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8 Friction in Fluids

Introduction

‘Modern’ physics began to flourish in the 1600’s when it was realized that the basic laws of
motion were most clearly demonstrated in situations with minimal friction. Correspondingly,
the motion of fluids would be simpler to understand if they were friction free. However,
all real fluids have intrinsic friction due to two effects: the weak attraction between fluid
molecules (viscosity), and the transfer of momentum from fluid molecules that bounce off
objects (high-speed drag). In this laboratory we consider three situations in which fluid
friction is important:

1. Flow of fluid in a circular pipe,

2. Slow linear motion of objects through a fluid.

3. Levitation by an air jet.

The first two are examples of viscous drag, while the third emphasizes high-speed drag.

Viscous Drag

Quantitative consideration of friction in fluids began with Newton, whose original ex-
ample concerned two plates of area A separated by a distance Δy in a fluid, as sketched in
Fig. 1.

Figure 1: Fluid flow between two plates of area A, separation Δy and relative
velocity v.

A basic insight is that fluid which is close to a solid surface has the same velocity as that
surface due to the friction of the fluid. If one plate has velocity Δv relative to the other
as shown, the velocity of the fluid between the plates varies from 0 to Δv and a force F is
required to maintain the motion. The ratio of ratios

η =
F/A

Δv/Δy
(1)
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is an intrinsic property of the fluid and is called the viscosity. The corresponding expression
for the viscous drag force is

Fviscous = ηA
Δv

Δy
(2)

High-Speed Drag

When an object moves through a fluid with velocity v, presenting area A to the fluid, the
molecules that bounce off the object transfer momentum to the object at rate Δp/Δt = F ,
where F is the resulting drag force. An estimate of this force is quickly obtained by noting
that in time Δt a volume of fluid V = AvΔt hits the object. The momentum carried in
this volume is ρ0V v where ρ0 is the mass density of the fluid. If all of this momentum were
transferred to the object the corresponding force would be F = Δp/Δt = ρ0Av2.

This argument is not precise, and it is customary to include a dimensionless drag coeffi-
cient CD in the definition, as well as a factor of 1/2:

Fhigh−speed =
CD

2
ρ0Av2. (3)

The Reynolds Number

The relative importance of high-speed drag and viscous drag is characterized by the
(dimensionless) Reynolds number NR, which is just their ratio

NR =
Fhigh−speed

Fviscous
≈ ρ0Av2

ηAΔv/Δy
=

ρ0vL

η
. (4)

In this we have identified Δv, the change in velocity relevant to viscosity, with the relative
velocity v between the object and the fluid. We also replace Δy by L, representing a
characteristic length of the object perpendicular to the direction of fluid flow.

Situations with Reynolds number less than one are dominated by viscous drag, while for
NR > 1 high-speed drag is more important. We see that the Reynolds number increases
with velocity, justifying the name ‘high-speed drag’ for fluid friction at large NR.

8.1 Viscous Drag at Low Reynolds Number

8.1.1 Flow of Viscous Fluid in a Circular Pipe

An important situation in which fluid viscosity plays a dramatic role is the flow through pipes.
The flow rate is claimed to vary as the fourth power of the radius of the pipe (Poiseuille,
1840).

We first sketch an argument why this is so based on dimensional analysis. The flow rate,
which we shall call φ, is the volume of fluid passing any cross section of the pipe per second.
The flow occurs because there is a pressure difference ΔP between the two ends of the pipe
whose length is l. The flow will be slower for higher viscosity and longer pipes, and will be
greater for pipes of larger radius. We make the ‘educated guess’ that the flow rate varies like

φ ∝ ΔPRn

ηl
. (5)
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That is, we guess that the flow is proportional to the pressure drop and inversely proportional
to the viscosity and to the length. Our only uncertainty is how the flow rate depends on the
radius of the pipe.

