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 Please do NOT attempt to wash the graduated cylinders once they have 
oil in them. 

 Don’t pour the oil in the graduated cylinders back into the big cylinder 
until the end of the lab. 

 Please be sure that the small corks are well seated in the tubes when you 
are not measuring the fluid flow from them. 

Princeton University     Physics 103/105 Lab 
Physics Department  
 

LAB #2: Forces in Fluids 
 

 
Overview Comments: 
 
In this lab, you will explore some basic effects of forces in fluids: viscous (frictional) 
forces, as well as the buoyant force.  
 
Although the behavior of fluids is rather complicated in general, fluid motion obeys 
Newton’s laws.   A small element of fluid can be characterized by its volume, mass, and 
characteristic position, velocity and acceleration.   But, the volume can change its shape, 
and in the case of compressible fluids, its magnitude can change as well. 
 
In the first two parts of the Lab, you will consider an incompressible fluid, heavy 
machine oil, that is very viscous, and in the third part you will consider a compressible 
fluid, a gas, but at constant pressure so that its volume does not change. 
 
 Do you know that a cubic meter of air weighs almost three pounds?  No wonder it takes 
strength to hold your arm out the window of a moving car – it takes force to make all that 
air get out of the way! 

 
I.  Flow of a Viscous Fluid in a Circular Pipe  
 
It is a remarkable fact that fluid immediately adjacent to an immobile surface, such as the 
wall of a pipe, always has zero velocity.  In order for fluid some distance y from the 
surface to flow at velocity v, a force must be applied: 
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where A is the area of the surface (or, equivalently, the area of the layer of fluid), and  is 
the coefficient of viscosity.  Fluid flow through a circular pipe is slightly more 
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complicated.  Poiseuille's law states that for a circular pipe of radius R and length L, the 
pressure difference P = F/A (where A = R2) between the two ends of the pipe 
required to maintain an average velocity v is of the fluid flow over the cross section of 
the pipe is related by 
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where, 2A RL   is the surface area of the pipe, and Q is the volume rate of fluid flow. 
The R4 dependence of Q is impressive (and implies that your heart must work very hard 
to pump blood through your arteries if they ``clog up” even a little). 
 
 
 

 

Figure 1: Apparatus for parts I and II of the Lab.  The vertical cylinder is partly filled 
with oil.  It is open to the atmosphere at the top. 

 
Specific Instructions: 
 
Use the apparatus shown in Figure 1 to test Poiseuille's law and to measure the viscosity 
of a fluid.  The fluid is heavy machine oil, which fills the large vertical cylinder. Its 
weight produces the pressure at the bottom of the cylinder and, therefore, at one end of 
the small horizontal tube.  The other end of the horizontal tube is at atmospheric pressure. 
Thus the pressure difference across the length of the small tube is P =  g h, where h is 
the height of the fluid above the tube. 
 
Find the density of the oil using a scale and a graduated cylinder. 
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Measure the flow rate in each of the three available tubes (radii 0.319, 0.239 and 0.216 
cm), using a stopwatch and a graduated cylinder. 
 
Hints: Keep the small tube horizontal to minimize the effect of gravity on the flow. 
Measure the height of the fluid in the vertical cylinder before and after the oil flows out, 
and use the average value. From which point should the height be measured? 
 
Analysis: 
 
First use your data to test the assertion that Q is proportional to R4.  Although it isn't 
strictly true, assume that each tube has the same length L.  Then you can reformulate 
Poiseuille’s equation as: 
 

Q = Constant x R  
 
Analyze your data to determine the exponent . 
 
Do this two ways, both using Excel.   
 
After entering your data for R and Q, make a scatter plot of this using WPTools.   Click 
on the horizontal axis, and then and Format Axis  Scale to check the box Lorgarithmic 
scale.  Then, do the same for the vertical axis.  This converts your plot to a log-log plot.   
On a printout of this plot, draw a “best fit” straight line, and measure its slope in units 
where each power of 10 on the plot counts as 1 unit.   The numerical value of your slope 
is your measurement of  
 
You can get WPTools to do the equivalent of the above procedure by entering the log of 
your data for R and Q in your Excel sheet.  As hinted in Appendix A, if a value of R is in 
cell A2, you can put its log in cell C2 by clicking on that cell and typing =log(A2) in the 
formula bar of the sheet.  After typing Enter, the value should appear.  Then, drag 
downwards on the little box in the lower right corner of the cell to take the log of your 
other values of R.  After creating a column the values of log(Q) as well, use WPTools to 
make a scatter plot of log(Q) vs. log(R), and do a linear fit.   Then parameter a1 is the 
value of , and SE(a1) is an estimate of the uncertainty in your measurement of  
 
