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PRINCETON UNIVERSITY PHYSICS 104 LAB 
Physics Department Week #10  
 

EXPERIMENT IX 
PHYSICAL OPTICS: Interference and Diffraction 

 

This is the second week of experiments on the behavior of light.  Last week we adopted the 
simple but useful assumptions of ray optics.  This week you will explore the consequences that 
light is a wave phenomenon.  The challenge is that the wavelength of light is too small to see.  

In this Lab you will study various examples of interference and diffraction of light: 

• Perform Young’s double slit experiment (which provided the first compelling 
evidence that light does behave like a wave) and get a rough measurement of the 
wavelength of the laser light. 

• Explore the behavior of light waves passing through a number of double slits each 
with a different distance between the slits. 

• Explore the behavior of light waves passing through a number of single slits, each 
with a different width, and through a circular aperture. 

• Explore the behavior of light waves that pass through several multi-slit gratings, each 
with a different number of slits. 

• Use a high-quality multi-slit grating with 1000≈  slits per mm to make a rather 
precise determination of the wavelengths of the three visible spectral lines in 
hydrogen (the Balmer series, the lines on which Bohr based his theory of atom). 

 
Because of the very small wavelength of light, diffraction and interference are easily seen only 
by use of devices with very small apertures.  To obtain a detectable amount of light passing 
through these small aperutures, you will be using a laser as the light source. 

CAUTION : Never Look Directly At The Light From A Laser 

Laser light is very bright and focuses to a very small spot on the retina, possibly causing 
permanent damage. 

Diffraction as a Consequence of Faraday’s Law 

The work of Thomas Young and others around 1800 on the interference and diffraction of light led to the 
conclusion that light was a wave phenomenon, some 60 years before Maxwell provided the understanding 
that light consists of waves of electricity and magnetism.  In retrospect, we can understand how Faraday’s 
law applied to electromagnetic waves implies the basic features of diffraction = the spreading of a beam 
of light after it passes through a small aperture. 
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Consider a linearly polarized plane wave with electric field ( )ˆ i kz t
xE e ω−=E x of angular frequency ω  

incident on a perfectly absorbing screen in the plane z = 0 that has a square aperture of edge a centered on 
the origin.  We apply the integral form of Faraday's Law to a semicircular loop with its straight edge 
bisecting the aperture and parallel to the transverse electric field xE , as shown in the figure.   

                                                     
The electric field is essentially zero close to the screen on the side away from the source.  Then, at time t 
= 0, the electric field in the aperture has strength xE , so that integrating around the loop we have 

 0.xd E a= ≠∫ iv E l  
(If the loop were on the source side of the screen, the integral would vanish.)  
 
Faraday's Law tells us immediately that the time derivative of the magnetic flux through the loop 
is nonzero.  Hence, there must be a nonzero longitudinal component, zB , to the magnetic field, once the 
wave has passed through the aperture. In detail, since for a wave, y xcB E= , Faraday’s Law leads to 
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dt dt

= = = − ≈ −∫ ∫ Areai iv E l B  

where zB is a characteristic value of the longitudinal component of the magnetic field over that half of the 
aperture enclosed by the loop.  The longitudinal magnetic field is caused by the incident wave, and so 
must have time dependence of the form i te ω− .  Hence,   / 2 /z z zdB dt i B icBω π λ= − = − .   Plugging this 
into the above version of Faraday’s Law, we find 
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≈ −  

Because light waves propagate in a direction perpendicular to the magnetic field, we see that the wave is 
no longer directed purely along the z axis after passing through the aperture (since 0zB ≠ ), and we say 
that it has been diffracted as a consequence of Faraday's Law. 
 
The magnitude of the ratio /z yB B found above is a measure of the spread of angles of the magnetic field 
vector caused by the diffraction.  And, since the magnetic field B is always perpendicular to the wave 
vector k that points along the local direction of the wave, we infer that far from the screen the wave 
vectors occupy a cone of characteristic angle 
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which is representative of the diffraction angle for an aperture of size a . 
 
Using the fourth Maxwell equation including the displacement current, we could make an argument for 
diffraction of the electric field similar to that given above for the magnetic field.  We would find a spread 
in the directions of the electric field vectors by amount / aθ λ π≈ , and hence an angular spread in the 
direction of the rays of the wave also given by / aθ λ π≈ . 
 
The presence of a factor i in the ratio /z yB B implies a very subtle effect in which the phase of the waves 
shifts by 90°  between the screen and a distant observer.  There is no easy way to detect this phase shift. 