Flow rate has dimensions length3/time, pressure has dimensions mass/(length× time2)
and viscosity has dimensions mass/(length× time) according to eq. (1). Hence the dimen-
sions of eq. (5) tell us

[
length3

time

]
=

[
mass

length×time2

]
[lengthn][

mass
length×time

]
[length]

=

[
lengthn−1

time

]
. (6)

Hence we infer that n = 4 as claimed. A full derivation of the flow rate was first made by
Stokes (1845) who showed that

φ =
πΔPR4

8ηl
. (7)

You will study the flow rate of a heavy machine oil in plastic tubes of various radii. These
tubes are attached to the base of a vertical cylinder containing oil to a height h above the
inlets of the tubes. Hence the pressure difference between the inlet and outlet of the tubes
is ΔP = ρgh, where ρ is the density of the oil.

The density of the oil can be measured by before-and-after weighings of the graduated
cylinder in which you collect the oil flow.

Remove the cork from one of the plastic tubes and collect the oil flow in a graduated
cylinder. The tube should be horizontal to avoid the effect of gravity on the flow in the
tube. The graduated cylinder should be vertical, and the oil should not run down its wall.
Use a stopwatch (or Keyboard Timer Modes of program pt) to measure the time t required
to collect a volume V of fluid. Recork the tube, and repeat the process for the other two
tubes. For example, collect 20 ml with the largest tube, 10 ml with the midsized tube and
5 ml with the smallest tube. The flow will be quite slow!

Measure the height h of the oil in the vertical cylinder above the inlet to the plastic
tubes. Since this height decreases as the oil flows out, measure h before and after collecting
oil from each tube, and use the average height in later analysis.

Notice how the vertical flow between the mouth of the tube and the surface of the oil in
the collecting cylinder is smooth until just above the surface. Then the flow becomes very
turbulent and injects numerous small bubbles into the gathering pool of oil. The details of
fluid motion can be very complex!

When oil has been collected from all three tubes, weigh the graduated cylinder to deter-
mine the density of the oil. Then pour the oil back into the vertical cylinder.

According to the manufacturer the tubes have radii R = 0.37, 0.307 and 0.242 cm.
The first step in the analysis is to verify the dependence of flow rate φ on pipe radius R.

Poiseuille tells us that φ ∝ R4. Fit your flow rate data to the form

φ = KRn, (8)

to see how well n = 4 describes your results.
Create a New Sheet Document with Statmost and enter your data on radius in column A

(in order of increasing radius) and flow rate in column B. Select Analyses, then Quasi-Linear;
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in the pop-up window select Power, Save Options: Calculated Data and X as A (radius) and Y
as B (flow). Print the $RES000n.TXT summary sheet; the Regression Coefficient is the fitted
value of n and the Standard Error of B is the error estimate.

The program actually has taken the logarithms of φ and R and fit them to a straight
line: eq. (8):

log φ = log K + n log R. (9)

It is useful to make a log-log plot of your data, which will display this linear dependence of the
logarithms. Activate your spreadsheet window, then Plot, then 2D Curve, then Scatter/Lines.
Type in an appropriate Title. To plot the data points select A (radius) as X as and B (flow)
as Y and deselect all 3 Options; then click on Add Curve. To add the fitted curve, select A as
X, D: Dep as Y and Option as Smooth Curve; then click on Add Curve, and on OK to produce
the graph. The graph still has linear axes; to change to logarithmic axes, double click on the
left vertical axis to bring up the window 2D Axis Properties. Select Axis Mode: Log (Base 10);
for Axis Range set Minimum: 0.01 and Maximum: 0.1 (or other more appropriate powers of
10); for Tick Option set Major Num: 2 (if you wish to span only one power of 10) and Minor
Num: 8; then click OK. Double click on the bottom axis to convert it to logarithmic. To
add grid lines, double click on the top or right frame around the graph, and select X-On and
Y-On of Minor Grids. It is advantageous to make the length of one decade the same on the
horizontal and vertical axes: from the Draw menu select Move/Resize and enter appropriate
values for Width and Height. Before you Print your graph you may want to select Page Setup
and deactivate Show Page Footer.