Next, find the viscosity . For this part of the analysis, assume that the exponent  = 4. 
Rework Poiseuille's equation to extract the value of the coefficient of viscosity, and use 
your three measurements of Q to calculate three values of .  Are the values close to each 
other?  As mentioned in Appendix B, a simplified error analysis is to report the average 
of the 3 values of  as your best estimate, with an uncertainty of max min / 2.   
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II. Terminal Velocity 
 
An object falling through a viscous fluid feels three forces.  Gravity pulls the object 
downward: 
 

gravF V g  

 
where  and V are the density and volume of the object, respectively, and g is 
gravitational acceleration. The buoyant force pushes the object upward: 
 

           buoy ,fF V g  

 
where f is the density of the fluid.  Finally, there is a drag force opposing the motion of 
the object. Stokes' law gives the drag force on a spherical object of radius R moving with 
velocity v in a viscous medium: 
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where R is the radius of the sphere.  When these three forces balance, no net force acts on 
the sphere, so it falls with constant velocity, called “terminal velocity”.  Combine the 
expression of the three forces acting on the spherical object to derive the expression of 
the “terminal velocity”. 
 
Specific Instructions and Analysis 
 
Test the equation you just derived by measuring the terminal velocity of small lead 
spheres (of density = 11.7 g cm-3) that fall through the oil you analyzed in the first part 
of the Lab. 
 
Measure the diameter of one of the spheres, taking an average of several measurements if 
it isn't really spherical.  Measure the velocity of the sphere falling through the oil using a  
stopwatch.  Repeat the experiment for at least three different spheres.  Are the measured 
values close to the values predicted by your equation?   
 
Assuming Stokes’ law to be correct, use your measurements of the terminal velocity to 
deduce another experimental value (and uncertainty) of the viscosity  of the fluid.   
Compare with your value from the first part of the Lab.  
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III. Buoyant Force  

 

Figure 2: Apparatus for part III of the Lab. 

 
The density of gas in a helium balloon is less than the density of the surrounding air, so 
the balloon feels a net upward force.  The buoyant force (air = 1.29 kg m-3 at 1 atm 
pressure) can be balanced by hanging a mass below the balloon as in figure 2. 
 
The total weight is: 
 

 total 1 string balloon HeW m m m m g     

 
where m1 is the mass hanging below the balloon, mstring is the mass of the string, mballoon is 
the mass of the (empty) balloon, and mHe is the mass of the helium within the balloon. 
 
The masses of the balloon, string, and hanging weight can be measured on scales, but for 
the mass of the helium you have to rely on measurements of volume and pressure.  Given 
that the atomic mass of helium is 4, if there are n moles of helium in the balloon, the 
mass is mHe = 4.00 g · n. 
 
The ideal gas law relates n to the pressure, volume, and temperature of the balloon (P, V, 
and T) and the universal gas constant: P V = n R T.  Solving for n and substituting R = 
8.3145 J mol-1 K-1 and T = 293K (approximate room temperature) allows you to calculate 
the mass. 
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Specific Instructions and Analysis 
 
Measure the mass of the empty balloon. Fill it with helium, and after stopping the flow of 
helium, measure the pressure within the balloon before tying off the end of the balloon. 
You may need the following conversion factors: 1 psi = 6985 Pa, 1 atm = 1.013 x 105 Pa.  
Also, remember to add the atmospheric pressure to the "gauge pressure" reading on the 
pressure meter. 
 
 

 

Figure 3: Measuring the dimensions of a balloon. 

 
Next measure the volume of the balloon. One way of doing this is to put it on a table, 
hold a meter stick vertically next to it, and use a wooden board to help measure its size on 
the meter stick. (See figure 3.)  You can estimate the size of the balloon from the 
dimensions d1 and d2. 
 
Cut a piece of string a couple of feet long, measure its mass and tie it to the bottom of the 
balloon.  Finally, tie a 5-g hanger to the string and keep adding weights to the hanger 
until the balloon is in equilibrium.  To fine-tune the hanging weight, you may want to use 
small paper clips (about 0.3 g each) or pieces of tape.  After you have achieved 
equilibrium, detach the hanger and its weights and measure their mass on a scale. 
 
Now you have all the pieces of data you need to test the buoyancy formula.  Calculate the 
buoyant force and the weight. Are they close to each other? 

 