1. Young’s Double Slit Experiment 

In this section, you will make a double slit and use it to measure the wavelength of light from a 
laser. 

On your Lab bench is a small piece of exposed photographic plate.  Look at the reflection from 
each side and find the side with the black emulsion on it.  You also have a pair of razor blades 
taped together, and a straight-edge.   

Place the straight-edge on the emulsion side of the glass plate, and scratch a pair of lines about 
1/2 inch long into the emulsion by drawing the pair of razor blades along the straight edge.  Use 
your fingers to press on the dull side of the razor blades during this operation!  Look at the 
emulsion with a magnifier to see if there is a clean double line scratched in the emulsion.  If it is 
less than ideal, try again in another spot at least ½” away. 

The spacing between the lines can be inferred by measuring the thickness of the razor blades 
with a micrometer caliper.  Assuming that the ground edges on the razor blades are alike, the 
spacing d of the lines is just the thickness of one blade. 

Mount your double slit in a spring clip in front of the helium-neon laser, with the slits horizontal.  
Mount the metal plate screen with the millimeter scale at the other end of the optical bench.  
Carefully adjust the height of the slits until the laser beam is centered on them, producing an 
interference pattern on the metal plate screen.   

Measure the spacing A between maxima on the scale.  You should try to include a large number 
of maxima in the measurement so that you can measure the distance between them and divide by 
the number of intervals to get better accuracy.  Also measure the distance D from the slits to the 
screen. 

The angle between adjacent maxima in the interference pattern is given by 

 
2 2

sin ,A
d A D
λθ = =

+
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where d is the separation of the slits.  

Deduce the wavelength of the laser from your measurements, and compare your result with the 
nominal value of the wave-length of the laser, λ = 632.8 nm. There may be as much as a 10% 
error due to asymmetric grinding of the edges of the razor blades.  Write your result in the space 
provided on the blackboard.  We shall arrive at a class value and an uncertainty bar by finding 
the average and the standard deviation of the measurements of the individual groups. 

As was shown experimentally in 1909, the form of Young’s double slit interference pattern is 
unchanged even when the intensity of light is so low that there is never more than one photon in 
the apparatus at a time.  At the quantum level, each photon interferes with itself. Interference 
occurs in Young’s experiment only if the light travels along both rays.  Hence, we cannot say 
which slit a photon went through – if Young’s interference pattern is observed. 

One way to derive the pattern of light on the screen after the laser beam has passed through a double slit 
is as follows.  Consider a plane wave incident on the double slit from the left, as shown in the figure 
below.  The electric field strength is then equal at the openings of the two slits, say with value 0E .  The 

wave that travels along ray 0 reaches the screen with field strength ( )0
0

i kr tE e ω− , where ω  is the angular 
frequency of the light, and 2 / /k cπ λ ω= = .  Similarly, the wave that travels along ray 1 arrives at the 
screen with field strength ( )1

0
i kr tE e ω− . 

                 

From the geometry of the similar triangles in the figure (and the assumption that A d� so that the rays 
are essentially parallel), we see that the length of ray 0 is longer than ray 1 by sind θ∆ = , so that 

1 0 0 sinr r r d θ= − ∆ = − .  Using this, the combined field strength at the point on the screen is 

 
( ) ( ) ( ) ( )( ) ( ) ( )0 1 0 0 0sin sin

0 0 0 0 1i kr t i kr t i kr t i kr t i kr tikd ikdE E e E e E e e e E e eω ω ω ω ωθ θ− − − − −− −= + = + = +
 

 

( ) ( )0 0
sin sin sin sin

2 2 2 2
0 02 cos sin .

2

kd kd kd kdi i i ii kr t i kr t kdE e e e e E e e
θ θ θ θω ω θ

− − −− −⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠  

The intensity I on the screen depends on the (absolute) square of the electric field, so we have 

 

2 2cos sin cos sin .
2

kd dI πθ θ
λ

⎛ ⎞ ⎛ ⎞∝ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

The intensity is maximal whenever 
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 sin , or sin , 1,2,3,....d mm m
d

π λθ π θ
λ

= = =  

 
See Tipler and Mosca for a more geometric derivation using phasors. 

2. Young’s Experiment, continued 

Mount the helium-neon laser (λ = 632.8 nm), 
the slit-film mask, and the gridded screen (to 
catch the diffracted light) on your optical bench.  
The mask has many different patterns, as shown 
schematically in the figure to the right. 

The code at the side of each set of slits indicates 
the pattern.                                                      

Top # = # of slits.                                        
Center # = width of slit (× 4.4×10−3 cm). 
Bottom # = slit separation (×4.4×10−3 cm).  

