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1. A cone of half angle β rolls without slipping on a horizontal plane. The angular velocity
about an axis perpendicular to the plane and through the point of the cone is Ω. What
is the angular velocity ω of the cone about its instantaneous axis of rotation (which
passes through the point of the cone? Where is the instantaneous axis?
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2. Variant of prob. 2, p. 28 of Barger and Olsson. What is the maximum deceleration of
a car, traveling on the Earth’s surface, such that all four of its wheels stay in contact
with the ground and roll without slipping?

The car has total mass M . The center of mass of the car is at height h above the road,
and is at horizontal distances dF and dR from vertical axes through the front and rear
wheels, respectively (and between them). These wheels have masses mF and mR, radii
rF and rR, and moments of inertia IF = kF mF r2

F and IR = kRmRr2
R. The coefficients

of static friction of the wheels and the road are μF and μR.

A related problem about maximal acceleration is at
http://kirkmcd.princeton.edu/examples/rocketcar.pdf
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3. A mass m is attached at one end of a massless rigid rod of length l, and the rod is
supported at its other end by a frictionless pivot, as shown below. The rod is released
from rest at angle α0 < π/2 to the vertical. At what angle α does the force in the rod
change from compression to tension?
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4. (a) A perfectly flexible cable has length L. Initially, length l0 of the cable hangs at rest
over the edge of the a table, and the rest of the cable is along a line perpendicular
to the edge of the table. Neglecting friction, and assuming that the part of the
cable not on the table is vertical, what is the length l hanging over the edge after
time t since the release of the cable?

(b) Suppose the cable is bunched up near the edge of the table, again with length l0
hanging of the edge initially. As the cable falls, to a good approximation only part
hanging over the edge is in motion, again assuming that part to be vertical. Find
the velocity of that part of the cable as a function of time. Verify that mechanical
energy, KE + PE, is not conserved. Where has the “missing energy” gone?
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5. A spring with spring constant k has mass m. A block of mass M is attached to one
end of the spring, and its other end is fixed. What is the period of oscillation, ignoring
friction?

Hint: Consider the energy.

Later in the course we will consider waves on a massive spring, and find that the simple
result of this problem is an excellent approximation to the lowest-frequency mode. See
Prob. 8 of http://kirkmcd.princeton.edu/examples/ph205set11.pdf.
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6. A thin, uniform rod of mass M is suspended from above by two vertical strings, as
sketched below, such that the rod makes angle θ to the vertical. What is the tension
in the longer string before, and immediately after, the shorter string is cut?
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7. A sphere of cross sectional area A moves through air with speed v. Suppose that the
air has density ρ, and that all air molecules have the same mass and the same speed
s. Assume that all collisions between air molecules and the sphere are completely
inelastic, but the resulting change in the mass of the sphere is negligible.

(a) If s � v, show that the drag force on the sphere is Fdrag = ρAv2.

(b) If s � v, show that Fdrag ≈ ρAvs.

As a simplification, suppose 1/2 of the molecules move in the same direction as
the sphere, and the other 1/2 move towards it, head on.

(c) Repeat parts (a) and (b) for arbitrary s, supposing that the molecular directions
are isotropic in the lab frame. Show that for s ≤ v, Fdrag = ρA(v2 + 4s2/3 −
s4/15v2), and that for s ≥ v, Fdrag = ρA(4vs/3 + 4v3/15s).
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8. A spherical raindrop falls vertically due to gravity (g = constant here), but experiences
a drag force F = −kr2v, where r is the radius of the drop and v is its velocity.

(a) If the radius r is time independent, find the velocity v(t) supposing v(0) = 0.

How does v behave for small time? That is, if v(t) ≈ gt(1 − ε), what is ε?

What is the terminal velocity of the drop (at large times)?

(b) Suppose at time t = 0 the drop has radius r0 and (vertical) velocity v0. It then
enters a cloud and gains mass according to dm/dt = αr2 ∝ surface area, while
the density ρ of the drop remains constant. Then, what is v(t)?

As a special case, show that as r0 → 0 and v0 → 0, then,

v → gt

4 + 3k/α
<

gt

4
. (1)

In reality, the bottom of a falling raindrop is flattened by the air drag force. See,
J.E. McDonald, The Shape of Falling Raindrops, Sci. Am. 190(2), 64 (1954),
http://kirkmcd.princeton.edu/examples/fluids/mcdonald_sa_190_2_64_54.pdf
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9. Greek-Temple Seismograph

Following a major earthquake near Naples in 1857, R. Mallet suggested that a measure
of the horizontal velocity of the ground during an earthquake could be deduced from
the maximum height of cylindrical columns that remained standing.1

Deduce the minimum horizontal velocity v needed to overturn a solid, vertical, cylin-
drical column whose diagonal has length 2l and makes angle θ to the vertical, assuming
that a point on the base remains fixed with respect to the moving ground, as sketched
below.

