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Physics 103/105 labs start Monday September 21, 2008.  It's important that you go to the 
lab section that you signed up for.  We will be expecting you! 
 

You should have a lab book and a scientific calculator when you come to your first lab.  
(See details in the Orientation section following.) 
 

Each week, before you come to lab: 
 

Read the procedure for that week's lab, and any additional reading required. 
 

The Prelab problems are optional, but please work them if it appears that they 
will be of help to you. 
 

Also, for the first week: 
 

Read the “Orientation to Physics 103/105 Lab” and “Error Analysis – Guidance 
and Reference Text” sections of this packet, and the assigned sections in Taylor. 
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Princeton University Physics 103/105 Lab, Fall 2008 
Physics Department  
 

LAB SCHEDULE 
 
Remember: Always read the writeup and any reference material before coming to lab.  
 
Date  Topics       Experimentation   Equipment                           
 

Sept 21-24 Experiment # 1 

Encountering the 
Equipment; Motion 
in Two Dimensions  

Learn to use camera and software.  
Take data on bouncing ball.  
Calibrate m/pixel.  Analyze 
results using both VideoPoint and 
Excel. 

PC & CCD camera. 

Ball & launcher, backboard. 

 

Sept 28-Oct 1  

 

Experiment # 2 

Describing 
Measurement 
Variability 

Characterizing deviations in 
repeated "measurements" 

Tokens and shaker box. 

Special Excel program. 

Oct 5-8 Experiment #3 

Free Fall, Terminal 
Velocity, etc. 

Digitizing camera images again.  
More use of Excel. 

PC & CCD camera. 

Ball & launcher, backboard. 

Very light objects. 

Oct 12-15 Experiment # 4 

Collisions and 
Conservations 

Look at collisions in two 
dimensions 

Air table, with pucks and 
other objects.  PC & CCD 
camera 

Oct 19-22 

 

Experiment # 5 

Inclined Planes and 
Energy 
Conservation 

 

Look closely at objects moving 
under "constant acceleration."  
Isolate and quantify effects of 
friction. 

PC & CCD camera. 

Tilted Ramps 

Carts 

Cafeteria of “stuff." 

Oct 26-29 Experiment #6 

Two Experiments in 
Rotational Motion 

Loop-the-Loop and rolling off a 
log. 

Special apparatus. 

Nov 2-5 NO LAB --- MIDTERM BREAK --- 

 

 

Nov 9-12  Experiment # 7 

Fluids 

Forces in fluids and fluid flow  
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Nov 16-19 Experiment # 8 

Coupled Pendulums 
and Normal Modes  

Interacting pendulums having 
slightly different frequencies. 

 

 

Nov 23-26 

 

NO LAB --- THANKSGIVING ---    

Nov 30-Dec 3 

 

Experiment # 9 

Precision 
Measurement of g 

Use a precision pendulum to get a 
very accurate measurement of g. 

Special apparatus. 

Dec 7-10 Experiment # 10 

The Speed of Sound 
and Specific Heats 

Measure the speed of sound, 
density of gasses. 

Gas column, frequency 
generator, vacuum pump, 
scale. 
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Orientation to Physics 103/105 Lab 
 

WELCOME TO PHYSICS 103/105 LAB! 
 

I.  What Physics 103/105 labs Are Like   

You will soon find that Physics 103/105 Lab is not like any lab you've had before. 
You will be expected to think and be creative, not just follow instructions.  The lab 
manuals for each experiment will step you through many of the new techniques that you 
will need, but you will not generally be given recipes to follow for each experiment.  The 
manual for each week will typically describe a basic experiment that all students will be 
expected to complete.  Beyond that, the manual will suggest a variety of additional 
experiments and extensions that you may find interesting and challenging.  You can pick 
one or more of these to work on, or you can invent a new experiment on your own. The 
lab employs versatile equipment that will allow you to do the “standard” experiment 
quickly and then branch out to new challenges that match your interests and expertise. 

In Physics 103/105 Lab, you will generally work in 
teams of two or three students.  (Larger groups become 
unwieldy.)  Your TA will randomly assign teams.  Students 
will work in the same groups each week but, there is 
always some flux as team members change sections, or as 
some experiments require larger or smaller groups.  
Always be flexible about letting others work with you, or 
splitting up your existing team if it makes the groups more 
even.  Your TA may mix things up and switch groups in 

Physics 103/105 labs start the first full week of classes.  It's important that you go to the 
lab section that you signed up for.  We will be expecting you! 
 
You should have a lab book and a scientific calculator when you come to your first lab.  
(See details in the Orientation section following.) 
 
Each week, before you come to lab: 
 

Read the procedure for that week's lab, and any additional reading required. 
 
The Prelab problems are optional, but please work them if it appears that they 
will be of help to you. 
 

Also, for the first week: 
 

Read the "Orientation to Physics 103/105 Lab" material below. 
 

I. What Physics 103 
labs are like   

II.  Notebooks 
III.  Prelabs 
IV.  Grading 
V.  Attendance 
VI.  Feedback 



 vi

the middle of the term to give people a chance to work with other individuals. 

You will find that learning how to plan and work together will be crucial to the 
effectiveness of your team. Among your responsibilities in physics 103/105 is to be sure 
that all of the people in your team get a chance to contribute to your success.  Take turns 
at the computer so that every team member gets a chance to drive.  If one or more of your 
team members is lost, take a few minutes to get them up to speed—you’ll need their input 
later when things get tougher!  You will also find that you learn a lot by discussing 
problems with others, even when you think you’re the one doing the teaching.  Most 
scientists and engineers today work in teams, some large and some small, depending on 
the size of the task.   

Periodically, your TA will come by your lab bench and ask you questions about 
what’s going on.  Of course, you can ask your TA questions about what’s going on too.  
You will find that your TA is a great resource.  On the other hand, you shouldn’t be 
surprised if your TA doesn’t answer all of your questions directly.  Your TA’s job is to 
help you learn, and sometimes the best way to do that is by making you struggle on your 
own for a while.  

Physics labs won’t always follow the lecture step for step.  Sometimes, you will 
learn things in lab before you see them in lecture or precept.  In other cases, you will see 
topics in lab that won’t be covered in the lecture at all.  While physics labs are good for 
helping you solidify what you learn in lecture (either before or later), they are also great 
for going beyond the lecture, showing you additional techniques and phenomena that you 
won’t see in other parts of your physics course. 

 Among the important techniques you will learn in lab that won’t be covered in 
lecture are data analysis and error analysis, or analyzing the uncertainty in your 
measurements.  These are critically important skills that you will need in your 
professional lives as scientists and engineers, and things you may not learn any place 
else.  In some cases, analyzing your data and estimating your uncertainty will be the most 
difficult parts of a lab.  This actually mirrors the professional lives of real scientists and 
engineers, who may spend very little time actually taking data, and a lot of time 
analyzing their data and planning what to do next. 

The process you will go through in this lab closely approximates the working 
experience of professional scientists and engineers.  It goes something like this: your 
team decides on an interesting investigation, makes a plan, organizes to do the work, gets 
and analyzes data, thinks about the results, and repeats or improves the experiment until 
you are satisfied with your accomplishments. The most valuable tool that you have in the 
lab (or anywhere else) is your common sense.  A good scientist or engineer is always 
thinking:  Do we have a clear idea of what are we trying to do? Do our results so far 
make sense?  Is there a better way to do it? Practicing scientists almost never get their 
final results the first time they do an experiment.  Don’t just go through the motions: 
plan, think, and understand. Try to get to the result quickly, think about it, and then do a 
better experiment or try a variation to test a “what if?” idea.  Along the way you will 
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learn a lot of physics, especially if you are thinking and discussing (or arguing about) 
ideas with your teammates. 

II.  Notebooks 

For physics 103/105 labs, you will not turn in any formal laboratory reports.  
Instead, you will be required to keep a notebook.  You can get one at the U-Store.  The 
spiral bound 5X5 QUADRILLE RULED (80 Sheets 11" X 8.5" Green tint) is 
recommended (cheap and adequate).  If those are not available, try to get something 
close; quadrille paper is particularly important. 

Start each week’s lab on a new page; write the date at the top, and who your other 
team members are.  From that point on, your notebook should be a comprehensive record 
of everything you do and think in 103/105 lab that day; sort of like a diary or a journal.   

Your lab notebook is not the same as a “lab report.” It contains similar 
information, but in much less polished form.  DO NOT waste time making your notebook 
look pretty.  It should be neat enough to be easily understandable, BUT NOT NEATER.  
Feel free to cross things out, draw arrows, make freehand sketches, and cuss.  Use 
scissors and tape to include printouts in your notebook whenever you use a computer to 
make a diagram or a graph.  Also, include all of the things you tried that didn’t work out 
how you planned; they’re an important part of what you are learning too.  Just be sure 
that your notebook is easily readable, and always take some time to write some 
understandable sentences explaining what you are about to do, what you’ve just done, 
and what you have learned from it. 

Suppose, for instance, that you have just measured the speed of a car that has 
rolled down a ramp, and it didn’t come out like you expected it to.  You might write: 

 “The value we came up with for the speed of the car was 4.2 m/sec; that’s about 15% lower than 
we expected.  Maybe friction (while rolling) is more important than we thought?  Jen suggested 
we try raising the ramp: that way the speed of the car should be greater, and the effect of friction 
should be (relatively) smaller.” 

You could then try the experiment again, including the new data and a new graph in your 
notebook, along with your conclusions: 

“Dang!  The speed increased to 6.7 m/sec, but now that’s 25% lower than we expected it.  The 
problem didn’t get better, it got worse!  So much for that idea: we can conclude that friction while 
rolling down the ramp probably isn’t the problem....” 

Notice that although the problem isn’t solved yet, the student was able to draw a 
partial conclusion: that the discrepancy in speed is not due to rolling friction.  These 
conclusions are vital for your notebook.  Without them, your notebook is just a bunch of 
meaningless numbers.  Of course, a final paper based on this experiment might never 
include this degree of detail, especially about this part of the experiment that seems to be 
producing inconsistent results.  But solving these difficulties is an important part of your 
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experience in lab, and your description of your experience is what your notebook is all 
about. 

Students are often unsure about how much detail to put in the notebook.  What we 
most want to see in your notebooks is evidence of thinking, and not just “correct” results.  
A reasonable rule of thumb is to imagine that your notebook will be read by a friend of 
yours who is taking a similar physics course, perhaps at another school.  Your friend 
should be able to pick up your notebook, perhaps along with your lab manual, and 
understand what you have been doing.  If you have made a mistake in your experiment, 
your friend should be able to look back a few pages in your notebook and figure out 
where you might have gone wrong. 

At the end of your lab period, leave your notebook on the shelf in your lab room 
for your TA to grade.  DO NOT REMOVE your notebook from the lab room. This rule is 
for your own benefit.  When students take their notebooks home, it starts a sort of arms 
race for who has the prettiest colored graphs and the best spelling.  Don’t waste time 
beautifying your notebook; it's a record, not an artwork. 

Professional researchers rely heavily on their notebooks for reference when they 
write the papers or reports describing their work.  Notebooks are the means to recall and 
check, sometimes years later, what went on in the lab.  Many researchers have their 
notebooks regularly notarized, in case they are needed for patent verification.  It's 
important to learn how to keep a good lab notebook.  Someday your job may depend on 
it.   

III.  Prelab work 

You must read (and think about) the lab handouts and the assigned reading in 
Taylor's book on Error Analysis before coming to lab.  Otherwise you will waste a lot of 
time in getting up to speed.  If your lab partners aren’t reading the write-ups ahead of 
time, ask them to do so.  Many of the writeups refer you to Appendix materials which 
you will be expected to read carefully.   

You can also complete the optional “prelab problems” in the back of the manual 
for each laboratory before coming to lab.  The prelab problems are not too hard or time 
consuming, but they can be helpful in getting you prepared for each week’s material.   

IV.  Grading 

The main intent of Physics 103/105 lab is to offer you a chance to be scientifically 
and technically creative.  We want you to get and pursue ideas.  Our evaluation of your 
work will depend a lot on your creativity and understanding, and very little on “getting 
the right answer.”  Experimentation is hard, and even good experiments don’t always turn 
out how you plan them too 
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Golden rule of 103/105 lab grading:  In general, we won’t hold it against 
you if an experiment doesn’t produce the answer you think it should or 
doesn’t quite get finished, as long as you worked hard and were 
intellectually and creatively engaged for your entire lab period.  The flip 
side of the pact is this: In general, you are required to be intellectually 
and creatively engaged for your entire lab period, even if your experiment 
goes well.  If you finish one experiment, then think of another.   

Whatever you do, don’t just sit around doing nothing.  Your grade will suffer, and 
you will attract unwanted attention.   

For Physics 103 Lab grade is worth 15% of your course grade in the class 
(Physics 105 will announce its grading scheme in class). But for both classes, your lab 
grade is calculated as follows: 

75% Notebooks: Graded after each lab for completeness, thoughtfulness, and 
readability. 

25% Participation: Graded for each lab for creativity and industry. 
 
  

V.  Attendance 

Attendance each week is vital in Physics 103/105 Lab. If you must miss your 
regular lab section due to illness, University-related travel, or religious reasons, contact 
the Ph103 Lab Manager: Prof. Kirk McDonald (kirkmcd@princeton.edu) by email at to 
arrange to go to another lab section.   

Missing one lab without notice or without a valid excuse will lower your PHY 
103/105 course grade by one full letter grade.  Missing two labs will result in automatic 
fail of the class. 

If you realize that you have missed a lab because you have slept through it or have 
forgotten what day it was, then you can make it up later that week in another lab section.  
If you realize you have missed your lab, try to contact Prof. McDonald.  However, if you 
have only one time slot left that you can make up the laboratory, don’t wait to hear from 
the department office; just show up, explain the situation to the TA, and we’ll sort the 
paperwork out later.   

Makeup labs will offered, by appointment with Prof. McDonald, during the last full week 
of class, Dec. 14-17.  However, it is strongly recommended that in case of schedule 
difficulties some week, you attend some lab session that week, and work with other 
students on the lab. 
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VI.  Feedback 

Physics 103/105 Labs are always changing. As always, we think we’ve nailed it, 
but chances are we’ve missed some things.  To help us do better in future weeks and 
future years, we want to hear feedback from you. 

If you have any questions, comments, or concerns about Physics 103/105 lab, 
please bring them up with your TA, the lab manager, or the course head.  Thanks! 

 
 
 
 
 

 

Physics 103/105 Labs start on Monday, September 21, 2009.  
See you soon! 
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Error Analysis – Guidance and Reference Text 
 

 
All of science is based on observation and measurement, and virtually all measurements 
are imprecise.  Similarly, quantitative work in engineering, medicine, sociology, and 
many other fields involves consideration of imprecisely known inputs or results.  Thus 
we come to the topic of “Error Analysis,” which should really be called “Estimation of 
Uncertainties.” 
 
In all of your lab activities, you need to be concerned with the precision of your 
measurements, and with their accuracy and repeatability.  And when multiple 
measurements are combined to yield a computed result, you need to understand how the 
uncertainties in the measurements affect your final conclusions. 
 
We won't teach Error Analysis as a separate subject.  Rather, you will be asked to 
develop intuitive and conceptual strengths as we go.  That way, we hope that the formal 
mathematics and equations will become natural expressions of your understanding of 
what you are doing. 
 
The major resource we expect you to use is An Introduction to Error Analysis, by John R. 
Taylor.  That's the paperback book with the picture of a train wreck on its cover.  It is a 
classic in the field, and should be kept as a permanent item in your professional library no 
matter what field of science or technology you go into (and also if you want to read and 
critique such things as newspaper articles on health and environment). 
 
Most weeks, you will be asked to read a few sections in Taylor before you come to lab.  
Make sure that you do so.  The purpose is to get you to understand the concepts and to be 
ready to apply them in the upcoming lab.  We have assigned only the basic sections of the 
text.  You may want to look at some extension material if you are interested in special 
topics, or in the background mathematics.  You may also want to look at some of Taylor's 
problems (especially the odd-numbered ones whose solutions appear in the back of the 
book) if you are uncertain of your understanding. 
 
The subject of Error Analysis can be painful, especially if you approach it as an 
application of abstruse formulas.  But the intellectual content is really very basic, and 
quite intuitive.  Feel free to discuss with your lab instructor how you should be doing 
things.  We hope that by the end of the course you will feel comfortable with our 
introduction to the subject, and prepared (perhaps starting with the unassigned portions of 
Taylor) to go as much further in the subject as your interests may take you. 
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BEFORE YOU COME TO LAB: 

1. Read the Orientation to Physics 103/105 lab, above. 
2. Read the Introduction and Physics Background sections, below. 
3. Read Taylor's Sections 1.5-1.6 and 2.1-2.2.  (You should have read 

Sections 1.1-1.3 last week.)  If you are unfamiliar with spread sheet 
programs, read Appendix A – Data Analysis with Excel 

4. If you find it helpful, work the optional PreLab problem set 
attached at the end; You can discuss this with your TA at the 
beginning of the lab. 

Princeton University Physics 103/105 Lab 
Physics Department  
 
 

LAB #1: Encountering the Equipment; 
Motion in Two Dimensions 

 
 
 
 
 
 
 
 
 
 
 
 
This lab is about motion, and how to describe it.   The intuitive precision that a baseball 
player shows in moving to exactly the right location to catch a fly ball immediately after 
it leaves the bat is amazing.  But in the technical realm it is useful to make a 
mathematical description.  Describing motion requires measuring position and time.  In 
Galileo's era, a measurement-based approach was in its infancy.  But it is fundamental to 
all science. 
 
Much of your time in this lab will be spent mastering a video-based method of measuring 
position and time.  But don't lose sight of what is really important – characterizing 
motion itself.  In what sense does motion sustain itself, and how do external agents affect 
it?  Can two-dimensional motion be analyzed in terms of two separate descriptions, each 
involving only one dimension?  Newton's simple equation, F = m a (with F and a being 
vectors), underlies a formal answer to such questions.  But formalism has to be related to 
measurement and intuition.  That is what this lab is really about. 
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A.  Introduction 
 
In this lab you will use a TV camera to make videos of moving objects, and a computer 
to analyze the motion.  It is important that every member of your group learn how to use 
the computer and software.  Be sure that you all take turns and that, when you are the 
operator, your partners understand what you are doing. 
 
First, open the Physics 103 folder, located on your computer's Desktop. You will then 
see a screen with icons for the programs that we will use in this lab.  These include:     
 
 VideoPoint Capture:  We use this to record a video. 
 
 VideoPoint:  the program in 
which you will analyze your videos, 
by measuring positions in the video 
frames, and graphing and analyzing 
the results. 
 
 Excel with WPTools: an 
extension of the common Excel 
spreadsheet program, which allows 
more detailed calculations and 
graphing.  The WP (Workshop 
Physics) extensions make it easy to use Excel’s sophisticated graphing functions.   
 
 WordPad: a utility word processor, useful in printing out an image of any computer 
screens that you need to discuss in your write-ups. 
 
 Student Data: a folder with space for you to put your files.  
 
Capturing a Single Still Image 
 
Your first task is to capture a still picture of yourself to give to your lab instructor to help 
him or her remember your name and face.   
 

1. Open VideoPoint Capture.  
 
2. A Preview Screen appears, with a picture of whatever your camera is viewing at 

the moment. Wave a hand in front of the camera.  Check that the camera is 
focused on it.  If not, rotate the distance-setting ring on the camera lens to get a 
sharp image.  If the picture is too dark or too light, rotate the aperture ring on the 
camera lens to change the amount of light level reaching the camera’s sensor.  
(The lens admits light through a circular opening, or aperture, whose diameter is 
controlled by rotating the ring.  The larger the diameter, the more the light and the 
brighter the picture. ) 
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3. Position yourselves (re-aiming the camera if necessary) so that your faces fill the 

screen.  Then reach over, hold down the ALT key, and hit the Print Screen 
button near the right end of the top row of keys on your keyboard. (This actually 
makes a copy of the screen, rather than printing anything.) 

  
4. Now, open WordPad.  Then choose EditPaste to insert the image that was 

copied using the Print Screen command.  (Please do NOT change any of the 
computer or display settings in an attempt to make the image larger.  Such 
changes may interfere with your analysis program.) 

 
5. Click on the printer icon in the WordPad menu to make a hardcopy of your 

picture.  Write your names on a printout of your picture and give it to your 
instructor.  (Extra copies to take home, or to send your grandmother, are 
allowed.) 

 
Stop and Think – What is a digital image? 
 
Before trying to capture a video in the computer, let’s be sure that we understand what 
the moving image on a television screen actually consists of.  It is a series of individual 
stationary, or still, pictures, appearing at a rate of 30 pictures, or frames, a second.  
Standard movie films consist of strips of such still pictures, recorded photographically at 
a slightly lower frame rate.   
 
Digital computers, and hence our electronic imaging systems, work only in quantized 
units.  Your camera divides the area that it sees into 76,800 elements, arranged into a grid 
320 cells wide by 240 cells high.  You will see later that VideoPoint measures x- and y- 
positions with twice this resolution, dividing the x-direction into 640 integer steps and the 
y-direction into 480 steps.  In either case, a 1-step by 1-step cell is called a pixel, for 
“picture element.”   
 
To determine the coordinates of an object in an image frame using VideoPoint, we just 
position the cursor over the object, and the system will count the pixel rows and columns 
to get to the location of the cursor, starting at the lower left of the image on the screen.  
Then, if we know how many pixels correspond to a meter long object, we can calculate 
real distances from the pixel counts.  This is called “scaling the image.”  We will return 
to this shortly. 
 
With real distances known from scaling the images, and with the time interval between 
two chosen frames also known (a multiple of 1/10 sec, say), we can easily calculate such 
things as velocities and accelerations of moving objects in our videos. 
 