For example, pattern 3A is labeled (15, 1, 3), 
which implies 15 slits each of width 4.4×10−3 
cm, and separation of 13.2×10−3 cm. between 
slits.  The widths are only approximate.  Believe 
your data.  

Complete your look at Young’s double slit pattern by observing the patterns gotten by shining 
the laser onto the screen through a series of double slits, 5B, 5C, 5D, 5E, with increasing 
distance d between the slits. Sketch the interference patterns in your notebooks, and write down 
your qualitative observations. 

3. Diffraction by a Single Slit 

Even a single slit of width a, has an interference pattern on a distant screen, because of 
interference between light coming from one part of the slit and light coming from another.  This 
“self-interference” is termed diffraction.  In this pattern, minima appear at angles θ  such that 

 sin , 1,2,3,...m m
a
λθ = =  

  
Look at the single slit diffraction pattern by shining laser through a series of single slits of 
decreasing width --- 1C, 1D, 1E, and observing the pattern on the screen --- What happens to the 
pattern on the screen as you move from 1C to 1E? Once again draw the patterns in your 
notebook and write down your observations. 
 
Reconsider your results for experiment 2.  If the double slit separation obeys d = n a for some 
integer n, then at angle θ  such that sin /n dθ λ= , there should be a maximum in the double slit 
pattern; however, this angle also obeys sin / aθ λ= , corresponding to a minimum in the single 
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slit pattern.  Since the light from each slit interferes destructively, there cannot be any light in the 
double slit pattern --- and the nth maximum of that pattern is “missing”.  Check your data to 
confirm this result, and/or repeat experiment 2 carefully observing the higher-order maxima. 
A derivation of the single slit diffraction pattern is very similar to that given above for a double slit. 
Consider a plane wave incident from the left onto a single slit of width a, as shown in the figure below.  
The electric field strength is uniform over the slit, say with value 0E .  The pattern observed on the screen 
is made up of contributions from subregions of the slit.  For example, we consider the ray that emanates 
from a region of width dy at height y above the bottom of the slit. The wave that travels along this ray, 
whose length is r, reaches the screen with field strength ( )

0
i kr tE e ω− . 

               

From the geometry of the similar triangles in the figure, we see that the length of ray r0 is related to that 
of ray r by 0 0 sinr r r y θ= − ∆ = − .  Using this, the combined field strength at the point on the screen is 

 ( ) ( ) ( ) ( )0 0 0

sin
sin

0 0 0 00 0 0

1
sin

ikaa a ai kr t i kr k t i kr t i kr tiky eE E e dy E e dy E e e dy E e
ik

θ
ω ω ω ωθ

θ

−
− − ∆− − −− −

∝ = = =
−∫ ∫ ∫                  

 ( ) ( )0 0

sin
2sin sin sin

2 2 2
0 0

sin sin
24 .

sin sin
2

kaika ka kai i ii kr t i kr t

ka
eE e e e aE e e kaik

θ
θ θ θω ω

θ

θ θ

−
− −− −

⎛ ⎞
⎜ ⎟− ⎝ ⎠= =

−
 

The intensity I on the screen depends on the (absolute) square of the electric field, so we have 

 

2 2

2 2

sin sin sin sin
2 ,
sin sin

2

ka a

I
ka a

πθ θ
λ

πθ θ
λ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∝ =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

recalling that 2 /k π λ= .  The function ( )2sin /x x takes on its greatest value at x = 0 (where the value is 
1), and has an infinite set of secondary maxima whose intensities are small.  There is also an infinite set of 
minima at 

 sin , or sin , 1,2,3,...a mm m
a

π λθ π θ
λ

= = =  
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3a.  Diffraction by a Circular Aperture 
 
Make a tiny, neat, round pinhole in a piece of aluminum foil by smoothing it over a piece of 
Lucite (or the bench) and firmly pressing a sharp sewing needle down on it.  Remove the needle 
before lifting the foil from the Lucite. 
 
Place the pinhole close in front of the laser and observe the diffraction pattern on the screen. 
Make a measurement of the diameter of the first dark ring and calculate the diameter of the 
pinhole, knowing the wavelength.  The relationship for circular geometry is 

 sin 1.22 ,
a
λθ =  

where a is the diameter of the hole, and θ is the angle from the center of the diffraction pattern to 
the first dark ring (i.e., the radius of the spot’s central maximum).  
 
The diffraction pattern for a circular aperture of diameter a can be deduced from the geometry of the 
figure below. 