An example is shown in Fig. 2.

Figure 2: Log-log plot of flow φ versus radius R in circular pipes. The slope of
the straight-line fit is the power n in the relation φ = KRn. In this example
the fit slope is 4.19 and the slope read off the graph is 50 mm/12 mm = 4.17.
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Your data can be further analyzed to extract the viscosity coefficient η. Equation (7) can
be rearranged as

η =
πρghR4

8lφ
. (10)

Calculate the viscosity η from the data on oil flow in each of the three plastic tubes. Measure
length l of each tube and add 2.7 cm for the length inside the large or medium brass fittings
or 1.9 cm for the small brass fitting.

8.1.2 Linear Motion of Spheres in a Viscous Fluid

In this part you will explore the viscous motion of small spheres falling through heavy
machine oil. Gravity provides the force that will balance the viscous drag described by
eq. (2).

An approximate analysis is straightforward, but a detailed proof is one of the more
complex exercises in classical physics. A sphere of radius R has surface area 4πR2 exposed
to viscous drag. When the sphere has velocity v the fluid near the sphere takes on the same
velocity, but fluid approximately distance R away from the sphere have velocity near zero.
Equation (1) tells us that the drag force is

F =
ηAΔv

Δy
≈ 4πηR2v

R
= 4πηRv. (11)

The detailed theoretical analysis by Stokes (1851) showed that our approximate result should
be modified by a factor of 3/2 to be

F = 6πηRv (Stokes). (12)

[It turns out that eq. (11) is the correct form for drag on an air bubble rising through a
liquid.]

The drag force of eq. (12) balances the force of gravity. However, the effective force
of gravity is not mg = (4/3)πR3ρg where ρ is the density of the sphere. According to
Archimedes’ principle the fluid provides a buoyant force equal to the weight of the displaced
fluid, (4/3)πR3ρ0g, where ρ0 is the density of the fluid. Hence the net force due to gravity
is (4/3πR3(ρ − ρ0)g. Equating this to eq. (12) the viscosity of the fluid is

η =
2R2(ρ − ρ0)g

9v
=

D2(ρ − ρ0)gt

18h
, (13)

where D is the diameter of the sphere, and t is the time for it to fall height h through the
fluid.

Measure the times t for three lead spheres to fall through a column of heavy machine oil.
Before dropping the spheres into the oil, measure their diameters with a micrometer; take
an average if the ‘sphere’ is not really spherical. The density of lead is 11.7 g/cm3. Use the
value for the density ρ0 of the oil that you found in part 8.1.1.

Calculate the viscosity coefficient η according to eq. (13) and compare with the value
found in part 8.1.1. Calculate the Reynolds number (eq. (4)) for one of the spheres in the
oil.
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8.2 Levitation in an Air Jet at High Reynolds Number

An intriguing advertisement in hardware stores in summertime consists of a beach ball
levitated above a room fan that blows air upwards. It is plausible that the upward drag of
the air jet on the ball counteracts the downward pull of gravity. More impressive is that the
ball is not blown sideways off the fan.

[Skydiving scenes in movies are often performed by levitating the actors above giant
fans.]

Recall that Bernoulli’s equation,

P +
1

2
ρv2 + ρgy = constant, (14)

tells us that the pressure is low where the fluid velocity is high. Thus, in the center of the
jet where the velocity is high the pressure is low. As a result there is a ‘pressure-gradient’
force that pushes the ball towards the center of the jet, as well as downwards towards its
mouth. For stable levitation the inward pressure-gradient force must be larger than the
outward high-speed drag force – even though the upward high-speed drag force overcomes
both gravity and the downward pressure-gradient force. Nature kindly permits all of these
conditions to be met. Try it!