Note that the system reports locations rounded to the nearest integer pixel count.  As a 
result, no position measurement can be known more accurately than within ± 0.5 pixel 
spacing, or to within ± 1/2 of whatever distance is equivalent to one pixel in real units 
(mm, meters, etc.). 
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B.  Physics Background 
 
In this lab you will analyze the trajectory of a bouncing ball.  The ball will be accelerated 
by gravity in the –y direction, but not in the x direction.  Assuming that only gravitational 
forces are significant, the ball's motion should obey the equations 
 

x = x0 + v0x t  ,    (1) 
 

y = y0 + v0y t  - 1/2 gt2 .   (2) 
 
 
In this experiment, a golf ball rolls down a 
fixed rail (the “launcher”).  After it leaves 
the launcher it falls freely, bouncing at least 
twice on the table top.  The camera takes a 
series of pictures at fixed time intervals 
between the first and second bounces, when 
the ball is moving freely.  By measuring the 
position of the ball in each picture, you can 
test equations (1) and (2). 
 

C.  Acquiring the Data 
 
To make your first video,  
 
 Open VideoPoint Capture and use the Preview Screen to 
 

1. Aim the camera, and check the lens focus and aperture setting 

2. Include a meter stick in the picture, for scaling the video 

3. Make a few trial runs, adjusting the launcher as necessary for the camera to 
catch one full bounce 

4. Set the frame capture rate to 30 frames per second, using the button at the 
lower left of the image. 

 
Make an Actual Movie of the Bouncing Ball: 
 

1. Start recording by clicking on the Record button 

2. Start the ball rolling down the launcher, and let it complete one full bounce 

3. Hit the Escape button on your keyboard to stop recording.  (The Stop button on 
the screen doesn't always work.) 
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4. Note:  Although you don't need to rush things, don't record too much “dead air” 
before and after the actual experiment – it just ties up computer memory. 

 
Viewing Your Video: 
 
After VideoPoint capture takes a few seconds to organize your video, it stops to display 
the first frame of your movie in an Editing window.  Note that you can 

 

1. Play the movie by clicking on the little triangle at the lower left.  Watch the 
progress as indicated by the moving “progress button” below the image.  
(Clicking on the triangle while the movie is playing will stop it at whatever frame 
it has reached.) 

2. Jump to any frame by manually moving the progress button with your cursor. 

3. Single-step from one frame to the next by clicking on the left and right arrow 
buttons below the image.  

 

Each of you should spend some 
time playing with the Editing 
screen controls, to understand 
their functions and to get a “feel” 
for the fact that a video or movie 
is really only a sequence of still 
pictures. 
 
Editing Your Video: 
 
In general, your original video 
will contain more frames than you 
will want to use for analysis.  
Today, we want to analyze the 
ball's motion between two 
consecutive bounces off the table.   
 
To get rid of the unnecessary 
frames at the beginning and end 
of your video, 
 

1. Use the progress and single-step buttons to choose the first frame after the ball has 
bounced from the table. 

2. Click on the First button.  All of the earlier frames are eliminated. 

3. Move the video back to the last frame before the ball bounces again.  Then click 
on Last.  All of the later frames are eliminated, and your video contains just one 
bounce. 
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4. Press Keep to save the file, or Record to discard the data and record a new 
movie. 

 

Naming and Storing Your VideoPoint Capture Files; Opening VideoPoint to 
Start Your Analysis: 
 
We have provided a folder identified by your lab group's meeting time in which you 
should store all of your data and analysis files.  This folder is found in the top-level 
Student Data located on the hard drive labeled Students (D:).  It should be accessible 
from the Physics 103 folder on your desktop. 
 
To save your video, 
 

1. Click on the Save button on the 
editing screen. 

2. On the screen which appears, titled 
Save Movie File as:, find your 
section's folder.   

3. Provide a name for your file which 
will help you find it later.  You 
may want to insert words before 
the suggested name (which 
indicates the month and the day by 
four digits, followed by two 
additional digits which simply 
cycle from 01 to 999).  The 
resulting file name might be 
Bouncing Ball 091501. 

4. After choosing the correct folder, 
and editing the file name, click on 
the Save  button. 

5. Click on the Open in VideoPoint button to exit from VideoPoint Capture and 
start an analysis of your movie. 

D.  Data Analysis Using VIDEOPOINT 
 
With your movie now opened in VideoPoint, you are ready to do some physics.  In the 
Number of Points screen which first appears, click OK to 1, since there is only one 
object that we want to analyze (the bouncing  ball). If you see an information screen titled 
About VideoPoint, just click on the little x at the top right to make it disappear. 
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"Picking Off" Coordinates 
 
Three windows appear when VideoPoint is first opened.  The Movie window shows the 
first frame of your edited video, with your file name appearing in its title bar.  It looks 
very much like the editing screen in VideoPoint Capture.  (Confirm that you can play 
the movie, and 
use the progress 
and single-step 
buttons as 
before. The 
Movie window 
shows you, at 
the upper right 
hand corner, 
which frame 
you are 
viewing, and 
the total number 
of frames in 
your video.) 
 
The Movie 
window is 
where you will 
"pick off” the coordinates of the golf ball's position in each frame.  Note the yellow 
coordinate axes on the screen, and note that the cursor changes to a cross-hair pointing 
device when you move it into the image area.  Finally, note that both the time of the 
frame and the x- and y-coordinates of the cursor are shown at the lower left of the movie 
window. 
 
To enter your positional data, 
 

1. Go to the first frame of your edited movie. 

2. Position the cursor over the image of the golf ball, and click your left mouse 
button.  (You may want to maximize the size of the Movie window, for increase 
accuracy.) 

3. Note that the movie advances automatically to the next frame.  (If it doesn't, go 
the Options menu and put a check mark next to the Auto Frame Advance 
option.) 

4. Click on the image for several more frames.  Stop and turn the Edit / Leave/Hide 
Trails option on and off, and note that the ball's history is shown superimposed on 
whatever frame you stop at. 
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Now stop and look at 
VideoPoint's Table window.  It 
shows the time of each frame of 
your movie, and records the x- 
and y-pixel locations of each 
position that you identified by 
clicking on a frame.  The three 
data columns are similar to those 
in a spread sheet program, but 
don't allow any manipulation of 
their contents.  (Later on, we will copy and paste the data to an Excel spread sheet and do 
some calculations.) 
 

1. Finish your data entry by going back and picking off the coordinates of the golf 
ball in each of the frames of your video. 

2. If you make a mistake in positioning your mouse in a particular frame, you may 
want to correct the position of the point you chose.  You can move the old point to 
a new location.  With the item selected in the Coordinate Systems window, and 
two concentric circles showing around the previously chosen location, first place 
the arrow-shaped cursor at the center of the circles.  Then, while holding down the 
left button on the mouse, move the location circle to the new, corrected, position.  
Releasing the mouse button completes the change, and enters the corrected 
coordinates into the data table. 

 
Graphing Your Data   
 
To use VideoPoint to make graphs, first click on the View  New Graph menu item.  
For each graph, you must tell the system which variable you want plotted on the x-axis, 
and which on the y-axis.  Normally, you will want either time or x-position to run 
horizontally, and x- or y-position, velocity, or acceleration to run vertically. 
 
Let's make and print out some graphs.   
Start with an XY graph.  Choose Point 
S1 / x / Position for the Horizontal 
Axis, and S1 / y / Position for the 
vertical axis.  Note that, if you go back to 
the Movie window and advance through 
the frames, a circle moves on the graph 
to indicate which of the points plotted 
corresponds to the movie frame currently 
visible.   
 
To print a graph, first make its screen 
active by clicking anywhere on it.  (The title bar of the graph will be colored blue after 
your click.)  Then click on the File  Print menu bar option, and click on Print and OK 

(Your dialog box will not show Point S2 
and Point S3, since you have made 
measurements on only one object.) 

Summary of Options When Picking Off Coordinates:    

Note that the Movie cursor looks like a crosshair if no 
coordinate has been chosen for a given frame, and like an 
arrow otherwise.  

Use Edit/Leave or Hide Trails to turn trails on or off. 
Use the Coordinate System window to Select a point series 

by highlighting it  
Move a selected point in a given frame, by positioning the tip 

of the arrow on the point and holding down the left 
button. 
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when you are asked to confirm your request.  If you maximize the size of the graph 
window before printing, your printed graph will be larger. 
 
You can also make a printout of any one of the frames of your video, simply by printing 
when the movie window is selected.   
 
If you need a printout of your data table, first be sure to first maximize the table window 
by clicking on the middle one of the three boxes at the right end of the Table title bar.  
Then issue the print commands.  When you want to make the table small again, just click 
on the middle box, as before.  (If your table is very long, you may have to print more than 
one time, scrolling vertically to change which data lines are presented each time.) 
 
The Initial Physics Discussion 
  
Print out and think about the following graphs.  Each of you should have your own copy 
of the group's printouts, and note your own conclusions on your own plots. 
 

1. Do the plots of x-position, velocity, and acceleration all confirm that the golf ball 
is subject to no horizontal force? 

2. Does a plot of y-position vs. time look like you expected?  (What is that?) 

3. What does a plot of y-velocity vs. time look like?  What does that show? 

4. What about a plot of y-acceleration vs. time?   

You should know that we expect to see a constant, negative, acceleration of the golf ball 
in the y-direction.  Numerically, we expect that the acceleration of the golf ball will be g, 
which is approximately equal to 9.80 m/sec2.  But we have yet to scale our movie, in 
order to find the conversion factor between pixels and meters.   

Before we scale the movie, let's look at our results in terms of pixels, and take a look at 
how accurate those results seem to be. 

 

E.  Final Analysis – Fitting Your Data; Looking at Data 
"Jitter" 
 
Now for some more quantitative 
analysis.  First, let's fit a 
quadratic curve to y as a function 
of time.  The computer can show 
us the quadratic function that 
"comes closest" to passing 
through all of the data points on 
our y vs. t plot. 
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To do this, go to your graph of y-position vs. time, and then click on the red F (for Fit) 
button near the upper right hand corner.  A dialog box will appear.  Select the 
Polynomial option, and then choose Order 2, and click on Apply.  VideoPoint's best-fit 
line should appear on the graph. 
 
At the top of the graph is the algebraic function resulting from the plotted fit. (Here, x 
refers to whatever is the horizontal variable on the graph, not to our x coordinate.  Also, 
you should ignore the computer's R2 (R-squared) parameter.  It is simply one of several 
statistical measure of the goodness of the fit, and VideoPoint often calculates it 
incorrectly.)  
 
The number multiplying the squared term in the fit corresponds to the "1/2 g" factor in 
equation (2).  If we multiply our number by 2, that gives our experimental value for g, in 
units of pixels/sec2. 
 
Before moving on to scale the movie, and get g in m/sec2, let's look at how closely our 
data follows the computer's “best fit” curve. 
 
Zooming in VideoPoint; Looking at Data “Jitter” 
 
Maximize your plot of y vs. t.  Probably all of the points lie close to the curve, but how 
close? 
 
"Magnify" a region of your VideoPoint plot, by “zooming in” on it with the following 
steps: 
 

5. While holding down the Ctrl (Control) key of your keyboard, hold down on the 
left mouse button and use the cursor to draw a rectangular box around a region of 
interest containing one of your data points.   The graph then shows only that 
region, in a magnified view.  

6.  If you want to magnify some more, do it again.  (But if you magnify too much, 
the fit line may disappear, and you'll have to start over by returning to the 
unmagnified graph.) 

7. When you want to return to your original unmagnified view, just hold down on 
the Ctrl key and double-click with the left button of your mouse. 

 

Use the zooming feature to look at several points of your graph, and to judge how far the 
points are vertically away from the best-fit curve.  Record your results, and calculate 
the average of the magnitudes of the deviations that you found.  [WARNING – after a 
“zoom,” the scales on VideoPoint's graphs may not be quite what they seem.  Often, 
there is an additional decimal place which is not shown on the screen's axis labels.  To 
correct this, you can double-click on the 
axis, and delete the extra digit to cure the 
problem.  For now, it is easier to use the 
cursor readout at the lower left corner of 
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the graph to estimate the differences between your data point and the nearby curve.] 
 
The average deviation which you have calculated is an estimate for how much an 
individual measurement varies from the “true” value indicated by the curve.  It includes 
the random ± 0.5 pixel “quantization error,” plus any inaccuracies you introduced in 
picking off your points. 
 

F.  Using Excel for Further Analysis 
 
Spreadsheet programs are powerful tools for data analysis, in finance and other fields as 
well as in science and engineering.  Our version, Excel with WP Tools, includes 
extensions generated by an academic project, Workshop Physics (WP), to allow easier 
generation of graphs from spread sheet data.  It also provides more information than 
VideoPoint does when fitting functions to graphs.  Although we will use Excel more 
generally later this semester, we would like today to export your data into Excel, 
generate graphs, and do fits to your YT data much as you did using VideoPoint. 
 
To export your data into Excel: 
 

1. Maximize the data table window in VideoPoint, and click on the heading box for 
time.  Then hold down the Ctrl key and click on the y-pos heading box.  Those 
data columns should then be highlighted. 

2. Use the Edit / Copy command to copy the highlighted data. 

3. Open the Excel with WP Tools program in the Physics 103 folder.  When the 
program starts up, click No when it asks if you want to reopen WPTools, and 
then use File / New Workbook / OK  to start up a new spread sheet.  Then click 
on an open data cell and click on Edit / Paste to enter the data you copied from 
VideoPoint. 

To make a graph in Excel with WPTools, you have to identify what you want plotted: 

1. First, “swipe” your cursor across the data you want to plot on the horizontal axis. 
(In this case, swipe across the time values.) 

2. Then, while holding down the Ctrl key, swipe across the corresponding data you 
want for the vertical axis (the y-pos values). 

3. Click on WPTools / Scatter Plot to generate the plot. 

You should check that your YT plot is equivalent to the one you had in VideoPoint. 

 
Now, let's do a quadratic fit in Excel: 
 

1. Click on one of the data points of your graph, to select and highlight the points 
plotted. 

2. Click on WPTools / Polynomial Fit and choose Order 2  to create the fitted 
function.  Several boxes describing the fit should appear on your graph window.  
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[If not, go to WPTools / Preferences and make sure that the options for 
displaying fit equations and statistics on the plot are both checked.  If not, check 
them, and redo the plot.] 

3. Note that the parameters of the fit are 

a0 = the constant term in the quadratic equation 

a1 = the multiplier for t in the equation 

a2 = the multiplier for t2 . 

These Excel values should agree closely with your VideoPoint fit 
results.  [As before, ignore the R2 parameter value.] 

4. Note the value for σ (lower-case Greek letter sigma).  This is the computer's 
estimate for how far a typical data point deviates from the fitted curve. 

Does the value of σ seem reasonable, given your own estimates of typical 
deviations of your data points from the VideoPoint curve?  You should 
comment on the magnitude of the typical deviations, and on possible 
causes, in your notebook. 

5. Note also the values for SE(a0), SE(a1), and SE(a2).  These are values of what 
are called the "standard errors" in the values which the computer calculated for 
a0, a1, and a2.  These are the computer's estimates for how precisely your data 
determine the fit parameters, given the "jitter" of the data about the curve.  

6. You can consider Excel's value for a2 and SE(a2) to be your physics result for 
the value of 1/2 g and the estimated error in that value.  (Still in units of 
pixels/sec2, of course, since we still haven't converted pixels to meters.)  Record 
your result for g in your lab book, and calculate the relative precision, SE(a2) / 
a2. 

It is actually better to use a fit of order one higher than you think is needed to represent 
your data, and check that the value, an, of the highest-order parameter is consistent with 
zero to within the standard error SE(an).  In the present case, try a fit using Order 3. 

 

Before we convert pixels to meters and get our final physical result for the value of g and 
its uncertainty, let's review some of the concepts we have used. 

1. Things are accelerated by gravity in the vertical direction, but not horizontally. 

2. Constant acceleration leads to a quadratic variation in position. 

3. An electronic camera can measure positions in pixels, which have later to be 
converted to meters.  The integer-pixel position measurement leads to an 
uncertainty of ± 0.5 pixel in our knowledge of the true position. 

4. Every individual measurement is inexact, and we need to understand what a 
typical uncertainty in a measured quantity might be. 

5. Our result for the value of g (in pixels/sec2) is inexact, because the measurements 
are inexact.   
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Our focus on the deviations of measured points from the fitted line assumes that the fit 
itself is our best measure of the true function, and that the deviations are due to random 
jitter in the individual measurements.  Our manual study of the typical deviations, and the 
computer's calculation of σ, are attempts to characterize the range of random variations 
(including pixel quantization, mouse vibration, etc.).  These are examples of random 
errors, which are presumed to exist independently at each measurement.  Other errors 
affect all of your measurements at once.  They are called systematic errors.  An example 
occurs when you convert pixels to meters in your video.  The conversion factor clearly 
affects all of your points at once. 
 

G.  Scaling the Movie   
 
We have now to determine how many pixels in our picture correspond to one meter in the 
real world.  We will do this by measuring how long a meter stick was in our video, as 
measured in pixels.  The resulting value for our conversion factor (pixels per meter, or 
the inverse, meters per pixel) will allow us to convert any measurement from pixels to 
meters (or pixels/secs to meters/sec2).   
 
Our conversion factor will have some error, which we can estimate based on the pixel 
quantization error, plus a “guesstimate” as to how reproducibly we can position our 
cursor on the ends of the meter stick.  Once we know the conversion factor, and its 
estimated error, we can use it to convert all of our measured x- and y-positions to meters 
from the origin, rather than pixels.  But the conversions will all involve the factor, which 
has some error associated.  This is a systematic error, since it affects all measurements 
equally. 
 
First, choose any frame in which the meter stick is clearly visible.  Move the cursor 
manually to either end of the meter stick, and note the pixel coordinates at the two 
positions, from the live display at the lower left corner of the movie screen. Calculate the 
distance between the two points, in pixels.  Using the distance in pixels, calculate your 
movie’s scale factor, F, in units of pixels per meter.  Use this to convert your value for 
the acceleration of the golf ball from pixels/sec2 to m/sec2.   Note the result in your lab 
book. 
 
Is your answer close to the expected value of g?  What effects might systematically bias 
your answer away from 9.8 m/s2 ? 
 
Now let's consider what is the accuracy with which your measurements determine a value 
for g.  If the uncertainty in g is called Δg, then the fractional, or relative, uncertainty in g 
is defined as Δg/g. 
 
When we want to estimate the uncertainty in our determination of g, we will have to use 
both the computer's estimate of the effects of random error, SE(a2), and our estimate of 
the uncertainty in the conversion factor F from pixels to meters.  That is, 
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where F is your scale factor.  It is up to you to estimate a value for ΔF, perhaps by 
repeated trials.  Taking responsibility for estimating the accuracy with which you make a 
measurement is not easy, but you have to do it.  Take time to think it through! 
 
Record your final result for g and for Δg.  Note any comments you might have on the 
reliability of your conclusion, and on a comparison of your result with the accepted value 
for g, namely 9.80 m/sec2. 
 

H.  Storing Your VideoPoint File 
 
You will want to store your VideoPoint analysis file.  As before, put it in your lab 
section’s folder. 
 
First, click on File  Save As in the VideoPoint menu bar.  As before, use the up 
arrow and double-clicking to cause your section’s folder identification to appear in the 
Save in: box at the top of the dialog box which appears. It will be convenient to use the 
same name as the one you gave the video file which you saved at the end of the 
VideoPoint Capture activities.  This name should be visible at the top of the movie 
screen, if you have forgotten it.   
 
If you use Windows Explorer to look at the contents of your section’s data folder, you 
will see that there are actually three files associated with any movie that you have 
analyzed.  A large file with the extension .mov contains the actual movie.  A small file, 
having the same name with the extension .mov.#res added comes along with the movie 
file.  The VideoPoint file .vpt is also a small one.  It has whatever name you gave it, but 
can be used only if the movie file is also available on your computer. 
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PRELAB Problems for Lab#1: Encountering the Equipment; Motion in Two 
Dimensions 

 
 

1.  Assume that in a digital image there are 600 lines and 800 columns (typical for some 
computer display screens).  Each point in the image lying at the intersection of a line and 
a column is called a picture element, or “pixel.”  Each pixel has its own brightness and 
color.  The intensity of each of the three primary colors at each pixel may be described by 
an integer number, lying between 0 and 255.  Each number takes 8 digital bits, or 1 
“byte,” to define. 
 

(a)  How many pixels are there in the image? 
 
(b)  How many bytes of computer memory are required to record the image? 
 
(c)  If a video or movie consists of a series of 30 such images every second, how 
many bytes of information must be transmitted every second in order to display the 
movie?  How many bits per second?  (This is what sets the electrical engineer's 
design specification for a television system.) 

 
 

2.  Isaac Newton is said to have considered the motion of an apple falling from the tree in 
thinking about gravitational forces.  If we look at the apple's vertical motion, starting 
from the instant when it is released from rest, the distance it falls increases with time 
according to the formula for uniform acceleration, 
 

s = 1/2 g t2 . 
 

Galileo, who died the year Newton was born, studied motion under uniform acceleration, 
but did not have Newton's mathematics.  He concluded that 
 
 

Starting from rest, distances traveled in successive equal increments of 
time are in the proportions  1 : 3 : 5 : 7 :  ......... 
 

 

(a)  Using the formula s = 1/2 g t2, calculate the vertical distances traveled by a ball 
falling from rest after 0.1, 0.2, 0.3, 0.4, and 0.5 seconds. (To honor Newton's 
heritage, let's use English units and take g = 32 ft / sec2.)  
 
(b)  Show that your results are consistent with Galileo's description. 
 

If you are intrigued by this result, you might want to prove that Newton's result produces 
Galileo's rule, for any set of equal time increments.  Hint:  think about the quantity                           
[(N + 1) ΔT)]2  - [  N  ΔT)]2. 
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BEFORE YOU COME TO LAB: 

1. Review the "Data Analysis with Excel" material (Appendix A). 
2. Read Taylor's Sections 4.1-4.4.   
3. Carefully read at least sections A through C, below, and scan the 

remainder of the lab writeup. 
4. Consider the optional the PreLab problem set attached. 

Princeton University Physics 103/105 Lab 
Physics Department  
 
 

LAB #2: Describing Measurement 
Variability 

 
 

A.  Introduction 

Physics, and indeed all science, is based on observation and measurement.  Laws of 
science are formulated based on certain observations and tested by further measurements.  
One of the goals of introductory physics labs is to provide you with experience in 
handling measurements – gathering your own data, summarizing and describing it, taking 
responsibility for working with it, and reaching defensible conclusions based on it. 