                
The key is to determine the path difference ∆ between the central ray, R0, which makes angle θ to the 
axis of the aperture, and an arbitrary ray R that emanates from the point ( ),r φ  in the aperture.  The 

azimuthal angleφ is measured with respect to the intersection of the plane of the aperture with the plane 
containing the ray R0 and the axis of the aperture.  If the observation point on the screen is directly above 
the axis, as shown in the figure, then just as for the case of the single slit the path difference 
is siny θ∆ = , where siny r φ=  is the height of the point ( ),r φ .  That is, sin sinr φ θ∆ = .  Using this, 
the sum of the electric field at the screen from all rays emanating from the circular aperture (or radius a/2) 
is     

( )
2 1/ 2 2 / 2 2 / 2sin sin

00 0 0 0 0

sin
22 sin ,

2 sin
2

a a aik ikr

kaJ
aE rdr d e rdr d e rdr J kr ka

π π φ θ
θ

πφ φ π θ
θ

− ∆ −

⎛ ⎞
⎜ ⎟
⎝ ⎠∝ = = =∫ ∫ ∫ ∫ ∫  
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where your integral tables will tell you that J0(x) and J1(x) are so-called Bessel functions, which behave 
somewhat like cos x and sin x .  In particular, since J1(x) is similar to sin x , the diffraction pattern from a 
circular aperture is quite similar to that of a single slit.  The first minimum of the diffraction pattern 
occurs when ( )( )1 / 2 sin 0J ka θ = .  From numerical tables of the zeroes of Bessel functions, we learn 

that this implies ( ) ( )/ 2 sin / sin 3.823ka aθ π λ θ= = , and hence  

 sin 1.22 .
a
λθ =  

 
4. Multi-Slit Diffraction 
 
A screen with multiple slit, i.e., n identical slits, each separated from the next by distance d has 
the remarkable property that as the number n of slits increases, the maxima occur exactly at the 
same angles as for a double slit of separation d, except that the maxima become brighter and 
brighter, and narrower and narrower.  These maxima are called the primary maxima : 
 
For multi-slit diffraction, the primary maxima appear at angles θ  such that sin /m dθ λ= , where 
m = 1, 2, 3, ... 
 
More and more secondary maxima appear between the principal maxima as n goes up, but they 
have less and less importance as the number of slits is increased. 
 
Observe the diffraction patterns by shining the laser beam through slits 4B, 4C, 4D, 4E, 3E, in 
which the number of slits increase from 2 to 20, always with the same slit width and separation.  
Draw the patterns observed on the screen in your notebook. 
 
The multi-slit diffraction pattern can be calculated following the preceding arguments, noting that the 
path difference for between rays that emanate at angleθ from adjacent slits of separation d is 

sind θ∆ = , just as in the case of a double slit.  Thus slit m has path length difference from the first ray 
given by sinm md θ∆ = .  For an array of n slits, we sum up the n contributions to the electric field on the 

screen, and note that the mth term differs from the first only by the phase factor mike− ∆ .  Hence, referring 
all path differences and phase factors to the first ray, the sum can be written 

 ( ) ( )2 2 2 112 2

2 2 2

sin
1 21 ... .
1 sin

2

k k kni ni ni knik n in nikik ik
k k kik i i i

nk
e e e eE e e e e

ke e e e

∆ ∆ ∆
− − ∆− ∆ − −− − ∆− ∆ − ∆

∆ ∆ ∆− ∆ − −

∆⎡ ⎤
⎢ ⎥− − ⎣ ⎦∝ + + + + = = =

∆− ⎛ ⎞
− ⎜ ⎟

⎝ ⎠

 

Whenever the denominator is tiny, i.e., when ( )/ 2 / sin , 1,2,3,...,k d m mπ λ θ π∆ = = =  the magnitude 

of the electric field on the screen is n times that of due to a single slit (so the intensity is 2n that of a 
single slit), and we call this a primary maximum.  The pattern of intensity is 

                                               

2 2

2

2 2

sinsin sin
2 .

sinsin sin
2

nk n d

I E
k d

π θ
λ

π θ
λ

∆⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∝ ∝ =

∆⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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5. Diffraction Grating 

5a. Calibrate the Grating 

The grating to be used in this part is a 35 mm slide labeled 1000 lines/mm.  To obtain good 
accuracy in the measurement of the spectral lines (part 5b), you should first calibrate the grating 
by determining the line spacing d using the technique of parts 1-4, now assuming that the 
wavelength of the helium-neon laser is 632.8 nm. 