If the cylinder is too squat (large θ), it can lose contact with the ground during its
motion. Supposing that the velocity v is the minimum value found above, deduce a
condition on the angle θ such that the cylinder always remains in contact with the
ground as it falls over.

This problem is taken from secs. 174-175 of E.J. Routh, The Elementary Part of a
Treatise on the Dynamics of a System of Rigid Bodies, 7th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_elementary_rigid_dynamics.pdf

1R. Mallet, The First Principles of Observational Seismology (Chapman and Hall, 1862), Vol. 1, Chap. 16,
http://kirkmcd.princeton.edu/examples/mechanics/mallet_chap16.pdf
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10. Unbalanced Tire

Suppose a tire is “balanced” except for two masses m each at distance r from the
geometric center of the tire along a line which makes angle 90◦ − θ to the axle.

A gas-station attendant using an (obsolete) static balance would claim that this tire is
balanced.

In this problem, ignore all other mass of the tire except the 2m. Suppose the tire is
not rolling, but is in a special setup (the “balancing” apparatus) with the axle vertical
and the center of mass fixed. The tire rotates about the vertical (z) axis with constant
angular velocity ω, which is large enough that you may ignore effects of gravity.

(a) What is the angular momentum L =
∑

i ri × pi, and the torque τ = dL/dt?

(b) Suppose the axle is supported by two bearings, each at distance d from the center
of mass, along the axle. What is the (vector) force exerted by each bearing
(ignoring gravity)?

(c) Suppose that at some moment the tire broke free from the bearings (but its center
of mass remains fixed, ignoring gravity). Describe the subsequent motion of the
tire. What is its period?

(d) Suppose instead that the wheel bolts were loose so that angle θ could vary, but the
tire is still forced to rotate about the vertical axis with constant angular velocity
ω. Show that the tire oscillates (wobbles) about θ = 0.

What is the angular frequency Ω of oscillation, supposing that θ is small?
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Solutions

1. The instantaneous axis is the line of contact of the cone with the plane (just as the
instantaneous axis of a wheel that rolls without slipping on a plane is the point/line
of contact of the wheel with the plane).

The velocity of a point on the axis of the cone at distance r from its tip is into the
page, with

v = ωr sin β = Ωr cos β, ω = Ωcot β. (2)
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2. The car moves in the +x direction. The vertical axis is in the +y direction.

The horizontal forces of static friction of the road on the wheels are FF = −FF x̂ and
FR = −FR x̂. The total horizontal force on the (four-wheeled) car is related to the
deceleration a by,

Ftot = 2FF + 2FR = Ma, (3)

The magnitudes of the frictional forces are bounded by,

FF ≤ μFNF , and FR ≤ μRNR, (4)

where NF and NR are the (upward) normal forces on the front and rear wheels. Of
course, the total upward normal force balances the downward force of gravity on the
car,

2NF + 2NR = Mg, (5)

where g is the acceleration due to gravity at the Earth’s surface, and all four wheels of
the car are in contact with the road.

For four all wheels to stay in contact with the road, the total torque about its center
of mass must be zero,2,3

τ cm = 0 = 2NF dF − 2NRdR − 2(FF + FR)h, (6)

NF dF − NRdR =
Mah

2
, (7)

using eq. (3).

The normal forces are determined by eqs. (5) and (7),

NF = M
dRg + ah

2(dF + dR)
, and NR = M

dF g − ah

2(dF + dR)
. (8)

These must both be positive for the wheels to be in contact with the road, which
implies a limit on the (positive) deceleration a,

a ≤ dF

h
g. (9)

We obtain another limit on a by combining eqs.(3), (4) and (8),

a =
FF + FR

2M
≤ ah(μF − μR) + g(μFdR + μRdF )

4(dF + dR)
, (10)

a ≤ μF dR + μRdF

4(dF + dR) + h(μR − μF )
g. (11)

2The center of mass of the car is accelerating, so we can make a torque analysis about the center of mass
using only the forces Fi and Ni. However, if we are to make analyses about, say, either the point of contact
of the front or rear wheel with the road, we must include torques associated with “coordinate forces”.

For discussion of this issue, see http://kirkmcd.princeton.edu/examples/torque.pdf
3The brakes apply torques to the wheels via internal forces on the wheels. By Newton’s third law, there

exist equal and opposite forces and torques of the wheels on the brakes, so the total internal torque associated
with the brakes is zero.
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If μF = μR = μ, then,

a ≤ μ

4
g. (12)

This limit is often stronger than that of eq. (9).