Physical measurements are generally susceptible to unknown and/or uncontrollable 
variations.  For example, a wooden meter stick may change length based on changes in 
the humidity in the air.  The current in an electrical circuit is subject to random 
fluctuations based on the quantization of the charge on sub-atomic particles, and on their 
thermal motion.  Or we simply may not know how accurately a meter is calibrated. 

Taking responsibility for measurements implies taking responsibility also for estimating 
the uncertainty in raw data and in any calculated results which follow from the 
measurements.  Otherwise, how could one ever say whether a new result is, or is not, 
consistent, with an old law? Or, how could you know that two mechanical parts will 
actually fit together, since neither could have been manufactured to exactly the specified 
dimensions?  These questions lead scientists and engineers to define tolerances for 
dimensional accuracy in manufacturing parts which must fit together and to define units 
of measurement very carefully.  No longer is our unit of length based on some king's 
foot, or on scratches made on an iridium bar.  Nowadays, we use wavelengths of light to 
define the meter. 
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The very assumption that “Laws of Nature” exist implies that experimental results are 
reproducible.  But the inevitable existence of variations in measurements implies that real 
results are not exactly reproducible.  And, of course, we are neglecting the effects of 
quantum mechanics, in which a single measurement cannot be made or predicted with 
arbitrary accuracy, but only the statistical properties of nominally-identical measurement 
trials.  At all levels, variability in measurement is a reality. 

Very often, a scientist's response to variations in his or her measurements is to make 
repeated trials, and note how irreproducible a measurement turns out to be.   As you 
might presume intuitively, the best use of a set of not-quite-reproducible, nominally 
equivalent, measured values involves taking their average, and assuming that the result is 
better at approximating the true value than is any single measurement.  But we need to be 
able to characterize the range of variation seen in any set of data, and to estimate the 
accuracy with which we think we have determined our best value.  This, in turn, requires 
developing a language with which to communicate our results, their variations, and an 
estimate of the true value of the quantity which we have measured. 

In this lab, you will make repeated measurements similar to a “coin tossing” experiment, 
where the experimental question is, "How many coins will come up “heads” when N 
coins are tossed in the air and allowed to fall back down?"  Simply by symmetry, we 
expect that, on average, 50% would come up heads, and 50% tails. 

In our case, we have provided you with “not quite cubes” to toss.  These started as 
symmetric cubes, but we machined off two opposite faces so that the length of one of the 
sides is less than that of the other two.  We have colored the two machined faces red, for 
easy identification, and the question will be, If we toss N “not quite cubes” in the air, how 
many red faces will be "up" after they fall back down?  If we had a true cube, symmetry 
would tell us that the answer would be N/3.  In our case, you won't know the answer until 
you take some data.  And then there will be the question of variability in individual trials, 
and of characterizing that variation. 

We will address these questions experimentally.  We will first focus on the average, or 
mean, of our measurements. Then we will define and apply a measure of variability, the 
RMS (root mean square) deviation from the mean, also known as the Standard Deviation, 
which is used throughout science, engineering, and in any other field which relies on 
statistical analysis of data (economics, epidemiology, testing of pharmaceuticals, etc.). 

The statistical language which we will develop in this lab will be of use to you 
throughout your professional lives, and will also be important in such areas as 
understanding newspaper accounts of "cancer clusters" or other statistics-dependent 
topics.  You will, of course, be expected to apply the language to your later activities in 
this course. 
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B. Conceptual Outline 

It is important not to get lost in the jargon of uncertainty analysis.  In this lab, we will 
work through the following: 

1. Physical measurements are often irreproducible, for many reasons. 

2. In response, we often take repeated measurements of the same thing. 

3. Having made a set of repeated measurements, we have to decide how to handle 
the slightly-varying results. 

4. Theory confirms the intuitive feeling that the best estimate for the “true” result, 
given a set of N nominally-equivalent results, is gotten by averaging the results  
(that is, adding them up and dividing the total by N).  NOTE – “average” and 
“mean” are the same thing. 

5. We need some way of describing the range of variation in our results, relative to 
their mean.  We need also to be able to estimate the accuracy with which the 
average determines the true value. 

6. The Root Mean Square of the Deviation from the Mean, = the Standard Deviation 
(SD) are useful ways to characterize the deviations of a set of measurements from 
their mean.  The result is often labeled with the Greek letter sigma (σx , if we are 
measuring x ). 

7. The accuracy with which a set of N measurements determines their own mean, or 
the final best estimate of the measured quantity, is given by the Standard 
Deviation of the Mean (SDOM), calculated by dividing the Standard Deviation of 
the measurements from their mean by the square root of the number of 
measurements. 

C. Analysis Tools 

We have provided an Excel spreadsheet for use in analyzing your “coin toss” (actually, 
“cube toss”) data.  The following figure shows what you will see when you open 
Princeton Coin Toss Program in your Physics 103 window on your computer 
desktop. 

The spread sheet is set up, in its Primary Data Cells column, to record the numbers of 
“hits” (i.e., of “Red Faces Up” cubes) which are found in each of up to 30 sequential 
tosses of some fixed number of cubes, N . 

Every time a number is entered in one of the Primary Data Cells, it shows up as a dot on 
the Scatter Plot.  This graph plots the Number of Hits observed on the horizontal axis, 
and can accept up to 30 points before it runs out of vertical space. 

The frequency chart, or Histogram, is a little more complicated.  After you have entered 
some number of results for hits observed, it counts how many times you entered 1, how 
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many times you entered 2, and so on, up to a maximum number of 30 hits observed.  The 
horizontal axis, as in the Scatter Plot, shows the number of hits.  The vertical axis shows 
the number of times you got a given value for the number of hits. 

In preparing for lab, you should check a few entries in the Data Cells, and confirm that 
the corresponding dots show up on the Scatter Plot where you would expect.  You 
should also check that the histogram shows the correct number of occurrences for two or 
three of the possible hit results.  Do you really understand the data table, and both plots? 

D.  The Experiment  - Things to Do (Phase 1) 

Now let's take some data of our own.   

First, delete any existing entries in the entire data section of the spreadsheet.  (Just 
“swipe” across the 5 columns and 30 rows to highlight the data region, and hit Delete.) 

 

 Next, put 20 “cubes” in the large box, toss it around vigorously for a while, 
and then count the number of hits (red faces up).  Enter the number in the top 
cell of the Primary Data column.  That's the first trial of your experiment.  Did 
your point show up on the two graphs in the way you would expect? 

 Repeat the experiment for a total of 30 trials, entering your result each time in 
the next cell in the Primary Data column of the spread sheet.  Check that the two 
graphs are behaving properly. 

 

Print out your data sheet and graphs to look at and use in the discussions of the following 
section.  (If you want to print out only a graph, just highlight it before issuing the print 
command.) 

You have now recorded the results for 30 independent measurements of the same 
quantity.  Their variability, although quite large, represents the variability in any physical 
measurement.  Getting different results in tossing coins is not, in principle, different from 
getting different results in repeatedly measuring the length of your foot.  In either case, 
the question becomes, What is the “best value” of the measurement?  And then there is 
the issue of how we describe the variability in the measurements.  These questions are the 
subject of the next Section. 
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E.  Looking at Your Data – Averages and Deviations 

If our cubes were truly symmetric, we would expect, on the average, a red face would 
land "up" 1/3 of the time.  (Two out of the six faces of the cube are red.)  On the other 
hand, if we had shaved down the faces so far that the “cube” would have looked like a 
thin, square, “coin,” we would expect that a red face would show up almost 100% of the 
time.  (There is little chance that a real coin will wind up standing on its edge.)  On this 
basis, we expect that the average number of hits that we observe might be greater than 7 
(~1/3 of 20) and, of course, less than 20.  How does your data look?   

 Using your graphs, record in your lab book an initial "guesstimate" 
of the average number of hits.  

Your first estimate of the “true” number of hits to be expected can be based on an 
"eyeball" judgment based on the clustering of the points along the x-axis of your Scatter 
Plot, or of the peak or center of the Histogram.  But that's not a very precise way of 
describing either the average or the variability in your results. 

 To more precisely characterize your data, calculate the following. 
(You can do this manually or, ideally, take the opportunity to do it in 
Excel, using the blank spreadsheet cells in the middle of the page.): 

a) The average of the hit results for your 30 trials.  (Add the numbers 
up and divide by 30.) 

b) For each trial, the deviation of that result from the average just 
calculated.   

c) For the 30 trials, the average of the deviations just found in each 
trial.  (If this doesn't turn out to be zero, there's something wrong!) 

The average is, as is discussed in the Error Interludes, your best estimate for the “true” 
number of hits to be expected.  But, since the average deviation is always zero, we still 
have to find a useful and quantitative way to describe how far the number of hits in any 
single experimental trial is likely to deviate from the average number.  (This is, in some 
sense, a measure of the width of the Histogram.) 

The standard way of quantifying the variations in a set of nominally-equivalent 
measurements is to use what in Engineering is called the RMS deviation (from the mean), 
and in other fields may be called the Standard Deviation (from the mean).  (We ignore for 
now a slightly different definition of the Standard Deviation that is sometimes used.) 
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We  define  the Root-Mean-Square (RMS) Deviation from the Mean of any set of data by 

the following operation: 

Take the Square  Root  .... 

of the  Mean  (or Average) .... 

of the  Square  .... 

of the  Deviations of each of the data values .... 

 from the Mean   of those values. 

You will note that taking the square root of the square ensures that the RMS Deviation 
associated with any physical quantity will be positive, and will have the same units (if any) as 
the original quantity (length, time interval, counts, ....). 

This way of characterizing fluctuating measurements, or the data sets resulting, is so 
important that it is worth putting in a box: 

 

The RMS Deviation, or the Standard Deviation, is an estimate of how far a typical single 
measurement will deviate from the mean of a large number of measurements.  It should 
be equal to roughly half the width of the peak graphed in your histogram. 

You should be able to judge the average value of the measurements which were used to 
create your histogram to considerably better accuracy than the half-width of the peak.  
Can you?  The accuracy with which you can make this judgment is the final accuracy of 
your experimental results.  You are using multiple measurements to improve the 
precision in your conclusion.  This requires a standard way of expressing that precision.  
This is the final result in our mathematical description of variability. 

The Standard Deviation of the Mean of a set of measurements is an estimate of how 
accurately we can judge our “best value,” or how precisely we can judge the center of the 
frequency chart, or histogram.  It is calculated  by dividing the Standard Deviation of the 
measurements themselves by the square root of the number of those measurements. 
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F.  Formal Summary of Means and Standard Deviations  

(a)  The best value for a set of measurements is determined by taking their average, or 
mean: 

N

xxx
x N


21
    

or       N

x
x

i  

(b)  The RMS Deviation from the Mean, or the Standard Deviation (SD), is defined as 

 
N

xx i
x

2 
  

NOTE 1:  If our measurement variations follow what is called the “Normal 
Distribution,” = “bell curve” =  “Gaussian statistics”, we expect that 
approximately 2/3 (more accurately, 68%) of any set of measurements will fall 
within ± 1 σ of their true mean value.  Engineers, especially, will find it useful 
also to know that roughly 95% of all such measurements are expected to fall 
within a ± 2 σ range, and 99.7% within a ± 3 σ range.  But, be wary – not all 
measurements follow the Normal distribution. 

NOTE 2:  An alternative definition of the Standard Deviation, which matters only 
for small values of N, replaces the N in the denominator by (N-1).  The difference 
will not concern us here, but is OK to use a calculator that has a "Standard 
Deviation" function which uses the alternative definition. 

(c)  The uncertainty in our estimate for the best value for a set of N measurements 

having standard deviation σx is obtained by dividing their standard deviation by N .  
This quantity is called the standard deviation of the mean (SDOM): 

N
x

x


   

 
Intuitively, we see that our uncertainty decreases as we average more measurements.  
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H. Thing to Do (Phase 2) 

Now let's do the calculations for the results of your 30 tosses of the 20 cubes: 

If you haven't already done it, use some of the blank cells to the right of your data array 
in Excel to calculate 

 the average, or mean, or your 30 measurements 
 the deviations of each of your results from their own mean 
 the squares of those deviations 
 the mean of the squares of the deviations 

Now, take the square root to get the RMS measure of the variability in your results.   

 Does your result look reasonable, in terms of your histogram?  
Indicate the average, and the range of ± 1 σ about the average, on a 
printout of your graph.  What fraction of your data points fall within 
this range?  Is it close to 2/3 (or 68%)? 

Finally, divide the RMS deviation of the measurements by the square root of 30 (the 
number of measurements you took) to get the Standard Deviation of the Mean.  
Record the final result in your notebook as  

Nred   =   your average value    ±    your Standard Deviation of the Mean . 

 

 

We might ask What is the probability that any single cube will land with a red face 
up?  As you would expect, this is gotten just by dividing Nred by 20, to calculate the 
average value.  Call this probability p. What is your result?   

How precisely have we determined p?  (Just divide the standard deviation of the mean 
of Nred by 20.)  Record your final result for p (including its uncertainty) in your 
notebook. 

Probability theory predicts the relationship between p and the variability in our results for 
Nred.  The only assumption required is that all our “cubes” are identical, and they all fall 
independently of each other.  The predicted standard deviation for Nred depends on p and 
on the total number of cubes (Ntotal = 20) which were tossed each trial. 

red total(predicted) (1 )N p p N    

How does your measured standard deviation compare to this predicted value? 
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NOTE:  Since p times Ntotal is simply the number of red faces that we expect when Ntotal 
cubes are tossed, p times Ntotal is just equal to the average value for Nred.  So the above 
equation becomes 

red red(predicted) (1 ) (average)N p N     

 

That is, the predicted standard deviation describing the variability in Nred is proportional 
to the square root of the value of Nred itself.  In our case, you have probably determined 
that p is roughly 0.5.  Then, the factor relating the standard deviation to the average 
expected value for Nred turns out to be roughly equal to the square root of 0.5, or 0.707.   

 

 

 

IMPORTANT GENERALIZATION FOR SCIENCE LITERACY 

In more realistic physics situations (involving such things as radioactive decay, 
occurrences of disease in human populations, etc., rather than coin tossing), it is very 
common to have the theoretically expected variation in a counting measurement be equal 
to the square root of the number measured, (rather than .707 times the square root).  This 
is a very important result, applicable to such things as the number of Merit Scholars 
graduating from a high school, the number of cancer cases occurring near power lines, 
and similar societally-important issues 
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I. Things to Do (Phase 3) 

 
Making Things Easy in Excel Calculations 
 
There are several Excel functions that you could have used to speed up your calculations 
earlier in this lab.  These include SUM, AVERAGE, and STDEVP. 
 
In each case, these functions operate on a range of values to give a result: 
 

SUM ( ... ) calculates the total of the values in the range of cells indicated by ... 

AVERAGE ( ... ) calculates the average of the values in a range 

STDEVP ( ... ) calculates the Standard Deviation of the values in a range of cells 
from their average (using N in the denominator) 

 
To use the SUM function, choose the cell in which you want the answer to appear.  Click 
on that cell, and type  = SUM (  .  Then either enter the range of cells manually, or just 
swipe the cursor from top left to bottom right of the region of the spread sheet that 
contains the values you want to sum.  Close the parenthesis, and hit Return, after which 
the sum appears.  
 
You may want to take time to repeat your earlier calculations, if you did them “manually” 
in Excel.  Just check that you get the same answer using the neat functions above. 
 
 
Using Excel's Random Number Generator to "Do the Experiment" 
 
If you have time, you might want to play with the same experiment, done in the 
computer.  Excel can generate data for as many “tosses” as you like, following the 
mathematical rule for coin-tossing type experiments (Binomial Statistics).  It can fill both 
the Primary and Secondary Cells in your spread sheet, so that you can see the prettier 
results that come from repeating the experiment many more times. 
 
To use Excel's random number generator, refer to the following figure.  The Random 
Number generator screen appears when you click on Tools / Data Analysis / Random 
Number Generation in Excel's menu bar.  Then choose values for the parameters 
indicated, and hit Return.  The numbers should be entered into your data range, and the 
graphs should update themselves to reflect the results. 
 
You might set up your spread sheet to calculate averages, standard deviations, and 
standard deviations of the mean for the combined primary and secondary data cells.  
Then, filling all these cells repeatedly using the random number generator, you can 
observe how much these quantities vary from run to run.  Do the variations fall in the 
expected range? 
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PRELAB Problems for Lab#2: Describing Measurement Variability 

 
In this PreLab, the only mathematics that you need is the concept of average, or mean 
value.  That's easy, of course, but you need to apply it in the context of the statistical 
concepts which are the focus of the lab. 
 
1.  Review the full-page Excel spread sheet shown early in the writeup, so we can do 
some "guesstimating." 
 

a) What is the largest data value shown?  What is the smallest?  Can you 
see how each of these appears on the graphs? 

b) Simply from looking at the frequency chart, estimate the average value 
of the counts recorded in the 30 trials. 

c) Also just from looking at the graphs, estimate the range of values, 
centered on your estimated average, which contain 2/3 of the data 
points. 

 
2.  Let's do some more quantitative work: 
 

a) Make a “data column” of any 8 integers lying between 10 and 15.  
Some will be listed more than once, of course, but don't make them 
all the same number. 

b) Sketch the frequency chart for your data entries, and record the 
"guesstimates" for average and the range of variation, as in 
Problem 1. 

c) At the bottom of the data column, calculate the average of your 
numbers. 

d) To the right of the data, make a second column of numbers recording 
the deviations of each of the data entries from their average.  At the 
bottom of this column record the average of the deviations.  (It 
better be zero!) 

e) Make an additional column recording the squares of your deviations, 
and calculate the average of these.  Then calculate the square root 
of that average. 

f) Compare your quantitative results to your “guesstimates.” 
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BEFORE YOU COME TO LAB 

 Read Taylor's Section 2.7 (on fractional uncertainties) and Section 3.3 
(on provisional rules for handling sums, differences, products, and 
quotients in propagating uncertainties).  You should continue to use 
the concepts of error analysis in recording your lab notes.  Important 
elements include the confidence level associated with an estimate of 
uncertainty, proper use of absolute and relative error descriptions, 
and avoiding misuse of significant figures.   

 Read the writeup for this lab, and plan how you will approach it 
intellectually. 

 Consider the optional PreLab problem set attached. 

Princeton University Physics 103/105 Lab 
Physics Department  
 
 

LAB #3: FREE FALL, TERMINAL 
VELOCITY 

 

 

 
 
A.  Introduction 
 
The emphasis in this lab is once again on falling bodies.  Previously, we worked with 
simple theoretical models leading to such equations as vy = - g t and y = -1/2g t2.  These 
equations, of course, ignore air resistance. 
 
The reason our simple analysis succeeded is that our falling objects (golf balls, for 
example) were so dense and heavy, and moved at such low speeds, that the drag force 
due to their motion through the air was very much smaller than the force of gravity on 
them.  At increasingly high velocities, the air drag would become larger and larger, and 
would no longer be negligible in comparison to mg. 
 
This week we will use the same camera setups to explore the behavior of light objects – 
so light that the air drag forces as they accelerate will become comparable to m g.  We 
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will let the bodies drop vertically, so that there is no x-component of their motion to 
complicate things for us. 
 
Immediately after being released from rest, even a light falling body will accelerate 
according to the simple formulas used previously.  This fact follows simply from the 
assumption that viscous drag forces are zero if the velocity of the body is zero, and rise 
smoothly as the body's speed increases. 
 
As a vertically falling body accelerates, the drag force increases gradually, and always 
acts in the opposite direction to the velocity of the body.  For a body moving vertically, 
the net force which it experiences is the usual m g, acting downward, plus the oppositely-
directed viscous drag force, which we will call fv.  The equation of motion becomes 
 

m ay = ftotal  = - m g + fv , 
 
where we have taken the - axis of our coordinate system to be pointing upward (i.e., 
opposite to the direction of gravity). 
 
At some speed, the drag force fv will be equal to the weight m g, and the total force on the 
body will be zero.  After this, it will no longer accelerate.  The resulting constant speed is 
called the terminal velocity.  It is approached only gradually, of course. 
 
The goal of this lab is to study the behavior of a very light falling object, and to 
demonstrate the full range of behavior as it starts from rest, increases speed, and 
approaches terminal velocity.  From this, we can learn something about the drag force, fv.  
In particular, we expect you to be able to reach some conclusions about how the air drag 
depends on the velocity of the falling object. 

This write-up for lab #3 is much shorter than for the previous labs.  As you get more 
comfortable with the equipment, we’re leaving more of the thinking to you.  Take some 
initiative on your own to try things out.  Remember to keep a good record of your work 
in your lab notebook. 

 

B.  The Experiment – Getting the Data 
 
In the PreLab, you should have developed some idea about what your movie's curves of 
position, velocity, and acceleration should look like for a body which starts from rest and 
approaches terminal velocity before it leaves the camera's field of view.   
 
Your first task is to find a body which demonstrates the expected behavior in your video.  
This may take several attempts, with bodies of different size and weight.   
 
As candidate “light objects,” we have provided ping pong balls, fluffy cotton balls, and 
some pieces of expanded styrofoam packing material.  Your first goal is to find an object 
which displays the behavior of a body accelerating from rest and ultimately traveling at 
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or near its terminal velocity.  An entire cotton ball, as received from the drug store, may 
be too heavy for our purposes.  But you can pinch off smaller and smaller portions of it 
(taking care to keep them fluffy, and shaping them into roughly spherical shapes before 
dropping them).  Ultimately, they should demonstrate the expected behavior.  Or, you 
may decide that the styrofoam pieces work better for you. 
 
 
In any case, your first actions should be to 
 

 Make trial runs with a candidate object, dropping it from one hand 
simultaneously with dropping a golf ball from the other.  Do they reach 
the floor at significantly different times?  If not, you might want to try a 
lighter (smaller) object.  When you observe significantly different 
behavior, record a qualitative impression of what you see in your 
notebook. 