5b. Measurement of Spectral Lines of Mercury and Hydrogen 

Place your calibrated grating in the 
apparatus sketched on the right.  
Begin by measuring the 
wavelength of two of the brighter 
visible mercury lines. Then 
determine the wavelengths of the 
three visible Balmer spectral lines 
of hydrogen.  Record these in your 
Lab notebook, and also write them 
on the board in the appropriate 
column. 

As stated before, the relationship 
that governs the first primary 
maximum is: sind θ λ= .  Because 
the angles are large in this 
experiment (including the 
calibration), be sure to measure 
sinθ and not tanθ . 

Do NOT use a laser with the apparatus shown in the above figure! 
 
The main difference from what you have been doing earlier in this Lab (passing light through 
holes of various shapes to form a pattern on a screen) is that now you look through the grating, 
as shown in the illustration.  The nominal values of the mercury and hydrogen spectral lines are 
given in the table below. 

Mercury Lines 
(in the visible) 

Wavelength 
(nm) 

Hydrogen Lines 
(in the visible) 

Wavelength 
(nm) 

yellow doublet 577 / 579 red 656 
green 546 aqua 486 

blue-violet 436 blue-violet 434 
violet 405   

θ

θ

your eye 

grating and holder 
meter stick

light source

slit

Spectral lines

View of the apparatus looking down from above
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6. OPTIONAL: Width of a Human Hair 
 
Cut a hole in an index card and tape one of your hairs to it, centered on the hole.  To improve the 
alignment, cut small notches on two edges of the card, and lay the hair in the notches, applying 
the tape to the hair on the back side of the card. 
 
Shine the helium-neon laser on the hair, projection the resulting diffraction pattern onto a screen 
behind.  Describe this diffraction pattern and deduce the width of your hair from it. 
 
The procedure is the complement of shining the laser through a small single slit.  For 
comparison, scratch a single slit into the emulsion on the glass plate (as in part 1 of this Lab), 
and shine the laser through this slit onto the screen.  Again, deduce the width the slit from your 
observations. 
 
These two experiments illustrate Babinet’s principle of complementary screens.  Suppose a wave with 
wave function 0Ψ is incident on a screen with an aperture such that the transmitted wave is described by 
function 1Ψ .  We also consider the case of a second screen whose shape is the complement of the first; 
that is, the combination of the first and second screens is a completely opaque screen.  Then the sum of 
the wave function 2Ψ observed on the far side of the second screen and the wave function 1Ψ  on the far 
side of the first screen is simply to total incident wave function 0Ψ .  Therefore, 2 0 1Ψ = Ψ − Ψ .   

 
When the second screen is a small object, we may prefer to think of its effect as scattering of the incident 
wave, in which case we write 2 0 scatΨ = Ψ + Ψ .  Comparing with the previous expression for 2Ψ , we find 

that scat 1Ψ = −Ψ .  Then, since the intensity of the pattern on the screen depends on 2Ψ , we have 

that 2 2
scat scat 1 1I I= Ψ = Ψ = .  Thus, Babinet’s principle is that the intensity of the diffraction patterns 

from complementary screens in the same!  This conclusion depends on there being no confusion between 
the scattered wave scatΨ and the unscattered wave 0Ψ , which is not strictly true in all cases.  How well 
does your study of your hair and a single slit support Babinet’s principle? 
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PRINCETON UNIVERSITY PHYSICS 104 LAB 
Physics Department Week #10 
Name:_____________________________                             Date/Time of Lab:_____________ 
 

EXPERIMENT IX           PRELAB PROBLEM SET 

1.  Light with a wavelength of 500 nm from a very distant monochromatic point object enters a 
pinhole camera through a small hole with a diameter of 0.3 mm.  What is the smallest diameter 
spot that will form on the screen of the camera 12.5 cm from the hole?  Will the extended size of 
this spot be visible to the naked eye?  If not, then experiment 3a on round-aperture diffraction 
will require a hole even smaller than 0.3 mm! 

 

 

 

 

 

 

 

2a. For the diffraction grating that you will use in experiment 5, and for the shortest-wavelength 
mercury line, how far apart will the two first-order lines appear on the screen? (One will be to 
the left of center, the other to the right.)  Suppose that the screen and grating are 70 cm apart. 

 

 

 

 

 

 

 

2b. How wide must the screen be to contain both first-order red Balmer lines at once?  

 

 

 

 

 

 

Continued on reverse. 
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3.  How far apart will neighboring minima be in the single-slit diffraction pattern produced by 
mask 1E with the helium-neon laser, if viewed on a screen at 70 cm? 

 

 

 

 
 


