7). Do
you have agreement within the calculated error? Do you see any evidence for the order-2
coefficient of 9/64?

In part 4.3 of this Lab you should try to measure g to 1 part in 1000. If you wish to
avoid making a correction of this size or larger for the effect of launch angle on period, what
is the largest launch angle you can use (refer to eq. (7))?

4.2 Variation of Period with Mass

[Analyze the data from part 4.1 before proceeding to part 4.2.]
In parts 4.2 and 4.3 you will explore the validity of eq. (2). A prominent feature is that

the period should not depend on the mass of the pendulum ball, so long as the length from
the pivot point to the center of the ball in constant.

Confirm this be measuring the duration of 10 periods of a pendulum with a steel, an
aluminum and a wooden ball. You can use a data point from part 4.1 for the steel ball if
you wish.

Do your periods for the three masses agree to within the timing error expected from your
repetitions of the 5◦ case in part 4.1?

Note that eq. (2) implies that the period changes with length according to
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Hence to achieve good consistency the lengths of the three pendula must be equal to within
1 part in 1000.

4.3 Variation of Period with Length

[Analyze part 4.2 before proceeding to part 4.3]
In this part you examine the validity of eq. (2), which can be rewritten as

l = g
T 2

4π2
. (9)

Using a steel ball, measure the duration of 10 periods for pendula of lengths 0.5, 0.75,
1.0, 1.25 and 1.5 m. Choose a launch angle which will not affect the period to greater than
1 part in 1000, based on your results from part 4.1. Measure the distance l carefully (i.e.,
don’t use the end of a meter stick in your measurement; don’t just guess where the center
of the ball is...).

Use program pt to collect the data and then StatMost to analyze the mean period as
a function of length. Enter the lengths and times in the columns of a new spreadsheet.
Then select Data, then Transform, then Simple Math with Formula: TSQ 4PISQ=(B/6.283)^2
to create a new column containing T 2/4π2, assuming the periods are in column B. Select
Analyses, then Polynomial Regression of Order: 2 to produce a graph of l vs. T 2/4π2.

Is your graph of l vs. T 2/4π2 consistent with a straight line, in confirmation of eq. (9)?
The regression coefficient of order 1 is your value of g. Is it consistent with the nominal
value within the reported error?

As a check, calculate a separate value of g from the data at each length l using g =
4π2l/T 2 = C/A, assuming l is in column A and T 2/4π2 is in column C of your spreadsheet.

If your value for g is outside the range 9.75-9.85 m/s2, please check for numerical errors.
If necessary, repeat the measurement for the longest l and analyze just this measurement to
extract another value of g.

4.4 Appendix: Dimensional Analysis of the Simple Pendulum

The period T of the simple pendulum might depend on the mass m, the length l, the
acceleration of gravity g, and the launch angle θ0. With ‘dimensional analysis’ we can deduce
the functional form of T on m, l and g, the parameters that have dimensions (i.e., units).
This technique cannot deduce the dependence on angle θ0 since an angle is dimensionless.

The hypothesis of dimensional analysis is that the period T depends on products of
powers of m, l and g:

T = Cmαlβgγ, (10)

where C is a dimensionless number, possibly a function of θ0. For this equation to be true,
the dimensions (units) of both sides must be the same. In mechanics we deal with three
distinct units: mass, length and time. The required equality of units in an equation permits
up to three parameters to be determined in that equation.
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For the simple pendulum, we note that the dimensions of the period T is just time, and
those of acceleration g are length/(time)2. So in terms of dimensions, eq. (10) becomes

[time] = [mass]α[length]β
[

length

(time)2

]γ

. (11)

For this to be true the dimensions of both sides must be the same, which means that the
exponents of each unit must the be same on both sides. To emphasize the exponents, the
lefthand side of eq. (11) can be rewritten as

[time] = [time]1[length]0[mass]0. (12)

Hence we deduce the three equations:

time : 1 = −2γ, (13)

length : 0 = β + γ, (14)

mass : 0 = α. (15)

These equations readily imply that

α = 0, β = 1/2 and γ = −1/2. (16)

Recalling eq. (10) we see that the period should not depend on the mass, and depends on
length and g according to

T = C

√
l

g
. (17)

While dimensional analysis cannot determine the value of the number C , it correctly
predicts the form of the dependence of the period on quantities that have units, without
resort to F = ma.