 Once you have chosen your object, open VideoPoint Capture and use the 
Preview Screen to check that it will be visible as it falls.   You may have 
to increase the brightness of your image by rotating the aperture ring on 
the lens.  Be sure to include a meter stick in the field of view. 

 Set the video capture rate to 30 frames per second, so that you can observe 
the more complex behavior of this week's falling body. 

 Take a movie, open it in VideoPoint, digitize the points, and see if you 
can see the initial y = ½ g t2  behavior, followed by a transition to terminal 
velocity, y = v t.   You will have to look closely at your graphs, but if you 
can't see these regions pretty clearly in your plot of y vs. t, you should try a 
lighter or heavier object, and take a new movie. 

 Scale your final movie, so that your analysis will be in terms of meters 
(and m/sec and m/sec2) rather than in pixel units.  (See the box below for 
an easy way to scale a movie.) 

 

NOTE:  You can use VideoPoint to make it easy to scale your movie.  With the movie 
screen selected, click on Movie / Scale Movie.  Then follow the instructions in the 
dialog box to enter the length on the meter stick you will be using to scale the movie, and 
to click on its ends.  (Ignore the other options on the dialog box.)  Voila!  The pixel 
coordinates are changed to meters, both in your data table and on your graphs.  It's quick 
and easy, but you know from your previous manual scaling work that there are hidden 
considerations of accuracy here. 
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C.  Analyzing the Data 
 

NOTE:  In the following analyses, you may want to put most of your effort into 
looking at the shape of the plot of y vs. t and making linear or quadratic fits to 
portions of that curve.1  It is tempting to use VideoPoint's graphs of vy and ay , 
but these are based only on the position data, and VideoPoint's numerical 
differentiation methods can lead to odd results at the beginning and ending points 
of a data sequence.  If you use the velocity and acceleration graphs in reaching 
your conclusions, at least make sure that your thinking is confirmed on the initial 
y,t graph. After all, your raw data consists only of position versus time.  
Everything else (v or a) is derived from that. 

In analyzing your graphs of position, velocity, and acceleration, remember that 
you can use VideoPoint's Zooming capability, and apply a fit function which is 
updated automatically per the Curve Fit parameter screen option.  (See the box 
on the next page in case you've forgotten how to Zoom in VideoPoint.)  With this 
capability, you can test whether you can make successful fits to portions of your 
data, with fit functions that don't work very well when applied to your entire data 
set. 

 Do your curves of position, velocity, and acceleration show the expected 
behavior?  If not, you may need to adjust your expectations, or think further 
about what may be going on.  In any event, print out and discuss in your lab 
book what you are seeing in your data. 

 What is the terminal velocity which your object demonstrates?  NOTE – as 
always, you must give your estimated uncertainty when you report a 
measurement!  Think about the uncertainties in your scale factor, in the 
statistical jitter of the data points, and in your subjective ability to judge values 
from your graphs.  If one of these is very large compared to the other two, then 
your work should focus on it.  But you have to make the judgment! 

 What was the initial acceleration which your object experienced at low 
velocities?  Is it at least roughly equal to 9.8 m/sec2 ?   

                                                 
1 Remember that it’s always better to use a fit of one order higher than what you expect to find  in the data.  
So, in the present case it would be better to transfer the data to Excel with WPTools for the fit analyses. 
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 Finally, what can you say about the dependence of the drag force on velocity?  
(Suggestion:  force ties directly to acceleration, so you may want to look at a 
plot of acceleration vs. velocity.)  This question may not have a simple answer.  
But it is worth a considerable amount of thought and discussion!  Does it affect 
your thinking to remember that fv is presumed to be zero when v = 0 ? 

REMEMBER:  Use the concepts and language of uncertainty analysis in determining and 
discussing your measurements and their uncertainties.  Don't use vague, undefined 
language! 

Once you have answered the above questions in your notebook, you may want to check 
in with your instructor to make sure you’re on the right track.  Finish up your analysis 
with anything else you think is important.  Include any relevant information in your 
notebook, and be sure your notebook tells a coherent story about what you did and what 
you conclude from it. 

 

NOTE:  It is a fact of life that estimating uncertainties in measurements is difficult.  
Usually, there is simply no rule to guide you.  But you are still responsible for estimating 
what your uncertainty is.  Remember – you are recording what you think is the range of 
values for which you have a 68% probability of being "correct."  That's NOT the same 
thing as taking an arbitrary guess without thought, or taking a large number which has a 
near 100% probability of being correct. 

 

 

IN CASE YOU'VE FORGOTTEN HOW TO ZOOM.     In this lab, you may find it 
useful to fit a mathematical function to only a part of your data.  This can be done by 
zooming in on only the portion of your graph you want to fit to.  If you hold down both 
the Ctrl key and the left mouse button while “dragging” the cursor across the diagonal of 
an imaginary rectangle, the graph will rescale to “Zoom In” on the region defined by the 
rectangle.  Once you have zoomed in, the program makes the fit only to the portion of the 
graph showing on the screen.   
 
To Unzoom your graph, hold down the Ctrl key and double-click anywhere on the graph. 
 
If you uncheck the Update Automatically box when you do the fitting, the result will 
not change if you unzoom or otherwise change the portion of the graph being displayed.  
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PRELAB Problems for Lab #3: Free Fall, Terminal Velocity, etc. 

 
In this PreLab, the major points are (a) truly understanding f = m a in the context of a 
body falling in air (Parachutists know how important this is!), and (b) applying the 
concepts of uncertainty analysis to real situations.   
 
 
1.  Take a full page of paper, and make three sketch graphs, one above the other.  Label 
them as plots of y, vy, and ay versus time, with time in the horizontal direction.   

a) Without worrying about the scales of each axis, sketch the shape of each of 
the curves which would result from dropping an object from rest and allowing 
it to accelerate to terminal velocity.   

b) Indicate on each graph the portions of the curve that are, at least roughly, 
parabolic, straight-line, and flat (horizontal straight-line).   

c) Where possible, indicate a value. (Hint: "g," or "zero.") 

 

2.  You have recently bought a used car, and you are curious about its fuel economy.  
You reset the odometer to zero the last time you filled up the tank, and this time, the 
attendant fills your tank with 12.5 gallons, and your odometer reads 335 miles.  By 
comparing your odometer to highway road markers, you suspect the uncertainty in your 
odometer reading is about ± 3%, or ±10 miles.  You are not sure whether the attendant 
“topped off” your tank, so you estimate that the uncertainty in your fuel measurement is ± 
0.5 gallons.  What is your car’s fuel economy, in miles per gallon, and what’s the 
uncertainty in it? 

 

3.  Elmer and Esmerelda have just made a scaled movie of a falling coffee filter.  The 
later portions of the graph of velocity vs. time appears to be constant, and from the graph 
they estimate a terminal velocity of 1.22 m/sec.  Of course, the velocity plotted on the 
graph isn’t perfectly constant.  From the scatter in the data, Elmer estimates the 
uncertainty in the plotted velocity values to be ± 0.04 m/sec.   “Wait a second,” says 
Esmerelda.  “That figure depends on our measured scale factor, which we found to be 
104 ± 3 pixels per meter.  That also affects the uncertainty of the speed.  In fact, I think 
the scale factor is more important than the variation between points on the velocity 
graph.”  What should Elmer and Esmerelda write for their uncertainty in the speed? 
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BEFORE YOU COME TO LAB 

 Read Taylor's Sections 3.5 and 3.6.  These cover the “final” rule for 
combining statistically independent errors in addition, subtraction, 
multiplication, and division.  The concept of statistical independence 
is important.  Two independent, and thus uncorrelated, variations 
may happen to cancel each other out in their effects, rather than 
always reinforcing.  This leads to using a square root method to 
estimate their combined effects, rather than the direct sum which was 
used in Taylor's “provisional” rules. 

 Read the writeup for this lab, and plan how you will approach it 
intellectually. 

 Consider the optional PreLab problem set attached. 

Princeton University Physics 103/105 Lab 
Physics Department  
 
 
 
 

LAB #4: COLLISIONS, 
CONSERVATIONS, and COORDINATE 

SYSTEMS 
 
 

 
Overview Comments:  We hope that you will focus on two things in this lab.  The first 
is the law of conservation of momentum, in which the lab question is whether certain 
quantities are the same before and after collisions between two moving bodies.  (You 
may want to describe this as testing whether the differences in these quantities measured 
before and after the collision is zero.) 
 
The second part of the lab asks you to think about motion in two dimensions, in situations 
where a constant vector force acts on a body, but its direction is not parallel to either of 
the coordinate axes.  How would you expect the graphs of position, velocity, and 
acceleration along the x- and y-directions to look?  Would it make things simpler if you 
could do your analysis in a rotated coordinate system, so that the force was parallel to 
one of the coordinate axes?  How do you relate the two analyses and their results? 
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A.  Introduction 

The two parts to this lab both involve the motion of “hockey pucks” on an essentially 
frictionless air table.  The air support cancels out the vertical force of gravity, and the 
pucks move freely in the horizontal plane.  You will use the video camera and 
VideoPoint software to analyze their motion. 

In the first experiment, two pucks are started off with some initial speeds and directions 
of motion.  They then collide, and head off with different speeds and directions of 
motion.  You know that, since there is no external horizontal force acting on the pucks, 
the sum of their vector momenta should be conserved (i.e., should be the same before and 
after the collision).  You will be asked to confirm this fundamental fact, by direct 
measurement of the components of the vector velocity (and vector momenta).  Of course, 
your measurements can only confirm anything to within some experimental uncertainty, 
which will be part of your analysis. 

In the second experiment, you will tilt the air table, so that there is a force acting on the 
pucks in the horizontal plane.  What motion do you expect to observe, after launching a 
puck with some initial velocity?  Think about plots of x versus y, x versus t, and y versus 
t.  What similarities can you expect with the plots you made of a golf ball bouncing in a 
vertical plane, under the force of gravity?  It will be well worth your time to think about 
these questions before arriving at the lab. 

As a final step in the second experiment, we will ask you to determine what is the 
horizontal force acting on the puck (in direction and magnitude).  As always, an analysis 
of experimental uncertainty is required here.   

B.  Conservation Laws – No External Forces 

Start by making a video of a simple collision between two pucks.  Be sure to include a 
meter stick in the camera's field of view, for use in scaling your movie.   Weigh each 
puck to determine its mass so that you can later convert its velocity to momentum 

If you need to change the brightness of your image, use a long meter stick to “nudge” the 
wooden extension of the lens's aperture ring. 

You may want to check that the air table is close to level and, if necessary, adjust the 
three leveling feet on which it stands.  Don't spend too much time on this – you'll never 
make it perfectly level. 

Immediately after opening VideoPoint, you should tell the system that you want to 
measure the positions of 2 objects in each frame, rather than 1.  Then you will want to 
pick off the coordinates of the 2 pucks.  VideoPoint makes it easy to pick off the 
coordinates of Puck 1 in Frame 1, then of Puck 2 in the same frame, and then Puck 1 and 
Puck 2 in Frame 2, etc.  
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SPECIAL NOTE ON UNCERTAINTY ANALYSIS: 

 Although we normally expect you to explicitly consider the 
uncertainties in all of your measurements, you won't have time 
to do that in this lab.  There are simply too many measurements 
(two components of momentum, for each of two pucks, at two 
different times).   

 Please take time to carry out the usual uncertainty analysis and 
estimation for one of your tests of momentum conservation 
(i.e., for either x or y).  Then, for the other test, just check that 
your results seem sensible.   Even for the first test, you can 
probably argue that your uncertainty analysis results (absolute 
or fractional uncertainty values) for one of the pucks, at one of 
the times, can simply be applied directly to the other puck 
and/or the other time.  Think about it! 

 Two hints that  may also save you time:  (1) Does the scaling 
factor for your movie matter at all, or could you consider 
momentum conservation in terms of kg-pixels-sec?  (2)  Is the 
uncertainty in your mass measurement so small that it can be 
neglected? 

To do this: 

 Check that, in the Options menu item on the movie screen, both the 
AutoFrame Advance and Auto Point Advance options have check marks 
beside them. 

 Pick off the location of the first puck on the first frame, then click on Edit / 
Leave/Hide Trails. 

 Move to the second puck, and pick off its location.  Then click on Edit / 
Leave/Hide Trails again. 

 The movie should automatically advance to the second frame, while showing 
the “trails” from Frame 1.  If you continue to click first on Puck 1, and then on 
Puck 2, in each frame, the data sequence should continue from frame to frame 
without help from you.  (If, at any time, you want to change whether a puck's 
trail is displayed or not, just use the Leave/Hide Trails button again, for 
whichever puck you want to affect. 

 If your pickoff sequence gets confused, and you need to remove a point or to 
start over, you can use the Edit/Clear Selection on Frame and Edit/Clear 
Selection on All Frames commands to remove erroneous points.  (Selecting 
a point may require carefully clicking on its position in the Movie screen.  A 
selected point will appear with a double circle.) 

After you have entered all your 
coordinates, you will want to 
make the usual graphs of x- 
and y-position, x- and y- 
velocity, etc.  From these 
graphs, you can judge the 
components of the velocity 
vector of each puck just before 
and after their collision.  
(Remember how easily you can 
zoom in and fit to selected 
regions of your data.) 

After converting velocities to 
momenta, you can see if (to 
within your measurement 
accuracy) momentum is 
conserved.  Show your logic, 
and justify your conclusions, in 
your notebook.  



 40

Put block 
under this leg 
of the air 
table.

W
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Do you find that the sum of the kinetic energies of the two pucks is the same after the 
collision as before (i.e., that kinetic energy is conserved in the collision)?  If not, where 
do you think the energy went to?  

C.  ADDING AN EXTERNAL FORCE 

Now, let's add a constant external force.  
To do this, lift the indicated leg of the 
air table and put the 1-1/2 inch 
aluminum cube under it.  Now the air 
table has a downward slope, which will 
lead to a fixed force of gravity “down 
the slope.”  We want to study this force. 

First, practice launching a puck so that it 
follows a deeply arcing path across the 
table.  Then, take a video of such a path, 
and digitize the coordinates.  Make the 
usual graphs of x- and y-position versus 
time, etc.  Do you see parabolas in the  
x,y plot, and the x,t and y,t plots?  Take 
a moment to discuss the similarities 
with the bouncing golf ball data you 
took in Lab 1. 

 From your graphs, determine the components of acceleration in the x- and y-
directions.  Multiplying these by the mass of the puck gives you Fx and Fy, the 
components of the force acting on the puck. 

 Finally, calculate the magnitude of the force, and its direction.  (With at least 
rough uncertainty estimates.) 

D.  Rotating the Coordinate System 
 
The data taken previously with the bouncing golf ball appeared simpler that that you have 
just taken, in that it showed no acceleration in the x-direction, and simple parabolic 
curves in the x,y and y,t plots.  But that is only because the x- and y-axes of the 
VideoPoint coordinate system were aligned with the direction of gravity.  If the earth 
had been pulling the ball down-and-to-the-left, rather than straight down, things would 
have looked different in your plots.  Similarly (and this is by logical similarity, not by 
accident), if your camera had not been aligned with gravity, your data would have 
appeared more complex than it did.  (A few of you may have seen evidence of a small 
rotation of the camera when you took your golf  ball video.) 
 
In today's tilted-table experiment, we could recover the simpler description if only we 
could analyze the data in a coordinate system rotated to align the y-axis in the direction 
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the force produced by the tilting of the table.  Surprise !!!  VideoPoint has the capability 
of presenting our data and graphs in any rotated coordinate system ! 
 
Take a moment think in what way your graphs would be simplified if the y-axis was 
rotated to lie along the direction of the force due to the tilt of the table.  What curves 
would be parabolic?  What ones would turn into straight lines?  What quantities would 
become zero?  (Take a few minutes to discuss these things in your notebook.) 
 
After organizing your thoughts on what to expect, check that your graph's fit control 
boxes have the Update Automatically box checked.  Then get ready to watch how they 
change as we rotate the coordinate system.  This is really neat !!! 
 
 
To manually rotate coordinate systems in VideoPoint: 

 With the Movie window active, click on the origin of the x,y coordinate system.  A 
small circle should appear, centered on the origin, and with a dot where it intersects 
the x-axis. 

 Now "click and hold" on the small dot which appeared.  While still holding down 
on your mouse button, move the cursor out along the x-axis, and then upward in the 
y-direction. 

 The coordinate axes should rotate in the rotational direction in which you move the 
cursor. 

 Repeat as desired.  Note the effects on your graphs and fit parameters.  (See note 
below for more precise control of final rotation angle.) 

 

Rotate the axes and watch the behavior of your graphs and fit parameters.  What angle 
does it take to produce simple behavior analogous to the one-dimensional acceleration 
situation with the bouncing golf ball?  Summarize the results in your lab book.  (What is 
the general behavior of your graphs as you rotate the coordinates?  What is the magnitude 
of the measured acceleration in the simplified system?  What is its direction, as described 
in the original coordinate system?  Do these agree with the data from your work in the 
previous section?) 

 

NOTE:  After you have used the cursor-based rotation to determine approximately what 
rotation angle gives the simple results, you can control the angle more precisely by 
editing the number in the Rotate (deg) figure in the box which appears when you 
double-click on the origin of the axes in the movie screen. 

 

If you have time, you can calculate the expected force (or acceleration) from the 
geometry of the tilted table.  You know how high you lifted one of the feet, and you can 
measure the geometry of the pattern of the three feet.  It will take some trigonometry to 
devise the formula for the predicted angle and magnitude of the acceleration vector, but 
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you could get a pretty good idea of what these should be simply by making scaled 
drawings.   
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PRELAB Problems for Lab #4: Collisions, Conservations, and Coordinate Systems 

 
 
1.  Referring to the figure on the following page, make sketch plots of the behavior of vx 

and vy for each of the two pucks as a function of time.  Although you don't know 
the scales of either position or time, be careful to get the signs correct, and to 
show at least roughly correct relative magnitudes.  

 
 
2.  Avik and Venus are calculating the momentum and kinetic energy of a puck on their air table.  

The puck is moving parallel to the x axis with a speed of 12.0 ± 0.2 m/sec, and its mass is 
30.00 ± 0.01 grams.   

 
a)  What is the x-component of the momentum of the puck, and what is its uncertainty?  

How much would the uncertainty change if the mass were precisely known (i.e., 
if the uncertainty in the mass was negligibly small) ? 

 
b)  What is the kinetic energy of the puck, and what is its uncertainty?  How does the 

fractional uncertainty in kinetic energy compare to the fractional uncertainty in 
momentum? 
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Figure for PreLab #4.  This is the final frame of a video of two colliding pucks.  The y-
axis points toward the top of the page, and the x-axis points to the right. 
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BEFORE YOU COME TO LAB: 

 Deduce an expression for the acceleration a of a cart of mass M that 
moves up or down a ramp of angle  to the horizontal, if it is subject 
to a rolling-friction force according to eq. (1). 

 Read Taylor's Section 3.11, on the “General Formula for Error 
Propagation.”  This section deals with how to work with functions 
that are not simply sums, differences, products, or quotients.  The 
language used is that of partial differentiation in calculus.  Here, the 
effect of varying one of the independent variables is handled by 
differentiating the function of interest, while holding all of the other 
variables fixed (i.e., treating them as constants in the differentiation 
process.)   If the language is unfamiliar and makes you 
uncomfortable, just remember this basic concept. 

 Also, think about how you would use error bars in judging the 
adequacy of fits on graphs.   (The question might be whether a 
graph's fitted line passes through the error bars for roughly 68% of 
the points.)  You may want, either in lab or before, to look at Excel's 
capability to add error bars to graphs.  (See the box on the third page 
of this procedure.) 

 Note especially the warning that follows implicitly from all of our 
error analysis discussions – if there is a systematic deviation of your 
points from a fitted line (rather than a random “jitter”), your data is 
trying to tell you something! 

 Read the writeup for this lab, and plan how you will approach it 
intellectually.  You will be “teasing out” some subtleties of an 
apparently simple motion.

Princeton University Physics 103/105 Lab 
Physics Department  
 

 

LAB #5: INCLINED PLANES AND 
ENERGY CONSERVATION 

 

 
A.  Introduction 
 
In this lab, you will use your cameras and VideoPoint software to study motion along an 
inclined plane.  You may be surprised by some of the nuances you can capture with your 
video cameras.  Take time to examine your data carefully, and you will uncover some 



 46

subtle physics.  You may even discover a few things that will give you a head start on 
material for upcoming weeks. 
 
By this time, you are starting to develop some very sophisticated tools for evaluating 
experimental uncertainties.  In this lab, more than the earlier ones, you’ll find that we’ve 
really raised the bar for error analysis.  Remember, the uncertainty is an important part of 
every measurement you make.   
 
This week’s lab is both longer and harder than last week’s.  Think about it ahead of time 
and come to lab ready to hit the ground running.  But don’t worry if you don’t get to the 
extension projects; as long as you work hard for three hours, you won’t be penalized. 

You have been studying the conservation of mechanical energy – for example, the sum of 
kinetic energy (1/2 m v2) and gravitational potential energy (m g h).  You know that such 
things as sliding and rolling friction are non-conservative forces, and that they "steal" 
mechanical energy from an otherwise isolated system.  If, for example, there is a constant 
(vector) rolling friction force fr acting on a body that moves a (vector) distance L, the 
amount of mechanical energy lost (and converted to thermal energy) is just fr  L .  So, 
frictional forces affect not only accelerations (simply because they are forces), but also 
mechanical energies (because they are non-conservative). 

A rolling wheel is subject to energy loss associated with deformation of the wheel (or the 
ball bearings in the wheel) and/or the surface on which the wheel rolls.  The rolling 
friction can be modeled as being proportional to the normal force Fn between the wheel 
and the surface on which it rolls, directed opposite to the velocity of the center of the 
wheel, with magnitude 

fr = r Fn ,                                            (1) 

where r is the (small) coefficient of rolling friction.  
http://en.wikipedia.org/wiki/Rolling_resistance 

In this lab, you will study the effects of fr on a cart which is started from rest at the lower 
end of a tilted ramp, slows down as it moves upward until it stops and reverses direction, 
and returns to the lower end of the ramp.   The major questions will focus on the effect of 
fr  on the cart's acceleration, and on its kinetic energy. 