In this part of the lab you will analyze the velocity of the an jet as a function of height,
and measure the drag coefficient CD of levitating styrofoam spheres. As a simplification
you can ignore the vertical pressure-gradient force, which is a good approximation when the
sphere levitates more than a diameter above the mouth of the jet.

Figure 3: A U-tube manometer to measure the difference in air pressure be-
tween the its two inlets.
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Aim an air-track blower upwards to create the jet. Levitate as many of the six styrofoam
spheres as you can, and record the height of the center of the sphere above the mouth of the
jet when successful. The jet must be very vertical to levitate the smaller balls. Measure the
diameters d of the spheres and weigh the largest to deduce the density of styrofoam:

ρsphere =
Mlarge

πd3
large/6

. (15)

Use a water-filled U-tube manometer (Fig. 3) to measure the pressure along the jet axis
over the range of heights at which you could levitate spheres. Record the difference Δh
between the liquid levels in the left and right arms of the U-tube for heights h in 5-cm steps.
Is the pressure at the center of the jet greater or lower than atmospheric pressure?

According to Bernoulli’s equation the pressure difference between the center of the jet
and still air is

ΔP = ρwatergΔh =
1

2
ρairv

2
jet, (16)

where vjet is the velocity of the air jet. Hence

vjet =

√
ρwater

ρair
2gΔh. (17)

The density of air is ρair = 0.00129 g/cm3 at STP.
The expected dependence of the velocity of the jet as a function of height h above its

mouth can be deduced from conservation of momentum. Assuming the jet forms a cone of
angle θ the area of the jet at height h is A = πh2 tan2 θ. That is, more air participates in the
jet at greater distances from the mouth (under the excellent approximation that the density
of air is constant throughout the jet). The total volume of air in the jet that passes height
h in time Δt is V = AvΔt. The momentum of this air is Mv = ρairV v = ρairAv2Δt =
πρairh

2 tan2 θv2Δt. But the total momentum of the moving air must be that same at any
height h since there is no (significant) external force on the jet air once it leaves the mouth.
Hence we infer that

vjet =
K

h
. (18)

Finally, assuming the weight of the levitating sphere is entirely balanced by the high-
speed drag force, eq. (3), we have

Msphereg =
πρsphered

3g

6
=

CD

2
ρairAspherev

2
jet = CD

πρaird
2v2

2
. (19)

This can be rearranged to isolate the drag coefficient:

CD =
ρsphere

ρair

gd

6v2
. (20)

The numerical data analysis can be carried out with the aid of program StatMost. First
process the U-tube data to fit the jet velocity to the form v = c0 + c1/h as suggested
by eq. (18). Create a New Sheet Document and enter the heights h in column A and the
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differences Δh in column B. Use Data, then Transform, then Simple Math to calculate the
air velocity according to eq. (17) via Formula: V=SQRT(1519400*B), assuming Δh is in cm.
Create a new column containing 1/h via Formula: H1=1/A. Then use Polynomial Regression
of Order: 1 to perform the fit of V to H1. Print and Plot as usual.

Create a second spreadsheet containing the diameter d of the spheres in column A and the
levitation height h in column B. Create a new column C containing the jet velocity at height
h using the above fit; Formula: V=c0+c1/B. Finally, create a new column containing the drag
coefficient according to eq. (20) via Formula: C D=k*A/C^2 where k = ρsphereg/6ρair.

Also, calculate (using StatMost) the Reynolds number NR for each sphere according to
eq. (4) using diameter d as the characteristic length L and the viscosity of air as η = 0.00018
cgs units. Plot the drag coefficient against the Reynolds number.

At high Reynolds number the drag coefficient should be slightly less than one. Your drag
coefficient for the very large spheres might be small because the area of the jet is less than
the area of the ball, so the drag area is less than that assumed in eq. (19).

More thorough studies could be done in a wind tunnel but your experiment with the
exhaust from a vacuum cleaner has already revealed the essential physics.