B.  Things to Do 

For this lab, it will be important to level your camera.  VideoPoint assumes that gravity 
points along the negative y-axis.  Any sidewise tilt of the camera and its coordinate axes 
will lead to wrong calculations of gravitational potential energy. 

You will find a ball hanging from a string at your station, and you can later use 
VideoPoint to check that the string is really parallel to the system's y-axis.  (And, if the 
camera is not level, you can use VideoPoint's coordinate rotation capability to make 
things look like it was.)  You will probably find that it’s easier just to level your camera 
from the start using one of the bubble levels at the center table. 
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In order to compute the cart's kinetic energy, you will need to weigh the cart, and to tell 
VideoPoint what the mass was.  Balances are in the lab, and VideoPoint lets you record 
the results. 

To assign a mass to your cart after you have made a movie and digitized its coordinates, 
go to the View / Coordinate System screen and change the value of S1's mass from its 
default value of 100 g to whatever you measure your cart's mass to be. 

1.  Rolling a Cart on the Ramp 

You will find a cart and a ramp at your station.  Practice giving the cart a quick push so 
that it rolls up the ramp, turns around near the top of the ramp, and comes down again.  
Predict qualitatively what the graphs of position, velocity, and acceleration as functions 
of time will look like.  

 With one end of the ramp up about 5 or 6 inches higher than the other end, roll 
the cart up the ramp, and let it roll back down by itself.  Record a good movie, 
and scale it in VideoPoint.  Determine the angle of tilt of the ramp by looking 
at a plot of x- versus y-position.  Calculate the acceleration you would expect in 
the absence of friction.  (Be sure to say whether you are calculating the 
acceleration along the ramp, or that in the x-direction.) 

 Now make the usual graphs of position, velocity, and acceleration versus time.   
(You may find it useful to plot the magnitudes of velocity and acceleration, 
rather than just their x- and y-components.)  How well do your graphs agree 
qualitatively with your predictions? 

In particular, do your data show, within their accuracy, any difference between the 
acceleration of the cart when it is going upward and its acceleration when it is going 
downward?  Either way, compare what you see with the difference you would expect to 
see, assuming a value of μr  of 0.02 or less. 

 Now let's make some new plots – ones involving energy.  It will be convenient 
to plot the various forms of energy on the same graph. 

To make a single graph plotting kinetic energy, potential energy, and total energy, after 
choosing Point S1 / Magnitude for the vertical axis variable, hold the Shift key down 
while clicking on Kinetic Energy, Potential Energy, and then on Total Energy.   

Do your graphs suggest that total mechanical energy is conserved, or not?   

If you plotted the energies with time as the horizontal variable, it might be difficult to 
judge two instants when the cart is at the same height, and therefore to know if its kinetic 
energy is, or is not, different when it returns to any particular height.  To address this 
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TO ADD ERROR BARS TO EXCEL 
GRAPHS: 

 After creating a graph, just 
double-click on one of your data 
points.  Excel will bring up a 
dialog box to allow you to 
choose to plot error bars in x or 
y, or both.  You will have to tell 
Excel to extend them in the 
positive, negative, or both 
directions from the point. 

 The magnitude of the errors 
plotted can be specified as a 
fixed absolute number, or as a 
fixed percentage of each value 
plotted.  It can even be specified 
point by point in a separate 
column of the data table. 

difficulty, make a plot of the energies using Point S1 / X / Position as the horizontal 
variable.   

If you have troubles understanding this new plot, watch what happens on the graphs as 
you “play the movie” and the plots show which points correspond to the successive 
frames. 

 You should now be able to see 
clearly how much mechanical energy 
the cart lost in its motion.  Use this 
figure, and the distance traveled, to 
calculate values for fr and μr , given 
that energy transfer is equal to force 
times distance. 

 With fr and μr now known from the 
measured energy losses, go back and 
calculate the expected effect of 
friction on the acceleration of the cart 
as it travels up, and as it travels back 
down.  Compare this with your 
graphs of acceleration, and discuss.  
This is a great example of how 
energy considerations and Newton's 
laws can work together. 

2.  Extension Project – Rolling Other Stuff on the Ramp 

What do you suppose would happen if you rolled a ball, a hollow "pipe," or a solid 
circular cylinder down the ramp?  If you roll two of them down side by side, which one 
gets to the bottom first?  Is mechanical energy conserved here?  If not, where is it going?   

Make movies of a couple of these objects rolling down the ramp, and look at the 
acceleration and energy graphs.  Compare the acceleration of these objects to that of your 
cart.  What's going on here? -- There’s more to consider than meets the eye! 
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PRELAB Problems for Lab #5: Inclined Planes and Energy Conservation 

1.  An ideal cart of mass m =250 grams rolls on massless, frictionless wheels on a ramp 
tilted from the horizontal by an angle θ = 5.73. 
 

a.  Draw a force diagram, showing the gravitational (m g) and normal force (N) 
acting on the cart in the absence of friction.  Do they depend on whether the cart 
is accelerating along the ramp, or not? 
 
b.  Draw force diagrams, with the rolling frictional force fr included, for the cases 
where the cart is (i) moving upward along the ramp, and (ii) moving back down 
the ramp.  
 
c.  Calculate the magnitudes of the cart's acceleration along the ramp, in the three 
cases shown in your diagrams.  (Assume that the coefficient of rolling friction is 
µr = 0.02.)  What percentage changes in acceleration are involved in the three 
cases? 
 
d.  Calculate the kinetic energy which the cart would gain in traveling a distance  
L =1.5 meters down the ramp. 
 
e.  How much mechanical energy would be dissipated (transferred into heat 
energy) by the motion described in the preceding two questions?  What 
percentage of the kinetic energy of the immediately preceding question is this? 
 

2.  Measure (or estimate) the following things and describe briefly your technique for 
each measurement.  Report the best value, absolute uncertainty, and relative uncertainty 
for each measurement.  Remember to be sensible about significant figures! 
 

a.  The length of one of your shoes.    
 
b.  The time it takes for a sheet of paper to float to the ground from your desk.   
 
c.  The temperature in the room you are in right now.  (Chances are you don’t 
have a thermometer handy—that’s okay.  Just take a wild guess, and then estimate 
your uncertainty in that guess.  Remember, you are just shooting for a 68% 
confidence level.  Professional scientists and engineers make rough calculations 
like this all the time: you might as well get used to it!) 
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BEFORE YOU COME TO LAB: 

 Read Taylor's Section 4.6, on “Systematic Errors.”  This section deals 
with how to work with uncertainties that are not due simply to random 
measurement variations.   

 Consider the optional PreLab problem set attached.  NOTE that one of 
the PreLab problems assigned is from the book by Taylor. 

 
Princeton University Physics 103/105 Lab 
Physics Department  
 
 

LAB #6: TWO NICE EXPERIMENTS 
IN ROTATIONAL MOTION 

This week you will do two experiments involving rolling objects.  The setup for each 
experiment is different; pick whichever one you want to do first, and go to one of the 
setups for that experiment at the start of the lab.  (Be flexible.) 

Overview Comments:  The two projects in this week’s lab might be relevant to 
engineers designing theme park rides, courses for downhill ski races, etc.  They will 
remind you of roller coaster loops and of racers taking to the air after speeding across a 
bump.   

As you think about the relevant formulas, you will find it interesting to consider the 
effects of considering the effects of letting the moment of inertia, I, become either very 
small or very large relative to m r2.  Which case leads to the right answer for objects 
which slide without rotating?  Were you justified in neglecting the rotation of the wheels 
on the carts which you rolled down a ramp in a previous lab?  How could you make an 
object which has a moment of inertia much, much larger than m r2 ?  Hint – you might 
have seen such an object in a lecture demonstration. 

 Before you start taking data, take just a few minutes to discuss with your partners 
the answers to the questions in the Overview Comments, and to quickly record 
your conclusions.  Also, discuss what would happen in each of the two 
experiments if an object with I >> m r2 were to be used.  Would the angle  in 
Part 6A approach 0 , or 90 ?  Would the height h in Part 6B approach zero, or 
infinity? [You may want to check your understanding and conclusions with your 
Instructor before moving on.] 
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LAB #6: THINGS TO DO 
 
I.  Experiment #6A: Rolling Off a Log 
 
You already worked out in the Learning Guide the 
problem of an object sliding off a frictionless circular 
track (Learning Guide 3, problem VI).  The object leaves 
the track at an angle     2.4832cos 1  degrees.  In 
the lab it’s easier to let an object roll down the circular 
track.  In your prelab assignment, you will show that the 
theoretical expression for the angle at which a rolling 
object of mass m, radius r, and moment of inertia I about 
its center leaves the track is  
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The idea of this experiment is to work out a technique whereby you can measure as 
accurately as possible the angle where the rolling object just leaves the track. You may 
find it useful to use your video cameras and VideoPoint for this, or you may find a better 
way: it’s up to you.  Try to get results for a few different rolling objects: a solid cylinder, 
a hollow cylinder, and a sphere. 

 

After a few trial runs in which you estimate the angle at which the object leaves the track, 
stop and think how you can determine this angle with decent accuracy.  You may find 
that using chalk dust, or wetting the object before you start it rolling, causes it to leave a 
track which answers the question.   Alternatively, you can make a movie and use 
VideoPoint to determine the takeoff angle. 

If you choose to use VideoPoint, it will be convenient to convert to polar coordinates 
from the usual Cartesian (x,y) coordinate system.  Then, after moving the origin of the 
coordinate system to the center of the track, you can plot radius versus time to see if you 
can determine the takeoff angle.  (See below for converting to polar coordinates in 
VideoPoint.) 
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Using VideoPoint with polar coordinates – possibly useful in analyzing circular motion:  

  

To change to polar coordinates, double-click on the origin and make the change in the 
first screen shown below.  The origin can be moved to the center of the track simply by 
clicking-and-dragging on it.  Then you can choose to plot radius or angle when you make 
your graphs.  (See the second screen shown.) 

 

However you choose to do your analysis, once you have your technique down for one 
object, try it on the others, and think about any differences you find. 
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II. EXPERIMENT # 6B: Loop-the-Loop 
 

h 

R 

 

You will roll a ball down a ramp, and it will pick up enough speed to “loop the loop.”  
The question you will answer is how far up the ramp you must start it for it to 
successfully make it around the loop without leaving the track.  Think about what height 
h above the top of the loop you must start it from.  How fast must it be going at the top of 
the loop to just stay in contact?  Then, what height h will give the ball this critical speed?  
How does h depend on the radius of the loop R?  Does h depend on anything else? 

Tips on Technique 

 What’s the best way to tell whether the ball has left the ramp?  Would your video 
cameras and VideoPoint help, or can you think of a better way?   

 The ball you’ll use is probably too big to treat as a point particle in your calculations.  
When you make a measurement of, say, the height of the ball, where should you 
measure to?  The top of the ball?  The bottom of the ball?  Or maybe some other, 
particular, special point associated with the ball?  (Big hint.)  How should you 
measure the radius of the loop?  To the inside edge?  The outside edge?  Or some 
other way?  (Again, big hint.) 

 This experiment is actually a lot more subtle than you might initially suspect.  Your 
first calculation of the height h needed will probably not match your experiment 
within your range of uncertainty.  (Yes, your uncertainty, which you should of course 
be calculating.)  What other refinements can you make to either the experiment or 
your calculations?  For instance, is any kinetic energy being lost to friction?  How 
might you measure the fraction lost to friction? 
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PRELAB Problems for Lab #6: Two Nice Experiments in Rotational Motion 

 
1.  An object of radius r, mass m, and moment of inertia I about its 
axis starts from rest at the top of a large cylinder of radius R and 
rolls down.  At what angle   from the vertical does the object leave 
the surface of the large cylinder?  (Hint: This problem is similar to 
Learning Guide 3, Problem VI, which you solved using 
conservation of energy.  In this problem, you have an extra energy 
term for the energy of the ball’s rotation, which you can relate to its 
translation using v r .)  
 
 
2.  A ball has radius r, mass m, and moment of inertia I about its center.  The ball starts at 
rest, rolls without slipping down a ramp, and does a loop-the-loop of radius R.  (See the 
figure for Experiment 6B.)  What is the height h above the top of the loop that the ball 
must be started at to make it around the loop-the-loop without leaving the track?  (Hint: 
This problem is similar to Learning Guide 2, Problem VIII, which you also solved using 
conservation of energy.  In this Prelab problem, however, you have an extra energy term 
associated with the ball’s rotation, which you can relate to the ball’s translation using v = 
 r .) 
  
 
3.  Do Taylor’s Problem 4.24. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R 
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BEFORE YOU COME TO LAB: 

 Read Taylor's Section 5.1, on "Histograms and Distributions."  This 
section covers the basic concepts of distributions, of which the familiar 
Gaussian “bell curve” is only the most familiar example.   

 Consider the optional PreLab problem set attached.  NOTE that the 
PreLab problems are assigned from Taylor. 

Princeton University     Physics 103/105 Lab 
Physics Department  
 

LAB #7: Fluids 
 

Overview Comments: 
 
Fluids can move in complicated ways.  Infinitesimal “point masses” and rigid extended 
bodies can also move, but they are relatively simple objects.  For point masses, only the 
three coordinates giving their positions are required in order to describe their motion.  For 
extended bodies only the three angles which define their orientations are required in 
addition. 
 
For fluids, things are different. Any part of the material, whether it be the entire sample 
or a mathematically described small portion of it, can move, and can also change shape.  
But each portion has mass and inertia, and can change its momentum only in response to 
forces.  Understanding how the forces that arise between various portions of a fluid 
sample affect their shapes and motion leads to complicated problems in fluid mechanics.  
The applications of this field of study are legion.  You can’t study intergalactic gas 
clouds, or the flow of oil in an Alaskan pipeline, or the aerodynamic forces that hold a 
supersonic airplane up, without getting into it. 
 
In this lab, you will look at some of the results of fluid mechanics, dealing largely with 
the effects of viscous flow.  These involve the dissipative “frictional” forces which arise 
in fluid motion (except in the case of superfluids).  Try to think about what is happening 
from the point of view of a small element of the fluid, and of Newton’s Laws applied to 
that element.   
 
P.S.  Did you know that a cubic meter of air weighs almost three pounds?  No wonder it 
takes strength to hold your arm out the window of a moving car – it takes force to make 
all that air get out of the way! 
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I.  Flow of a Viscous Fluid in a Circular Pipe  
 
It is a remarkable fact that fluid immediately adjacent to an immobile surface, such as the 
wall of a pipe, always has zero velocity.  In order for fluid some distance y from the 
surface to flow at velocity v, a force must be applied: 
 

Av
F

y


   

where A is the area of the surface (or, equivalently, the area of the layer of fluid), and  is 
the coefficient of viscosity.  Fluid flow through a circular pipe is slightly more 
complicated.  The flow rate, Q, through a circular pipe of radius R and length L is given 
by Poiseuille's law: 
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where P is the difference in pressure at the ends of the pipe.  The R4 dependence might 
seem surprising. A factor of R2 comes from the area of the pipe; another factor of R 
comes from the above equation for the viscous force, since Q is proportional to the 
velocity which, for a given force, is proportional to distance y = R; a final factor of R 
comes from the circular shape of the pipe. 
 
 
 

 

Figure 1: Apparatus for the first part of the experiment.  The vertical cylinder is 
partly filled with oil.  It is open to the atmosphere at the top. 
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Specific Instructions: 
 
Use the apparatus shown in Figure 1 to test Poiseuille's law and to measure the viscosity 
of a fluid.  The fluid is heavy machine oil, which fills the large vertical cylinder. Its 
weight produces the pressure at the bottom of the cylinder and, therefore, at one end of 
the small horizontal tube.  The other end of the horizontal tube is at atmospheric pressure. 
Thus the pressure difference across the length of the small tube is P =  g h, where h is 
the height of the fluid above the tube. 
 
Find the density of the oil using a scale and a graduated cylinder. 
 
Measure the flow rate in each of the three available tubes (radii 0.370, 0.307 and 0.242 
cm), using a stopwatch and a graduated cylinder. 
 
Hints: Keep the small tube horizontal to minimize the effect of gravity on the flow. 
Measure the height of the fluid in the vertical cylinder before and after the oil flows out, 
and use the average value. From which point should the height be measured? 
 
Analysis: 
 
First use your data to test the assertion that Q is proportional to R4.  Although it isn't 
strictly true, assume that each tube has the same length L.  Then you can reformulate 
Poiseuille’s equation as: 
 

Q = Constant x R  
 
You want to check that  is 4. Do this by analyzing your measurements of Q using 
logarithmic plotting:  make a plot (using Excel) with the quantities (log Q) and (log R) on 
the two axes, and extract from it the value of the exponent . 
 
Next, find the viscosity . For this part of the analysis, assume that the exponent  = 4. 
Rework Poiseuille's equation to extract the value of the coefficient of viscosity, and use 
your three measurements of Q to calculate three values of .  Are the values close to each 
other?  Formal uncertainty analysis isn't required, but look for a procedural error if the 
measurements are grossly different. 
 
 

II. Terminal Velocity 
 
An object falling through a viscous fluid feels three forces.  Gravity pulls the object 
downward: 
 

gravF V g  
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where  and V are the density and volume of the object, respectively, and g is 
gravitational acceleration. The buoyant force pushes the object upward: 
 

buoy fF V g  

 
where f is the density of the fluid. Finally, there is a drag force opposing the motion of 
the object. Stokes' law gives the drag force on a spherical object of radius R moving with 
velocity v in a viscous medium: 
 

drag 6F R v  

 
where R is the radius of the sphere.  When these three forces balance, no net force acts on 
the sphere, so it falls with constant velocity, called “terminal velocity”.  Combine the 
expression of the three forces acting on the spherical object to derive the expression of 
the “terminal velocity”. 
 
Specific Instructions and analysis 
 
Test the equation you just derived by measuring the terminal velocity of small lead 
spheres falling through the oil you analyzed in the first part of the experiment (for lead, f 
= 11.7 g cm-3). 
 
Measure the diameter of one of the spheres, taking an average of several measurements if 
it isn't really spherical.  Measure the velocity of the sphere falling through the oil using a  
stopwatch.  Repeat the experiment for at least three different spheres.  Are the measured 
values close to the values predicted by your equation? 
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III.  Buoyant Force  

 

Figure 2: Apparatus for the final part of the Lab. 

 
The density of gas in a helium balloon is less than the density of the surrounding air, so 
the balloon feels a net upward force.  The buoyant force (air = 1.29 kg m-1 at 1 atm 
pressure) can be balanced by hanging a mass below the balloon as in figure 2. 
 
The total weight is: 
 

 total 1 string balloon HeW m m m m g     

 
where m1 is the mass hanging below the balloon, mstring is the mass of the string, mballoon is 
the mass of the (empty) balloon, and mHe is the mass of the helium within the balloon. 
 
The masses of the balloon, string, and hanging weight can be measured on scales, but for 
the mass of the helium you have to rely on measurements of volume and pressure.  Given 
that the atomic mass of helium is 4, if there are n moles of helium in the balloon, the 
mass is mHe = 4.00 g · n. 
 
The ideal gas law relates n to the pressure, volume, and temperature of the balloon (P, V, 
and T) and the universal gas constant: P V = n R T.  Solving for n and substituting R = 
8.3145 J mol-1 K-1 and T = 293K (approximate room temperature) allows you to calculate 
the mass. 
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Specific Instructions and analysis 
 
Measure the mass of the empty balloon. Fill it with helium, and after stopping the flow of 
helium, measure the pressure within the balloon before tying off the end of the balloon. 
You may need the following conversion factors: 1 psi = 6985 Pa, 1 atm = 1.013 x 105 Pa.  
Also, remember to add the atmospheric pressure to the "gauge pressure" reading on the 
pressure meter. 
 
 

 

Figure 3: Measuring the dimensions of a balloon. 

 
Next measure the volume of the balloon. One way of doing this is to put it on a table, 
hold a meter stick vertically next to it, and use a wooden board to help measure its size on 
the meter stick. (See figure 3.)  You can estimate the size of the balloon from the 
dimensions d1 and d2. 
 
Cut a piece of string a couple of feet long, measure its mass and tie it to the bottom of the 
balloon.  Finally, tie a 5-g hanger to the string and keep adding weights to the hanger 
until the balloon is in equilibrium.  To fine-tune the hanging weight, you may want to use 
small paper clips (about 0.3 g each) or pieces of tape.  After you have achieved 
equilibrium, detach the hanger and its weights and measure their mass on a scale. 
 
Now you have all the pieces of data you need to test the buoyancy formula.  Calculate the 
buoyant force and the weight. Are they close to each other? 
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PRELAB Problems for Lab #7: Fluids 

 
1) Work problem 5.4 of Taylor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2) Work Problem 5.6 of Taylor. 
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BEFORE YOU COME TO LAB: 

1.  Read Knight's Chapter 14 (Oscillations), as assigned for lecture.  Note 
that the equations describing Simple Harmonic Motion have 
applications in physics and engineering extending far beyond the 
simple systems described. 

2.  Read Taylor’s Section 3.2, on “The Square Root Rule for a Counting 
Experiment.”  While not specifically relevant to this week’s 
experiment, the argument that counts of things (such as nuclear decays, 
occurrences of rare diseases in human populations, etc.) have 
uncertainties of the order of the square root of the counts is of crucial 
importance in making both scientific and political decisions. 

3.  Read the lab writeup.  Focus on the relationship between the physical 
phenomena and the equations as you carefully go through the 
Introduction and then through Appendix I of the writeup. 

4.  Consider the optional PreLab problem set attached. 

 
Princeton University     Physics 103/105 Lab 
Physics Department  
 
 

LAB #8: COUPLED PENDULUMS AND 
NORMAL MODES 

 

 

A.  Introduction 

In this week's lecture and lab, you will be studying the motions of simple harmonic 
oscillators. The set of concepts involved in Simple Harmonic Motion (SHM) is one of a 
handful of extremely useful building blocks for many advanced areas in physics.  
Electrical, acoustical, and optical systems oscillate with SHM, completely analogous to 
the mass-plus-spring and pendulum systems you’ll be looking at during these two weeks.  
Your radio selects the station you want by using electrical resonance tuned to the desired 
frequency.  Some theoretical physicists in search of Grand Unified Theories (GUTs) have 
proposed describing the smallest fundamental particles as comprised of oscillating 
“strings.” 1 Many physicists use their physical intuition about how systems with springs 
and masses are likely to behave in order to predict how many different systems will act.  
Contrary to its name, “physical intuition” isn’t always an innate characteristic; a person 

                                                 
1 In this case, the word “string” is used evocatively rather than literally. 



 66

develops physical intuition with experience. This lab gives you the chance to develop 
such intuition about SHM in simple mechanical systems.   

This week's lab is a study in describing seemingly-complex motion with simple 
equations.  The techniques underlying the work will recur throughout your scientific and 
technical futures.  Our focus is first on the equations describing Simple Harmonic Motion 
(SHM).  These follow from any situation in which there is 

(a) an equilibrium situation (x = 0, say) generated by a restoring term which is 
linear in the variable: 

F = - k x ,    for example, for a spring. 

(b) an “inertial term” (the mass, say) which prevents the restoring term from 
easily and immediately pushing the system back to its equilibrium 
situation.  Newton tells us that 

F = m a  =  m d2x/dt2 . 

Combining the above terms gives us the basic equation of SHM: 

m  d2x/dt2    =   - k x . 

Any system described by an equation of this form will exhibit SHM behavior, including 
having simple sinusoidal solutions, a characteristic frequency leading to resonance 
behavior, etc.  To a mathematician, this is an example of a linear differential equation, in 
which the unknown function and its derivatives appear only in the first degree.  (There 
are no squares, cubes, square roots, or strange functions of x involved.) 

Linear differential equations of the above form, which pervade science and engineering, 
have one wonderful characteristic – their solutions may be superposed.  That is, if there 
are two functions u(t) and v(t), each of which satisfy the equation, then any linear sum of 
the two functions is also a solution.   

As you may know, Fourier Analysis shows that complex functions can be described as 
sums of sine and cosine functions.  Electrical engineers build their careers on this simple 
fact.  The response of a system described by the SHM model to any (additional) driving 
force f(t) can be described by investigating its response to a family of sinusoidal driving 
functions which, when summed, equate to the complicated function f(t).  As you would 
expect, a sine function tuned to the system's resonant frequency will produce a huge 
response, and other frequencies will have less effect.  (This is how you select the radio 
station you want, starting from the fact that a whole host of stations are broadcasting 
simultaneously, with their outputs superposed linearly in the air.) 

More generally, it is common in physics to find that the equations describing a complex 
system allow not one, but a whole host of resonant frequencies.  The overtones produced 
by a musical instrument are such frequencies, and their relative frequencies and 
amplitudes are what makes one instrument have a characteristic “sound.” 
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In this week's lab, we will study a fairly simple system – two identical pendulums, 
connected by a weak spring.  In the absence of the spring, the two would swing at the 
same sinusoidal frequency, independent of each other.  Adding the spring produces two 
characteristic frequencies, which in turn lead to a complex motion, which is not a simple 
sinusoid.  But the motion can be analyzed as a sum of two sinusoidal motions, each of 
which obeys the simple equations of SHM, and oscillates at its characteristic frequency. 

As you pursue your interest in science and engineering, you will find that the approach to 
analyzing a complicated system often hinges on an ability to look for characteristic 
frequencies, and to determine the patterns of motion which generate simple sinusoidal 
behavior at those frequencies.  With these solutions in hand, then, linearity of the 
equations allows any general motion to be described as a sum of these simple motions.  
This is the concept of normal modes, which refers to the set of patterns which each leads 
to a simple sinusoidal variation in time. 

All of this math may seem a little complicated.  It is not really necessary to carrying out 
the lab.  But it is the purpose of doing the lab. 

You will want to observe the various patterns of motion of the two-pendulum system, and 
record carefully descriptions of the patterns of motion that you see.   Using a stopwatch, 
you can determine the frequencies associated with the various patterns which occur.  
Then, using a simple computer model which sums and graphs the combined effects of 
two sinusoids, you can simulate the patterns that you observe, and other patterns as well 
(for example, the first overtone in a musical instrument). 

 

B.  The Apparatus and the Measurements 
 

This system consists of two pendulums connected at their centers of mass with a spring, 
as drawn in Figure 1.  Using a stopwatch, measure the frequencies of the pendula without 
the spring, and then the frequencies of the normal modes.   (See Appendix A.)  
 
After you have analyzed the simple patterns of motion, try displacing one pendulum 
while holding the other one fixed.  Then release them simultaneously.  Describe the 
resulting motion.  Be quantitative -- do the two frequencies you observe in this situation 
agree with what you expected from your measurements of the normal modes, based on 
Appendix A?  
 
Take a VideoPoint movie of the complex motion, using a capture rate of 5 or 6 frames 
per second.  (Since we will be interested mainly in frequencies, there is no need to 
include a meter stick in the field of view.)  Make sure that the video covers at least one 
complete cycle of the motion.  Pick off the positions of some identifiable point on one of 
the pendulums.  (There may be a lot of points, but since we are interested in frequencies 
more than in exact positions, you can click rapidly through the video.) 
 
Make a plot of position versus time.  Do the general characteristics agree with those 
expected?  Does the video confirm the frequencies you measured by stopwatch? 
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Figure 1: Coupled pendulums; each pendulm is 
made from a length of 2x4 A spring connects the 
two pendulums at their centers of mass (CMs).

 
 
 
 

C.  Computer Modeling of Your Results 
 

An Excel program, Normal Modes Modeling, can be found in your Physics 103 
folder.  It provides a fun way of confirming that two sinusoidal functions can generate the 
complex behavior that you observed with the two pendulums. 
 
The program calculates the function  
 

X(t)  =  A1 * cos( 2 pi * F1 * t )   +   A2 * cos( 2 pi * F2 * t )   . 
 
There are two terms, with amplitudes A1 and A2, oscillating at frequencies F1 and F2.  
You can type in the two frequencies you observed for your normal modes, and see if the 
model duplicates the more complex behavior.  (For present purposes, just set A1 = A2 = 
1.) 
 
The following figure shows an example Excel screen.  Amplitudes and frequencies can 
be changed at will.  Note also that you may need to change the maximum value of the 
range of time plotted in order to see the entire behavior. 
 
Use the modeling program to confirm that the frequencies you measured in the complex 
motion can generate the pattern that you saw in your VideoPoint graph, and that the 
video's frequencies agree with your stopwatch measurements and with the theory.  Note 
that coordinates on the graph may be "picked off" by moving your cursor onto the curve 
and pausing.  Clicking on the curve, and then clicking again after the little squares have 
appeared, will allow using the right and left arrow keys on the keyboard to move the 
point “picked off” in small sideways steps. 
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D.  Further Computer Modeling 
 
While you have the Excel program running, use it to look at other interesting 
phenomena, involved in such things as musical instruments and their “tone.”  In each 
case, print out a copy of the computer's result and write down in your notebook a 
summary of what you find notable in the waveforms.  Note that, up to now, you have 
been looking at two frequencies which are close to each other.   
 
In the following, you may want to make the amplitude of the higher-frequency term 
smaller than that of the fundamental. 
 
(a)  Look at two frequencies which are exactly a factor of two apart.  These are most 
relevant to such instruments as the flute and the organ, in which the overtones tend to be 
almost exact multiples of the fundamental note being played. 
 
(b)  Look at two frequencies which are almost, but not quite, a factor of two apart.  (Say, 
with a frequency ratio of 2.2 to 1.)  Such waveforms are perhaps relevant to the sound 
produced by a saxophone, in which the tapered bore causes the overtones to not be exact 
multiples of the fundamental note. 
 
(c)  What about non-integer ratios of frequencies?  Think about what period of time 
makes such a system return to its initial state.  (Use simple integer ratios first, such as 
3:2.) 
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Appendix I: Coupled Oscillations 
 

Consider the case of the two pendulums coupled with a spring at their centers of mass 
(Figure 1).  We will explicitly assume L1=L2=L. Positive angles are counterclockwise 
motions.  There are two torques on each pendulum.  The weight of a pendulum gives a 
torque, which tries to restore the pendulum to vertical, 
 

 w  =  -(m g) L sin(- m g L


using the small-angle approximation  sin()  .  The spring provides a restoring torque 
on the first pendulum which acts to bring the separation between the centers of mass of 
the pendulums to the unstretched length of the spring, L0:


s  = - [k (Ls-L0 )]  L   - k L[L sin(1) – L sin(2)]   -k L2(1-2), 
 

where Ls  is the stretched length of the spring, and the first approximation is that the 
stretched spring makes a small angle to the horizontal, and the second approximation is 
that both and 2 are small.  (The latter condition implies the former.)  The restoring 
torque on the second pendulum is equal in magnitude, but in the opposite direction.  
 
Newton’s law in angular variables applied to each pendulum gives the following 
equations of motion: 
 

  I11 = I1 
d21

dt2
   = -m1 g L 1  - k L2( 1-2),    (1) 

 

     I22 = I2 
d22

dt2
 = - m2 g L 2  + k L2( 1-2).   (2) 

 
Notice that neither of these equations describes simple harmonic motion because of the 
spring coupling terms.  However, if we consider the case of two symmetric pendulums, 
so that  I1 = I2 = I and m1 = m2 = m,  then we can get two new equations from (1) and (2) 
which  DO describe simple harmonic motion.  We get the first by adding together (1) and 
(2): 
 

  I 
d2

dt 2
(1 2 )  = - m g L( 1+2),     (3) 

 
and the second by subtracting (2) from (1): 

 

  I
d2

dt 2
(1 2 )  = -m g L( 1-2) - 2 k L2( 1-2).   

 (4) 
 

Equation (3) is an equation for simple harmonic motion in the variable u = 1+2, which 
has solution (up to an arbitrary phase angle) u(t) = umax   cos(u t), where u

2 = m g L / I. 
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Similarly, equation (4) describes simple harmonic motion in the variable v =  1-2, and 
has solution v(t) = vmax   cos(v t), where v

2 = (m g L+2 k L2) / I.  The solutions u(t) and 
v(t) are called normal modes = motions in which both pendula move at the same 
frequency.  The normal mode u(t) is excited when both boards are displaced equally in 
the same direction.  The spring then has no effect.  The normal mode v(t) is excited by 
starting the boards with equal and opposite displacements of each board.  The frequency 
for this mode is higher because this motion exercises the spring. 

 
The variables that we observe directly are  1(t) and 2(t).  In the simple case where umax = 
vmax = A, when the arbitrary phases are both zero, the motion of  1(t) is: 
 

 1(t) = 
1

2
(u + v) = 

1

2
 A [cos(u t) + cos(vt]), 

 
which can be rewritten with the help of the trigonometric identity for the addition of 
cosines as: 
 

 1(t) = A cos
(u   )

2
t





cos

(u   )

2
t











. 

 
Think of this as periodic motion with angular frequency av  = (u+ v) / 2, with an 
amplitude that varies periodically with a slower frequency,  = (u- v) / 2.  
Similarly, (using the trig identity for the difference between two cosines), the expression 
for the motion of the second pendulum is: 
 

 2(t) = 
1

2
(u-v) = A sin

(u  )

2
t





sin

(u  )

2
t











 

 
 

One of these functions is plotted in Figure 4 for the case of a weak spring coupling,  
 

K << m g / L,  
 
so that || << u. 
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The oscillations of one pendulum in the case of weak coupling.  The vertical axis gives 
the amplitude in arbitrary units while the horizontal axis measures time (in arbitrary 
units).  
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PRELAB Problems for Lab #8:  Coupled Pendulums and Normal Modes 

 

1.  Consider a simple pendulum consisting of a mass m suspended on a string of length L.   

(a)  What is the pendulum's natural frequency if   L = 1 m?   

(b) What length L for a clock pendulum would make the clock “tick” once every 
second, if the tick occurs every time the clock's pendulum passes through its 
equilibrium position? 

2.  Two identical carts are placed on a frictionless air track, so that they are free to move 
along a horizontal line.  Weak springs of negligible mass are used to join the two cars and 
to connect each of the cars with a fixed point its end of the air track.   The three springs 
have identical spring constants k.   Each car has a mass M. 

(a)  What will be the frequency of motion if each cart is moved some distance D 
to the right of its equilibrium position, and they are simultaneously released 
from that position?  (Hint:  Think of the springs, and use the similarity of the 
two cart's situations.) 

(b)  What will be the frequency of motion if, instead of the above, one cart is 
moved a distance D to the right of its equilibrium position, and the other cart 
is moved a distance D to the left? 
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BEFORE YOU COME TO LAB: 

 Read the Taylor's example on “Measurement of g with a Simple 
Pendulum,” in his Section 3.9.  This will get you started on the 
uncertainty analysis of this week's lab. 

 Consider the optional PreLab problem set attached.  Note that one of 
the PreLab problems is assigned from Taylor. 

Princeton University     Physics 103/105 Lab 
Physics Department  
 
 
 
 
 

LAB #9: A PRECISION MEASUREMENT OF g 
 
 

 
 
 
 
 
Overview Comments: 
 
So far, the experiments in Physics 103 Lab have addressed physical principles to an 
accuracy of 5 to 10%.  This is fine for getting a feel for how things work, but another 
objective of experimental physics is to measure precise values for constants of nature.  To 
make a precise measurement, one designs an experiment to minimize systematic effects 
or to make them easy to calculate.  In this lab you will measure g, the acceleration due to 
gravity at the Earth’s surface, by timing a pendulum.  With care in your technique and 
attention to systematic effects you can achieve an accuracy of much better than 1%. 
 
Uncertainty analysis is an essential part of this lab.  We have provided a spreadsheet to 
do most of the calculations for you.  But you are responsible for thinking about the 
results.  You may want to do a quick review of your Error Analysis material before 
coming to lab.  During this lab, you will carefully apply the methodology of combining 
random errors from repeated measurements using the concepts of standard deviation and 
standard error.  
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Theory of a Real (Physical) Pendulum 

A high-precision experiment requires unusual effort both in technique and in the 
underlying theory.  In this section we extend the theory of a simple pendulum to the level 
needed for a precise measurement of g. 

Your textbook shows that for a simple pendulum of length L0, the period T0 is 
given by  

.2 0
0 g

L
T    (1)

Inverting this equation, we can calculate the value of g by timing the period of such a 
pendulum: 

.4
2

0

02

T

L
g   (2)

However, at the level of accuracy we are aiming for, we may not assume that our 
pendulum is a simple pendulum.  There are two important effects that make the simple 
pendulum assumption break down.  Our physical pendulum is 1) not a point mass 
suspended by a massless string, and 2) not a true harmonic oscillator (because the 
restoring term in the equation is not exactly proportional to the displacement).  If we were 
to neglect either of these two effects, we would find that our measurement of g was 
systematically off.     
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Consider the consequences of the first effect.  For a physical pendulum of total 
mass MT, moment of inertia I about the pivot point, and distance cmD  between the pivot 

point and the center of mass, the period 0T  for small oscillations is given by 

 0 2 .
T cm

I
T

M D g
 (3)

You may approximate your pendulum as a cylindrical bob of mass M, height h 
and radius r, suspended on a long thin wire of mass m.  Let the distance from the pivot to 
the top of the cylindrical bob be L.  (See the sketch on the previous page.)  You should be 
able to derive the expression for the moment of inertia I of this physical pendulum   

 

bob string

2 2 2 2

.
2 4 12 3

I I I

h r h m L
I M L

 

        
   

(4)

(The moment of inertia of a cylinder about a line perpendicular to its axis through its 

center of mass is 
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22 hr
MI , and the 

2

2






 

h
LM  term comes from the parallel 

axis theorem.)   

To evaluate the T cmM D  term in the denominator of equation (3), we need to 

consider both the mass of the bob and the wire, and find the distance from the pivot to 
their center of mass: 

 

 

   
2 2
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2 2

T cm cmM D M m D

h L
M L m

M m
M m

h m L
M L

 

         
 

 
 

    
 

(5)

Substituting equations (4) and (5) into (3), the period of oscillation becomes 
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Solving this for g and combining a few terms gives us 
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Next, consider that the pendulum is not a true harmonic oscillator.  For a true 
harmonic oscillator, the equation for theta would be  

 0
4

2
0

2

2

2

 
Tdt

d
,         (true harmonic oscillator )                               (8) 

  

which has a solution  

  







 t

T
t m

0

2
cos

  ,     (true harmonic oscillator) (9)

where the amplitude m  is the maximum value of  , and the period 0T  is independent of 

the amplitude.  In reality, the equation  I  for a pendulum leads to 

 

   0sin
4

2
0

2

2

2

 
Tdt

d
,      (actual pendulum) (10)

for which the actual period of oscillation T does depend on the amplitude m .  (For small 

oscillations, we often make the approximation    sin , but for this measurement we 
will need to be more precise.)  To get an expression for the period T as a function of the 
amplitude m , one solves equation (10), but this leads to complicated elliptic integrals 

which are most easily treated by numerical approximations.  These give for the actual 
period T a series expansion in the variable  2sin 2

m :  
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1 42

0
mmTT


, (11)

where T0 is determined from equation (6).  Remember, T is the period that you measure, 
and T0 from equation (6) is the period that you would have measured for your physical 
pendulum if m were very small. 
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Just to give you an idea of how big a correction the difference between T and T0 
really is, here’s a Table of T/T0 vs. m from Equation (11). 

 

m  0/TT  
m 0/TT

0  1.00000  10 1.00191 
5  1.00048  11 1.00231 
6  1.00069  12 1.00275 
7  1.00093  13 1.00323 
8  1.00122  14 1.00374 
9  1.00154  15 1.00430 

      

LAB #9: THINGS TO DO 

I. Measuring the Period 

Measure the period of your pendulum using the light-activated electronic timer on 
your table.  Set the mode switch to “P” so that the pendulum turns the timer on and off 
with successive passes.  To time multiple periods, hold down the telegraph key on your 
table to keep the timer from being switched on and off with every pass.  Set the switch on 
the back of the timer to “manual reset” to keep the display from resetting to zero 
immediately after every measurement.  The timer can measure 1, 10, 100, or 1000 second 
intervals.  Which one should you use? 

Measure the period for m = 10, timing the pendulum for ten periods.  Estimate 
the random error by repeating the measurement about five times.  How should you 
estimate the uncertainty of your time measurements?  Feel free to use Excel to help you 
with averaging or other calculations.  After using your computer to calculate g in part III 
below, go back and repeat the measurement for m = 5 and 15.  

Tips on Technique:  Be certain to time complete cycles; otherwise the placement 
of the light beam affects the measurement.  (Why?)  There is another systematic effect 
due to the damping of the amplitude, if the light beam is not centered.  Center the light 
beam by making the times for half cycles the same on both sides.  Finally, even if the 
light beam is centered, the finite size of the light beam gives this systematic error if the 
amplitude is too small.  Do not use amplitudes below 5°. 

II.  Making Other Measurements 

Now, you will measure the lengths and masses needed to calculate g from 
equation (7).  Measure the length of the pendulum wire with a metal 2-meter ruler. 
(Wooden ones warp and shrink.)  Measure L from the bottom of the V notch at the pivot 
point to the top of the mass.  Do not rest the ruler on top of the mass as its weight may 
elongate the wire.   

Do not disassemble your pendulum to measure the mass of the bob or the wire.  
(This will add more kinks to your wire, and make your life more difficult than it has to 
be.)  Instead, there are additional bobs and wires on the table in the center of the lab 
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which you can weigh and measure.  Think about how accurately you need to determine r, 
h, and the masses. 

III. Using the Computers to Do the Tedious Calculations 

Calculating g and doing error propagation with something as messy as equation 
(7) is, to put it nicely, the perfect job for a computer.  To help you out, we have 
programmed an Excel worksheet to help you with your calculations.  A copy of the 
worksheet is appended at the end of this write-up, so you can check it out before you get 
to lab. 

In the Physics 103 folder, double-click on Precision Measurement of g (Rev 
C).xls to open the worksheet.  Since you will be adding your own data to it, you may 
want to click on File  Save As to allow you to rename and save a copy of the 
worksheet in the student data folder for your lab period.  Then, any time you save the file, 
it will be saved there under its new name. 

Many of the cells in the original worksheet have been “write protected” to keep 
you from accidentally changing or deleting the parts that do your calculations for you.  
You can type your values into the yellow, boxed regions, and you can also do any 
additional calculations to the side or below the ready-made part, which is contained in 
columns A-Q and rows 1-66. 

Let's start by understanding the spreadsheet's logic: 

In section (a) of the worksheet, you will want to put something recognizable for a 
group name and date so that you and others will be able to recognize it later, for instance 
as printouts become scattered around the lab. 

In section (b) of the worksheet, you can enter your raw data for all measured 
quantities (L, M, h, r, m, T, and m ), along with their absolute uncertainties.  The 

worksheet automatically computes the relative (percentage) uncertainty for you. 

In section (c), the worksheet shows you the Amplitude Correction Factor 0/TT  

that comes from your pendulum not being a true harmonic oscillator.  It also calculates 
the “corrected period” 0T  of your pendulum in the limit of very small oscillations. 

In section (d), the worksheet calculates the individual geometric correction factors 
related to your pendulum being a “physical pendulum” rather than an idealized point 
mass.  Each one of the terms A, B, C, D, E, and F corresponds to one of the terms in 
equation (7).  The worksheet also calculates an overall “mass and dimension” correction 
factor, and combines this with the length L and the corrected period 0T  to give you the 

best value of g from your measurements according to equation (7). 

In section (e), the worksheet calculates the absolute and relative uncertainty in g 
from the uncertainties in each of the original measurements, and combines them in 
quadrature (i.e., by taking the square root of the sum of the squares) to give the final 
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uncertainty in g from your experiment (as implied by your original uncertainty 
estimates). 

Start by entering your basic measurements into section (b) of the worksheet.  Do 
you get a reasonable value for g? 

Next, play around with the numbers a little bit.  Do the geometric (mass and 
dimension) correction factors behave as they should?  Does the corrected period give 
reasonable answers?  (When the computer is doing all of the heavy lifting for you, it’s 
easy for the lab to turn into a “plug and chug” activity, with your brains totally tuned out.  
Don’t let that happen!) 

Next, add your uncertainties to the worksheet.  Do they propagate through as they 
should?  Which ones are the biggest sources of error? 

Once you have put your numbers in for one set of measurements at m = 10 and 
are satisfied with your results, repeat the experiment with m = 5 and with m = 15.  
Your calculated value for T0 should not vary with m; if it does, you have a systematic 
error. 

IV. Points to Ponder 

These are things you should make a particular point of pondering in your 
notebook.  The TA’s will be looking for these when they check the notebooks.   

1.  About how big does your m  have to be for the period T of your pendulum to differ 

from the small amplitude period 0T  by 0.1%?  By 1%? 

2.  Which leads to the largest “correction” in your calculation: the fact that your 
pendulum is not a true harmonic oscillator, or the fact that it is not a simple (point mass) 
pendulum? 

3.  In section (b) of the spreadsheet, you estimated errors for all of your measured 
quantities, and the spreadsheet calculated percentage errors for you.  Rank these from 
most accurate to least accurate. 

4.  Each of the uncertainties in your measured quantities contributes some uncertainty to 
the calculation of g, as is shown in section (e) of the spreadsheet.  Rank these from the 
largest contribution to the total uncertainty in g to the smallest contribution.  Are these 
the same as your rankings as for question 3?  Why or why not? 

5.  Suppose you could spend five hours and $100 in the lab cutting any one of your 
measured uncertainties in half.  (That is, with 5 hours of your time and $100 you could 
decrease the uncertainty in L, M, h, r, m, T, or m  by a factor of two.)  Which one would 

give you the “biggest bang for your buck” in terms of reducing your overall uncertainty 
in g? 
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6.  The premise of question 5 is kind of bogus, in that you probably can’t guarantee that 
one afternoon and $100 would cut the uncertainty in any one of your variables by a factor 
of 2.  In reality, some of those uncertainties would be easy to improve, some wouldn’t be.  
So where would you spend your time?  What would be the next thing you would do to 
make a significant improvement in some part of your measurement to reduce your overall 
uncertainty in g?  (There’s no one right answer here; this is your chance to think and be 
creative.)   

V.  The “Right” Answer 

This section violates a fundamental law of Physics 103/105 Lab, namely: there is 
no “right” answer.  But it turns out that what was at the time the world’s best 
measurement of g was made in Palmer Hall (now Frist Campus Center) in 1963, when 
the Physics Department was still housed there.  Jim Faller, working in room 130, got 

g = 980.1604±0.0007 cm/sec2 (J. E. Faller, Ph. D. Thesis, Princeton, 1963). 

In 1998, Physics 103/105 labs moved from Palmer Hall to McDonnell Hall.  How 
much do you think Jim Faller’s measurement would have changed had he made it on the 
second floor of McDonnell Hall?  Could his experiment tell the difference?  Can yours? 

We only have a “right” answer because Faller worked for 3 years and used a very 
fancy technique.  Incidentally, he built a “suitcase” version of his apparatus, which he 
carried around comparing values of g in standards labs all over the world  London, 
Paris, Geneva.   Anyway, what is the discrepancy between your value of g and Faller’s?  
Do they agree within the errors? 

VI. Report your Values to Your TA 

When you are satisfied with your results and understand the uncertainty that the 
spreadsheet has calculated for you, report your results to your TA.  Your TA will tabulate 
the results for each group, and will give each of you two graphs showing your results 
plotted along with those of your classmates.  At the end of the week, we will collect the 
values for all of the lab sections and post them in the hallway, and possibly on the course 
web site. 

How do your results compare to those of your classmates?  Do your results agree 
to within your uncertainty?  If not, then why?  These kinds of “friendly” discussions are 
what good science is all about. 
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(Physics 103

(a)  Group Name, Date, etc.

(b)  Measurements and Estimated Errors:

+/- (Per Cent)

Wire length L = 1.00000 m +/- 0.01000 m 1.000%

Bob mass M = 1.00000 kg +/- 0.01000 kg 1.000%

Bob length h = 0.10000 m +/- 0.00100 m 1.000%

Bob radius r = 0.10000 m +/- 0.00100 m 1.000%

Wire mass m = 0.01000 kg +/- 0.00010 kg 1.000%

Period T = 3.00000 sec +/- 0.00100 sec 0.033%

Amplitude m = 10 deg +/- 1.0 deg 10.000%

(c)  Calculation of Corrected (i.e., small-amplitude) Period:

T/T0 = 1.00191 -- +/- 0.00038 -- 0.038%

Corrected period T0 = 2.99429 sec +/- 0.00152 sec 0.051%

(d)  Calculation of "g":
(Per Cent)

First term ( 4 2 L / T0
2 ) = 4.40324  m/sec2

+/- 0.04415  m/sec2
1.003%

Correction terms for dimensions and masses (best estimates only):

A = h / L =

B = h2   / 3 L2 =

C = r2   / 4 L2 =
D = m / 3 M =
E = h / 2 L =
F = m / 2 M =

Overall mass and dimension correction factor: 

( 1 + A + B + C + D ) / ( 1 + E + F )        = 1.05134

Best Value of "g" (first term multiplied by overall correction factor):

g = 4.62931  m/sec2

0.05000
0.00500

0.10000

0.00333

0.00250
0.00333

p
       Factor

Best Value Uncertainty

Calculation Spreadsheet for Precision Measurement of "g"

NOTE:  Input data only into cells in the boxed regions (yellow on the screen).  All other entries are calculated 

Enter Group Identification and date here.

Best Value Estimated Error
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(e)  Uncertainty in "g" -- Propagation of Errors:

Source of Error % Error Propagated Errors in Value of "g
(Original Estimates) (Percent)

Wire length L 1.000% +/- 0.04383  m/sec2 0.9467%

Bob mass M 1.000% +/- 0.00008  m/sec2 0.0017%

Bob length h 1.000% +/- 0.00226  m/sec2 0.0488%

Bob radius r 1.000% +/- 0.00021  m/sec2 0.0045%

Wire mass m 1.000% +/- 0.00008  m/sec2 0.0017%

Measured Period T 0.033% +/- 0.00308  m/sec2 0.0666%

Amplitude m 10.000% +/- 0.00336  m/sec2 0.0763%

Quadratic Sum of Errors   =      +/- 0.044123  m/sec2 0.9531%

Rev C -- 11/15/01

Absolute
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PRELAB Problems for Lab #9 ;  A Precision Measurement of g 

 

1.  To measure g in lab this week, you will time the period of a pendulum.  Suppose that you have 
measured a pendulum’s period five times, and obtained the following five values (in seconds): 
2.871, 2.866, 2.871, 2.873, and 2.869.  What is your best estimate of the actual period of the 
pendulum and what is the statistical uncertainty in that value?  (Make whatever reasonable 
assumptions you need to make about the distribution being smooth and symmetric and morally 
upright; this isn’t a trick question.) 

 
 
 
 
 
2.  Work Taylor's Problem 3.40 (on his page 88). 
 
 
 
 
 
 
3.  Suppose that for an amplitude of 0.1 your pendulum has a period of 2.0000 sec.  What will 
the period of your pendulum be when it swings with an amplitude of 10 ?  (Hint: the values 
shown in the Table of T / T0 vs. m appearing after Eqn. (11) in the lab manual will be useful 
here.  If your calculations become laborious, you are probably barking up an unnecessarily 
inconvenient tree.)   
 
 
 
 
 
 
 
 
 
4.  Consider two pendulums, each consisting of a heavy solid brass sphere tied to a massless 
string.  One pendulum is a sphere of radius 2 cm tied to a string of length 98 cm, the other 
pendulum is a sphere of radius 5 cm tied to a string of length 95 cm.  For both pendulums, the 
distance between the pivot and the center of mass of the sphere is exactly 1 meter.  Based on the 
theory of pendulums developed in the write-up for this lab, which pendulum has the greater 
period?  Or are they the same?  Explain briefly.  
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Princeton University Physics 103/105 Lab 
Physics Department  
 

LAB #10: THE SPEED OF SOUND  
AND SPECIFIC HEATS OF GASES 

 
This week you will measure the velocity of sound in a gas, and you will weigh the 

gas in order to find its density.  These measurements will lead to a determination of 
CP/CV, the ratio of specific heats at constant pressure and constant volume, and thus 
should allow you to determine the molecular structure of the gas.  It is a beautiful 
example of how measurements of macroscopic lengths, masses, and forces provide 
information about molecules having sizes and masses of 10-10 meters and 10-23 grams!  
 

Let's quickly review how these quantities relate -- that is, how the speed of sound 
ultimately relates to degrees of freedom and specific heat.  The speed v of longitudinal 
waves is given by  
 

 
 
 

where is the density of the medium and B is the bulk modulus, defined by the 
relationship  

V

V
BP


  

The bulk modulus is a property of a substance: it describes the fractional change in the 
volume when the pressure is increased by an amount P. 
 

Now consider sound traveling in an ideal gas.  As an opening exercise, start with 
the ideal gas law and by differentiating show that B = P.  What assumptions did you 
make to get this result? 

 
B = P is not correct, however.  To see why, note that sound waves propagate as a 

series of compressions and expansions.  These variations in the medium take place so 
rapidly that there is no time for heat transfer from one part of the medium to another.  
Such a Q = 0 process is called adiabatic.  In an adiabatic process the quantity PVremains 
constant.  Starting with P V  =  constant  (rather than P V = constant) we can show that  

 
B = P,     where  is the ratio CP / CV     . 

 
From this it follows that the speed of sound is given by 
 


 P

v   

 
 


B

v 



 88

 

GAS SAFETY 

Tanks of various gases will be available in the lab.  Choose one of these for your 
measurement of the speed of sound and, of course, use the same gas for measurement of 
the density.  The tanks contain gas at high pressure: do not try to move the tanks.  Every 
tank has three valves: one on the throat of the bottle, which allows gas to enter a large 
reduction valve in the regulator, which bleeds the gas slowly out of a small needle valve 
to which the rubber tubing is attached.  You need to use only the needle valve.  The 
others have been adjusted: do not tamper with them.  The pressure has been set high 
enough to give a flow that will fill your flask in a reasonable time.  If someone should 
increase the pressure it could cause a flask to blow up!  When you open the needle valve 
you should feel a gentle breeze of gas flowing out of the rubber tube when held near your 
lips.  Keep the needle valve closed when you are not taking gas, open it when you need 
some. 
 
Velocity of sound 
 
The apparatus for measuring the speed of sound is a vertical cylinder of gas. The length 
of the column of gas is adjusted by changing the height of a metal reservoir of oil.  A 
loudspeaker is attached to the top of the cylinder, and it generates sound from an 
electrical audio oscillator.  The loudspeaker also responds to sound vibrations (like a 
microphone) and thus the sound waves set up in the cylinder of gas affect it also.  This 
action is detected by a meter. When the cylinder is in resonance you will get a significant 
change in the reading of the meter included in the speaker circuit. 
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MOVABLE

TANK

 
 

 As a preliminary step, turn on the oscillator at a convenient frequency (1000 
cycles/sec) and let the oil descend from the top down about 60 cm.  Watch the meter and 
listen to the sound. You should be able to find several positions of the oil level at which 
resonance occurs.  You will want to adjust the output level of the oscillator so that the 
meter reading is near the end of the scale when the system is off resonance.  When the 
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system is at a resonance, the meter reading should change by about 10 or 15%.  You 
might find that a different frequency (10-20%) will give a stronger indication of 
resonance.  Explore a bit. 

 You are now ready to fill the cylinder with gas from one of the tanks.  Note that 
you will need to flush out the air (or other gas) previously there.  Raise the oil as high as 
possible during flushing to facilitate this.  Be sure to open and close the valves in the 
right order so that the pressure in the tube is not raised above atmospheric pressure.  

 Lower the oil level from the top and note the approximate location of the first 
three resonances.  Then raise the oil slowly through each resonance.  (Upward motion 
makes is easier to determine the level of oil, as you will discover on trying it both ways.)  
Find the position of resonance as accurately as possible.  

  Compute the speed of sound from the spacing between resonances and the 
frequency of the audio oscillator.  

 

Density of the gas 

 The density is found by weighing a known volume of the gas at atmospheric 
pressure.  Two flasks of equal size are provided, one coated with plastic and the other 
clear.   

 Evacuate the coated flask with the vacuum pump (you can tell when this is 
achieved when a sharp clacking sound of the pump replaces the initial slurping sound).  
Weigh the evacuated flask (be careful not to drop it, the plastic coating has been put on to 
minimize hazard).  Then fill the flask with your gas and reweigh.   

 Use the clear flask to find the volume by filling it with water to the proper level 
(remember the rubber stopper in the plastic coated flask).   Measure the volume of water.  

 You can check your measurement of the density by comparing to the density of an 
ideal gas of particular molar mass:  p V = n R T  and so M n / V = M p / R T, where M is 
the molar mass.   Consider such gases as Ar, N2, and CO2. What density does the ideal 
gas law predict? 

 From the measured density and speed of sound for your gas, and the pressure of 
the atmosphere in the lab, determine the value of for your gas. 
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Tips on technique 

 A good way find a resonance position is for one person to slowly raise the oil level 
while another records the meter readings.  The resonance position can be found by 
graphing the meter reading versus position.  

 You must measure the change in weight (few grams) of the evacuated and filled flask, 
which can be done by moving the rider on the balance.  Be sure that the weights in 
the balance pan are not changed while you fill the flask with gas.  

 To fill the flask, open the needle valve, repeat the lip test, and if a gentle flow is 
found attach the hose to your flask and open the stopcock.  It will be filled when the 
hissing noise at the needle valve stops.  Shut the stopcock.  Shut the needle valve and 
remove the tubing.  The pressure in the flask is slightly above atmospheric.  Open the 
stopcock slightly and gas will hiss out allowing the pressure to drop to normal.  
Weigh the filled flask.  After a minute, open the stopcock again briefly and close. 
Reweigh.  Repeat after another minute.  Reweigh.  If the weight has not changed 
again you are finished.  If it has, repeat again.  Why does the weight change at all? 

    

What gas did you use? 

The tanks will be labeled so that they can be distinguished, but the labels indicating what 
gases they contain will be hidden.  Some time into the lab your AI will provide you with 
a list of gases which might have been in the tanks.  Can you determine from your 
measurements of density and  which gas you used?  How confident are you?  I.e., what's 
your error, and how well can you distinguish between monatomic, diatomic, and 
polyatomic gases? 

 

Figure from Tipler's 4th Edition (p. 492) – The first four harmonics of standing waves 
on a string fixed at both ends. 
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REFERENCE INFORMATION 
 
 
 
 
The following pages contain general information which you may find useful.  They 
include: 
 

1. A table from Tipler, on specific heats of gases.  Values of may be 
derived from this data. 

2. A table of densities of various gases, directly relevant to your calculation 
of v.   

3. A Periodic Table of the Elements, giving the atomic weights of the various 
elements.  This will be useful if you want to consider gas densities from 
the point of view of the perfect gas law, PV = nRT. 

 

 

You may recall that 1 atm = 101.3 kPa = 76.00 cm Hg .   
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Table 18-3 from Tipler (5th edition): 
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PRELAB Problems for Lab #10 ;  The Speed of Sound and Specific Heats of Gases 

 
1.  In this experiment, you will vary the height of the oil in a column of air, producing an 

air column with varying length.  At certain lengths, acoustic resonances will occur for 
a given frequency of sound,  f .  Given two different (consecutive) heights h1 and h2,  
of the oil in the column that produce resonance, derive an expression for the speed of 
sound, v, in terms of   f ,  h1 and h2 . 

 
2.  What are the resonant wavelengths, λn , for standing sound waves in a small-diameter 

pipe of length L having one end open and the other end closed ?  Assume that there is 
a displacement node at the closed end of the pipe, and a pressure node at the open end, 
and write down a few words as to why you think these assumptions are reasonable.  
(Tipler's pages 517 and 518 are relevant to this problem.) 

 
3.  Assume that various traveling waves can exist in the same space, described by the 

equations 
ψ1 (x,t) = A sin (  7 m-1 · x  -  520 sec-1 · t )        ,         

 
ψ2 (x,t) = A sin (  7 m-1 · x  +  520 sec-1 · t )       , 

 
ψ3 (x,t) = A sin ( - 7 m-1 · x  -  520 sec-1 · t )       ,                     and 

 
ψ4 (x,t) = A sin ( - 7 m-1 · x  +  520 sec-1 · t )      . 
 

 (a)  Which waves are traveling in the direction of the positive x axis, and which 
in the negative x direction? 

 
(b)  What are the frequencies f and wavelengths λ of the waves?  What are their 

speeds of propagation? 
 
(c)  What are the angular frequencies (ω) and wave numbers (k) of the waves? 
 
(d)  Are any of the four wave functions identical with each other?  Explain why or 

why not.  (A is the same in each case.)  You may want to consider the 
behavior of the four functions in the vicinity of x = 0 , t = 0. 

 
 

Note:  It is irrelevant to answering these questions whether the ψ's 
(and A) describe sound waves, the electric fields of a radio or 
light wave, or a quantum-mechanical wave function.  
Superposition, and the conditions leading to standing waves and 
resonance, are important aspects of any wave phenomenon. 
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Princeton University Physics 103/105 Lab 
Physics Department  

 
Appendix A 

Data Analysis with Excel 
  

This Appendix is provided primarily for students who are not frequent users of the 
common Excel spreadsheet program.  We hope that it will be useful as tool for gaining 
confidence in using this important tool.  For some students, it may serve mainly as a 
reminder of how to do things that you have done before. 
 
Even experienced Excel users, however, should use this Appendix as an introduction to 
some added software, called WPTools, which extends Excel's graphing capabilities to 
provide extra information useful in scientific applications.  (WP stands for Workshop 
Physics.) 
 
Students with access to Excel on their own computers, or through the campus systems, 
can run through almost all of the material outside the lab.  Only the WPTools material 
will be unavailable. 
 
 
 
Computers are used for data analysis in any modern physics laboratory, and Princeton's 
teaching labs are no exception.  We have built our data analysis systems around the 
program Excel, which is widely used on and off campus.  We've added some Workshop 
Physics (WP) tools to make graphing data easier, and to let you do regression 
calculations with uncertainties, but otherwise we are using the standard, off-the-shelf 
software.  If you are already familiar with Excel, great!  If not, we'll give brief 
instructions here.  Like any software, it can be confusing at first, so don't hesitate to ask 
your instructors and your fellow students for help.  If you can, play around with the 
program a bit before lab, to get comfortable with it. 
 

A.1     Starting Things Up 
 

 If the computer isn't already on, turn it on and wait for it to boot up. 
 If the Physics 103 window isn't already open, double click on its icon to open 

it. 
 Double click on Excel with WPTools (Look for the X logo.) to get the 

program running. 
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A.2     Entering Data: a Simple Example1 
 
When Excel is started up, you need to open a spreadsheet to work in.  If you are asked if 
you want to reopen WPTools, click No.  Then go to File → New and click on OK to 
open a new Workbook.  (If you wanted to open a pre-existing spreadsheet, you would use 
the File → Open menu command; if you want to save a new spreadsheet, use the File → 
Save menu command.  Since we'll be working with fairly small data sets, neither of 
these is really necessary for your lab work.) 
 
Let's assume that you have some actual data.  If not, just write down a list of 10 random 
pairs of numbers between 0 and 100 in increasing order.  Then write down a second such 
list beside the first, to generate two lists of numbers, each in increasing order.  Call the 
two lists x and y.   Go to Excel, and start entering the data in the upper left-most cell 
(called A1).  To do this, move the cursor to this cell and click on it with the left mouse 
button.  Enter the first x-data value here, pressing Enter when you are done.  The cell 
below A1 (called A2) will automatically become the selected cell.  Enter your second x-
value here.  Work down the first data column in this way.  If you need to correct any of 
your entries, simply move the cursor, click on the relevant cell, and reenter the number. 
 
Once you've entered the first column of numbers, move the cursor to the top cell of the 
second column (cell B1) and click on the left button to select it.  Enter the first y data 
value here.  Then press Enter and type your subsequent y values in the cells below. 
 
Now that your two columns of data are in the computer, select them.  Do this by moving 
the cursor to the top left cell, pressing and holding the left mouse button, dragging the 
cursor to the lowest filled cell in the second column, and then releasing the mouse button.  
The entire block of numbers will now be selected, as indicated by a change in color or a 
border.  Now go to the WPTools pull-down menu and select Linear Fit.  Immediately, 
you will get a graph of your data, along with the values and uncertainties of the best-fit 
straight line.  After admiring this for a minute, print out a copy. 
 

A.3     Calculations in Excel 
 
Sometimes you will want to transform your raw data in some way before plotting it.  For 
example, you may have entered two columns of data as above, but you may want to 
convert the y-values from inches to meters.  This is where a spreadsheet program 
becomes really handy.  Select a blank cell somewhere on the sheet. (Cell C1 would be a 
good choice.)  Instead of entering a number in this cell, enter the formula = 0.0254 * B1 
and press Return.  Excel will not only display the calculated result in cell C1, but it will 
also remember the formula.  This is useful for two reasons:  First, if you decide to change 
the value in cell B1, the number in cell C1 will automatically be updated.  Second, you 
can copy the formula in cell C1 into other cells, transforming the rest of column B to use 

                                                 
1 Note:  Menu commands are described as follows:  File → Open means move the cursor to the word File 
on the line near the top of the screen, press and hold the left mouse button, drag the cursor down to the 
word Open, and release the button. 
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it.  To do this, first select cell C1.  The cell becomes outlined, and a little square appears 
in the lower right corner of the outline.  Move the cursor onto this square, press and hold 
the left mouse button, and move the cursor down several lines.  Then release the button.  
Voila!  Excel will use the same formula to multiply all the cells in column B by 0.0254.   
 
Excel can do much more complicated arithmetic – for example, you could use the 
formula  = sqrt (A1) * B1  to take the square root of the values of cells in column A, 
multiply them by the values in column B, and put the result in some other column. 
 
You might also want to take differences between successive items in your data list.  If 
you type into cell C2 the formula = B2 – B1, and then use the little square to fill this 
formula into cells B3, B4, etc., then you will have the differences in column C. 
 
If you want to do a transformation like this, and then you want to do a plot or a curve fit, 
the columns of data you want to plot may not be adjacent to each other.  No problem!  
Let's say you want to plot the data in cells A1 to A10 on the horizontal axis, and that in 
cells C1 to C10 on the vertical axis.  First select cells A1-A10.  (Go to A1, hold down 
the left mouse button, drag the cursor to A10, and then release the mouse button.)  Then 
hold down the Ctrl key and select cells C1-C10.  Now both regions, A1-A10 and C1-
C10 have been selected, but not cells B1-B10.  Run the WPTools → Linear Fit routine, 
and you will get the plot you want. 
 

A.4     Accumulating Values:  Excel Tricks 
 
There will be times in the physics lab when you want to accumulate sums of a series of 
values.  For example, you might have measured a series of time intervals, 
 

Δt1 = time interval between event 1 and event 2, 
 
Δt2 = time interval between event 2 and event 3, 
 
Δt3 = time interval between event 3 and event 4, 
 

etc. 
 
You may wish to convert these into a continuous time scale.  In other words, you may 
want to declare that t is equal to 0 at the time of event 1, and then find values for 
 

time of event 2 = Δt1 
 
time of event 3 = Δt1 + Δt2 
 
time of event 4 = Δt1 + Δt2 + Δt3 
 

This is easy to do.  Say that Δt1, Δt2, etc., are in cells A1, A2, etc., and we want to put the 
accumulated times in column B.  First put a 0 in cell B1 (since we are taking t = 0 at the 



 

100 
 

time of the first event).  Then go to cell B2 and enter the formula = SUM ($A$1:A1).  
(The SUM function simply adds up the cells in a specified range.)  The usefulness of the 
$ notation becomes apparent when you want to calculate the rest of the time values.  
Select B2, move the cursor to the square in the lower right hand corner of the cell border, 
press and hold the left mouse button, drag the cursor down several cells, and release the 
button.  The cells in column B are now filled with SUM functions, but in a special way.  
The $A$1 keeps the first cell in the range fixed at A1, because of the $ signs.  But the 
second part of the function call changes from A1 to A2 to A3, etc.  In other words, cell 
B3 now reads = SUM ($A$1:A2), cell B4 reads = SUM ($A$1:A3), and so on.  These 
are exactly the formulae we want for the event time calculations, so column B is now 
filled with your calculated time values. 
 

A.5     Further Notes About the Workshop Physics Excel 
Routines. 
 

 Use the WPTools → Polynomial Fit menu command, and set Order = 2 to fit 
lines of the form  y = a0 + a1 x + a2 x 

2   . 

 If you enter non-numerical text in the cell above each column of data, it will be 
used to label the horizontal and vertical axes on the plot. 

 The plotting and fitting routines always use the first selected column for the 
horizontal (x) points, and the second selected column for the vertical (y) points.  
So the order of selecting columns matters.  (If the columns are adjacent, and 
selected both at once, the left-hand column is plotted horizontally.) 

 Empty rows are usually ignored, but partially empty rows may corrupt the fit. 

 To delete a plot, select it (move the cursor onto it and click once); then press the 
Delete key.  To delete a column of the data sheet, select the entire column by 
clicking on the letter at the top, and use Edit → Delete. 

 If data are modified after running a fit, the associated plot will be automatically 
updated, but the fit parameters will NOT be re-calculated.  Usually it is best to 
delete both the old plot and its fit parameters after updating data. 

 

 

 

 

 

 

 



Appendix B

Estimation of Errors

While the subject of error analysis can become quite elaborate, we first emphasize a basic
but quite useful strategy, discussed in secs. B.1-2. Then, we distinguish between random (or
statistical uncertainties and systematic uncertainties in sec. B.3. Random uncertainties follow
the famous bell curve, as sketched in secs. B.4-5. The important distinction between the
uncertainty on a single measurement, and the uncertainty on the average of many repeated
measurements is reviewed in secs. B.7-7. The subject of propagation of errors on measured
quantities to the error on a function of those quantities is discussed in sec. B.8.

B.1 67% Confidence

Whenever we make a measurement of some value v, we would also like to be able to say that
with 2/3 probability the value lies in the interval [v−σ, v +σ]. We will call σ the uncertainty
or error on the measurement. That is, if we repeated the measurement a very large number
of times, in about two thirds of those measurements the value v would be in the interval
stated.

B.2 A Simple Approach

Repeat any measurement three times, obtaining a set of values {vi}, i = 1, 2, 3. Report the
average (mean),

v̄ =
1

N

N∑
i=1

vi (for N = 3), (B.1)

as the best estimate of the true value of v, and the uncertainty σ as

σ =
vmax − vmin

2
. (B.2)

If you take more than three measurements, you can still implement this procedure with
the aid of a histogram. Divide the range of observed values of v into 5-10 equal intervals
(called bins). Located the bin that contains each measurement, and draw a box one unit
high above that bin. Stack the boxes on top of one another if more than one measurement
falls in a bin. To estimate the error, determine the interval in v that contains the central 2/3
of the measurements, i.e., the central 2/3 of the boxes you just drew, and report the error
as 1/2 the length of this interval.

5
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B.3 Random and Systematic Uncertainties

The uncertainty in a measurement of a physical quantity can be due to intrinsic random
uncertainty (colloquially: error) as well as to systematic uncertainty.

Random uncertainties lead to difference in the values obtained on repetition of measure-
ments. Systematic uncertainties cause the measurement to differ from its ideal value by the
same amount for all repetitions of the measurement.

Random uncertainties can arise from vibrations of the components of a set-up driven by
random thermal fluctuations, random noise in the electronics, and/or many other small but
uncontrolled effects including quantum fluctuations.

In principle, the effect of random uncertainties can be made as small as desired by
repetition of the measurements, such that the dominant uncertainty is due to systematic
effects (which can only be reduced by designing a better measurement apparatus).

B.4 The Bell Curve

In many cases when a measurement is repeated a large number of times the distribution of
values follows the bell curve, or Gaussian distribution:

P (v) =
e−(v−μ)2/2σ2

√
2πσ

, (B.3)

where P (v)dv is the probability that a measurement is made in the interval [v, v + dv], μ
is true value of the variable v, and σ is the standard deviation or uncertainty in a single
measurement of v. See Figure B.1.

Figure B.1: The probability distribution measurements of a quantity with true value μ and
Gaussian uncertainty σ of a singe measurement. About 68% of the measurements would fall
in the interval between μ − σ and μ + σ, and 95% would fall in the interval μ ± 2σ.

The Table lists the confidence that a single measurement from a Gaussian distribution
falls within various intervals about the mean. If the 100 students in Ph101 each make 100
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Table B.1: The probability (or confidence) that a measurement of a Gaussian-
distributed quantity falls in a specified interval about the mean.

Interval Confidence

±σ 68%

±2σ 95%

±3σ 99.7%

±4σ 99.994%

measurements during these lab sessions, then 10,000 measurements will be taken in all. The
Table tells us that if those measurements have purely Gaussian ‘errors’, then we expect one
of those measurements to be more than 4σ from the mean.

B.5 Estimating Uncertainties When Large Numbers of

Measurements Are Made

One can make better estimates of uncertainties if the measurements are repeated a larger
number of times. If N measurements are made of some quantity resulting in values vi, i =
1, ...N then the mean is, of course,

v̄ =
1

N

N∑
i=1

vi, (B.4)

and the standard deviation of the measurements is

σ =

√√√√ 1

N − 1

N∑
i=1

(vi − v̄)2. (B.5)

Calculus experts will recognize that the operation (1/N)
∑N

i=1 becomes
∫

P (v) dv in the limit
of large N . Then, using the Gaussian probability distribution (B.3) one verifies that

v̄ = 〈v〉 =
∫ ∞

−∞
vP (v) dv, and σ2 =

〈
(v − v̄)2

〉
=
∫ ∞

−∞
(v − v̄)2P (v) dv. (B.6)

B.6 The Uncertainty on Mean of a Uniformly

Distributed Quantity

Not all measurable quantities follow the Gaussian distribution. A simple example is a quan-
tity with a uniform distribution, say with values v equally probable over the interval [a, b].
It is clear that the average measurement would be (a + b)/2, but what is the uncertainty
of the measurement? If we adopt the simple prescription advocated in secs. B.2 we would
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report the uncertainty as (b − a)/3 since 2/3 of the time the measurement would fall in an
interval 2(b − a)/3 long. If instead we use the calculus prescription for σ given in eq. (B.6)
we find that

σ =
b− a√

12
=

b − a

3.46
, (B.7)

which result is often used by experts.

B.7 The Uncertainty in the Mean

Thus far we have considered only the uncertainty or spread in measured values of some
quantity v. A related but different question is: what is the uncertainty on our best estimate
of v (which is just the mean value of our measurements, v̄ = (1/N)

∑
vi)?

The uncertainty on the mean v̄ is surely less that the uncertainty, σ, on each measurement
vi. Indeed, the uncertainty on the mean is given by

σv̄ =
σ√
N

, (B.8)

where σ is our estimate of the measurement error obtained from one of the methods sketched
previously.

Appendix C illustrates eq. (B.8) using measurements of g from past Ph101 labs.

B.8 The Uncertainty on a Function of Several

Variables (Propagation of Error)

In many cases we are interested in estimating the uncertainty on a quantity f that is a
function of measured quantities a, b, ... c. If we know the functional form f = f(a, b, ...c)
we can estimate the uncertainty σf using some calculus. As a result of our measurements
and the corresponding ‘error analysis’ we know the mean values of a, b, ... c and the error
estimates σa, σb, ... σc of these means. Our best estimate of f is surely just f(a, b, ...c) using
the mean values.

To estimate the uncertainty on f we note that the change in f due to small changes in
a, b, ... c is given by

Δf =
∂f

∂a
Δa +

∂f

∂b
Δb + ... +

∂f

∂c
Δc. (B.9)

If we just averaged this expression we would get zero, since the ‘errors’ Δa, ... Δc are some-
times positive, sometimes negative, and average to zero. Rather, we square the expression
for Δf , and then average.

Δf2 =

(
∂f

∂a

)2

Δa2 + ... +

(
∂f

∂c

)2

Δc2 + ... + 2
∂f

∂a

∂f

∂c
ΔaΔc + ... (B.10)

On average the terms with factors like ΔaΔc average to zero (under the important assump-
tion that parameters a, b, ... c are independent). We identify the average of the squares of
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the changes relative to the mean values as the squares of the errors: 〈Δa2〉 = σ2
a, etc. This

leads to the prescription

σ2
f =

(
∂f

∂a

)2

σ2
a + ... +

(
∂f

∂c

)2

σ2
c + ... (B.11)

Some useful examples are

f = a ± b ± ... ± c ⇒ σf =
√

σ2
a + σ2

b + ... + σ2
c , (B.12)

and

f = albm...cn ⇒ σf

f
=

√
l2
(

σa

a

)2

+ m2

(
σb

b

)2

+ ... + n2

(
σc

c

)2

, (B.13)

where l, m and n are constants that may be negative.

For more detailed and rigorous analyses one can consult, for example:

• P.R. Bevington and D.K. Robinson, Data Reduction and Error Analysis for the Physical
Science, 2nd ed. (McGraw-Hill, New York, 1992).

• J.R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical
Measurements, 2nd ed. (University Science Books, 1997).





Appendix C

Standard Deviation of the Mean of g

Suppose you make N repeated measurements of a quantity g, such as the acceleration due
to gravity. How well is the value of g determined by these measurements?

For example, during the 2006 sessions of Ph101 Lab 3 a total of 37 different measurements
of g were made, as shown in the histogram Fig. C.1.

Figure C.1: Histogram of the values of g measured in the 2006 Ph101 Lab 3. The horizontal
axis is g, and the vertical axis is the number of times a value of g was reported to lie with
the range of g corresponding to the width of a vertical bar.

A histogram is a graph containing M vertical bars in which the height of a bar indicates
the number of data points whose value falls within the corresponding “bin”, i.e., within
the interval [gj − Δ/2, gj + Δ/2], where gj , j = 1, M and the centers of the M bins and
Δ is the bin width. One can make a histogram of a data set {gi} using Excel/Tools/Data
Analysis/Histogram. Enter the data {gi} in one column of an Excel spreadsheet. Click on the
Input Range: box of the Histogram window; then click and hold the left mouse button on the
first data point, and drag the mouse to the last data point to enter the cell addresses of the
data. Click on Chart Output and then OK to create a basic histogram. If the number/spacing
of “bins” chosen by Excel is awkward, fill a new column with a linear series of 5-10 steps
that begins near the lowest gi and ends near the highest; create a new histogram with the
Excel addresses of the first and last elements of the bin list in the box Bin Range:.

11
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The mean value ḡ is calculated according to

ḡ =

∑N
i=1 gi

N
, (C.1)

and was found to be ḡ = 939.5 cm/s2 for the data shown in Fig. C.1.

The distribution of the value of g is approximately Gaussian, and the standard deviation
of this distribution is calculated according to

σg =

√∑N
i=1(gi − ḡ)2

N − 1
, (C.2)

with the result that σg = 9.1 cm/s2.

The standard deviation σg is a good estimate of the uncertainty on a single measurement
of g. However, after 37 measurements of g, the uncertainty on the mean value ḡ is much
smaller than σg.

An important result of statistical analysis is that the standard deviation (i.e., the un-
certainty) of the mean of the N measurements is related to the standard deviation of the
distribution of those measurements by,

σḡ =
σg√
N

. (C.3)

For the data shown in Fig. C.1, where N = 37, we obtain

σḡ =
9.1√
37

= 1.5 cm/s2. (C.4)

That is, we can report the result of all 37 measurements of g as

g = 979.5 ± 1.5 cm/s2. (C.5)

As a check that eq. (C.3) is valid, we can analyze the data another way. Namely, we can
first calculate the means ḡi for the 5 different sessions of Ph101 Lab 3. Then, we can make
a histogram of these 5 values, as shown in Fig. C.2.

The mean of the 5 means is 979.6 cm/s2, which is essentially identical to the mean of the
37 individual measurements of g. The standard deviation of the 5 means shown in Fig. C.2
is calculated to be 1.6 cm/s2, which is essentially identical to the previous calculation (C.4)
of the standard deviation of the mean.

Concluding Remarks: If N were much larger than what we have here, the histogram
C.1 would approach the Gaussian distribution (the bell-curve) shown in Appendix B. The
peak in the histogram would be very close to the mean value ḡ of the measurements, which
represents the best estimate of g from the data. The standard deviation σg ≈ width/2 is a
measure of the uncertainty of a single measurement,1 while σg/

√
N is the uncertainty on the

best estimate ḡ.

1Strictly speaking, the full width at half maximum of a Gaussian distribution is 2.35σg.



Princeton University Ph101 Lab Homework: Analyzing Statistical Errors 13

Figure C.2: Histogram of the mean values of g measured in the 5 sessions of Ph101 Lab 3
in 2006.





Appendix D

Polynomial Fits in WPtools

D.1 Polynomial Regression

In this technical Appendix we sketch the formalism used in the polynomial regression method
for fitting data. This is a generalization of the method of linear regression.

We start with a set of data (xj, yj), j = 1, ...m, and we wish to fit these data to the
nth-order polynomial

y(x) =
n∑

i=0

aix
i. (D.1)

In general each measurement yj has a corresponding uncertainty σj. That is, if the measure-
ments were repeated many times at coordinate xj the values of yj would follow a gaussian
distribution of standard deviation σj. We indicate in sec. D.2 how the program WPtools
proceeds in the absence of input data as to the σj.

Because of the uncertainties in the measurements yj we cannot expect to find the ideal
values of the coefficients ai, but only a set of best estimates we will call âi. However, we will
also obtain estimates of the uncertainties in these best-fit parameters which we will label as
σâi.

The best-fit polynomial is then

ŷ(x) =
n∑

i=0

âix
i. (D.2)

The method to find the âi is called least-squares fitting as well as polynomial regression
because we minimize the square of the deviations. We introduce the famous chi square:

χ2 =
m∑

j=1

[yj − ŷ(xj)]
2

σ2
j

=
m∑

j=1

(
yj −∑n

i=0 âix
i
j

)2

σ2
j

. (D.3)

Fact: exp(−χ2/2) is the (un-normalized) probability distribution for observing a set of vari-
ables {yj(xj)} supposing the true relation of y to x is given by eq. (D.2).

A great insight is that exp(−χ2/2) can be thought of another way. It is also the (un-
normalized) probability distribution that the polynomial coefficients have values ai when
their best-fit values are âi with uncertainties due to the measurements {yj}. Expressing this
in symbols,

exp(−χ2/2) = const × exp

(
−

n∑
k=0

n∑
l=0

(ak − âk)(al − âl)

2σ2
kl

)
, (D.4)

15
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or equivalently

χ2/2 = const +
n∑

k=0

n∑
l=0

(ak − âk)(al − âl)

2σ2
kl

. (D.5)

The uncertainty on âk is σkk in this notation. In eqs. (D.4) and (D.5) we have introduced the
important concept that the uncertainties in the coefficients âk are correlated. That is, the
quantity σ2

kl is a measure of the probability that the values of ak and al both have positive
fluctuations at the same time. In fact, σ2

kl can be negative indicating that when ak has a
positive fluctuation then al has a correlated negative one.

One way to see the merit of minimizing the χ2 is as follows. According to eq. (D.5) the
derivative of χ2 with respect to ak is

∂χ2/2

∂ak
=

n∑
l=0

al − âl

σ2
kl

, (D.6)

so that all first derivatives of χ2 vanish when all al = âl. That is, χ2 is a minimum when
the coefficients take on their best-fit values âi. A further benefit is obtained from the second
derivatives:

∂2χ2/2

∂ak∂al
=

1

σ2
kl

. (D.7)

In practice we evaluate the χ2 according to eq. (D.3) based on the measured data. Taking
derivatives we find

∂χ2/2

∂âk
=

m∑
j=1

(
yj −∑n

i=0 âix
i
j

) (
−xk

j

)
σ2

j

=
n∑

i=0

m∑
j=1

âix
i
jx

k
j

σ2
j

−
m∑

j=1

yjx
k
j

σ2
j

, (D.8)

and
∂2χ2/2

∂âk∂âl
=

m∑
j=1

xk
jx

l
j

σ2
j

≡ Mkl. (D.9)

To find the minimum χ2 we set all derivatives (D.8) to zero, leading to

n∑
i=0

m∑
j=1

xi
jx

k
j

σ2
j

âi =
m∑

j=1

yjx
i
j

σ2
j

≡ Vk. (D.10)

Using the matrix Mkl introduced in eq. (D.9) this can be written as
n∑

i=0

Mikâi = Vk. (D.11)

We then calculate the inverse matrix M−1 and apply it to find the desired coefficients:

âk =
n∑

l=0

M−1
kl Vl. (D.12)

Comparing eqs. (D.7) and (D.9) we have

1

σ2
kl

= Mkl. (D.13)

The uncertainty in best-fit coefficient âi is then reported as

σâi = σii =
1√
Mii

. (D.14)
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D.2 Procedure When the σj Are Not Known

This method can still be used even if the uncertainties σj on the measurements yj are not
known. When the functional form (D.1) correctly describes the data we claim that on
average the minimum χ2 has value m− n− 1.1 To take advantage of this remarkable result
we suppose that all uncertainties σj have a common value, σ. Then

χ2 =
m∑

j=1

[yj − ŷ(xj)]
2

σ2
≈ m− n − 1, (D.15)

so that

σj = σ =

√∑m
j=1[yj −∑n

i=0 âixi
j]

2

m − n − 1
. (D.16)

In practice it appears that the error estimates from this procedure are more realistic if a
fit is made using a polynomial with one order higher than needed for a ‘good’ fit to the data.

Using eq. (D.16) as the estimate of the uncertainty σ on each of the measurements yj,
the matrix Mkl of eq. (D.9) becomes

Mkl =
m − n − 1∑m

j′=1[yj′ −∑n
i′=0 âi′xi′

j′]
2

m∑
j=1

xk
jx

l
j. (D.17)

The estimate (D.14) of the uncertainty on the fit coefficient âi is now given by

σâi =
1√
Mii

=

√√√√∑m
j′=1[yj′ −∑n

i′=0 âi′xi′
j′]

2

(m − n − 1)
∑m

j=1 x2i
j

(D.18)

When WPtools performs a polynomial regression it generates a plot of the data points
and the best-fit curve, along with numerical values of various parameters associated with the
fit. Figure D.1 gives an example of a fit to a set of 8 data points of the form y = x2. The
fit is to the form y = a0 + a1x + a2x2. The fit coefficients are a0 = −0.4107, a1 = −0.3274
and a2 = 1.1964. The uncertainties (standard errors) on the fit coefficients are reported as
SE(a0) = 4.0070, SE(a1) = 2.0429 and SE(a2) = 0.2216, as calculated according to eq. (D.18).
Note that the uncertainties on coefficients a1 and a1 are larger than the coefficients them-
selves, which tells us that these coefficients are indistinguishable from zero.

Also indicated on the plot are the values R2 = 0.9915 and σ = 2.8721. The latter is the
uncertainty in the data points {yj}, calculated according to eq. (D.16) with m = 8 and
n = 2. The quantity R2 is defined by

R2 =

∑m
j=1[ŷ(xj) − y]2∑m
j=1[y(xj) − y]2

, (D.19)

where the average y =
∑m

j=1 y(xj)/m. This is a measure of the “goodness of fit”. If the fit is
perfect then ŷj = yj for all j and R2 = 1. It is not obvious, but R2 ≤ 1 always. The extreme
case of R2 = 0 occurs when the fit has the trivial form ŷ(x) = y for all x, which in general is
a bad fit. The qualitative conclusion is that if R2 is not close to 1, the fit results are to be
regarded with suspicion.

1The whole fitting procedure does not make sense unless there are more data points (m) than parameters
(n + 1) being fitted.
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Figure D.1: Sample plot from WPtools Polynomial Fitting.