If either of conditions (4) are not satisfied, wheels will skid.

According to eqs. (4) and (8), the maximal braking force without skidding can be
larger on the front wheels that the rear, so cars are built with stronger braked on the
front wheels. When the book of Barger and Olsson was written (1973), disc brakes
were more expensive than (now larger obsolete) drum brakes, and often used only on
front wheels. Nowadays, all wheels on most cars have disc brakes, with larger pads
(stronger braking) on the front wheels.
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3. When the force in the rod changes from compression to tension, it is momentarily zero.
Then, the only force on mass m is mg due to gravity, and the motion is instantaneously
uniform circular motion at velocity v.

The mass has fallen by vertical height,

h = l(cos α0 − cosα), (13)

so by conservation of energy,

mv2

2
= mgh. (14)

For the uniform circular motion, the centripetal force is,

mg cos α =
mv2

l
=

2mgh

l
= 2mg(cos α0 − cosα), (15)

and hence,

cos α =
2

3
cos α0. (16)
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4. (a) The equation of motion for the cable of length L, with length l hanging vertically
over the edge of the table can be written as,

F = m
l

L
g = ml̈, (17)

assuming the part of the cable on the table is along a line perpendicular to the
edge of the table.

The solution has the form,

l(t) = A e
√

g/L t + B, e−
√

g/Lt, (18)

with initial conditions,

l(0) = l0, l̇(0) = 0. (19)

Hence,

A + B = l0, A − B = 0, A =
l0
2

= −B, (20)

and

l(t) = l0 cosh

√
g

L
t. (21)

(b) If instead the part of the cable on the table is bunched up so that it remains
essentially at rest at all times, the equation of motion can be written as,

F = ρlg =
d

dt
(ρvl) = ρ

d(ll̇)

dt
(ll̇)

d(ll̇)

dt
= l2 l̇g, (22)

where ρ = m/L and v = l̇ is the velocity of the part of the cable hanging over
the edge of the table, assuming that part to be vertical at all times. This can be
integrated to find,

(ll̇)2

2
=

(l3 − l30)g

3
. (23)

The kinetic energy is

KE =
ρl̇2

2
= ρg

l3 − l30
3l2

= ρg
l − l0

3

(
1 +

l20
l2

)
, (24)

while the potential energy, defined to be zero initially, is,

PE = ρg
l0 − l

2
. (25)

Since KE + PE 
= 0, mechanical energy is not conserved.
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In this problem, during each small time interval, a small portion of the chain is
yanked from being at rest to being at velocity v, which implies a kind of inelastic
collision has taken place.

If the initial length l0 of the chain over the edge of the table is very small, then
the equation of motion is approximately,

l̇2 ≈ 2gl

3
,

1√
l

dl

dt
≈
√

2g

3
, (26)

which integrates to,

2
√

l ≈
√

2g

3
t, l ≈ gt2

6
, l̈ ≈ g

3
(27)

The kinetic energy of the chain is KE = ρll̇2/2, and its gravitational potential
energy can be written as V = −ρgl2/2. If mechanical energy were conserved, we
would have ll̇2 − gl2 = −gl20, and for small l0, l2 ≈ gl, i.e.., l̈ ≈ g/2.

This problem was first discussed by Cayley (1857),
http://kirkmcd.princeton.edu/examples/mechanics/cayley_prsl_8_506_57.pdf

See also http://kirkmcd.princeton.edu/examples/string.pdf
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5. We assume that the spring of mass m and rest length x0 stretched uniformly when the
attached mass M is moved from x0 to x.

The potential energy of the stretched spring is then,

PE =
1

2
k(x − x0)

2, (28)

where k is the spring constant.

If mass M is let free from a stretched position of the spring and has velocity v when
at position x, the kinetic energy of the system is,

KE =
1

2
Mv2 +

1

2

∫ x0

0

m

x0
dx′

(
x′

x0
v

)2

=
1

2

(
M +

m

3

)
v2 ≡ 1

2
M ′v2. (29)

If the spring were massless, the angular frequency of oscillation of mass M would be,

ω =

√
k

M
. (30)

We make a small leap to infer that in case of a massive spring, the frequency of
oscillation is,

ω =

√
k

M ′ =

√
k

M + m/3
. (31)

If there were no attached mass M , we infer that the frequency of oscillation of the
massive spring along would be,

ω =

√
3k

m
. (32)
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6. When both strings are intact, the tension in each is the same, Mg/2, such that they
carry the weight of the rod, and that the torque about its center of mass is zero.

Just after the shorter string is cut, the tension in the longer string is the unknown
T , whose direction is still upwards. Then, the total force on the rod is Mg − T , also
vertical, so the acceleration of the center of mass of the rod is vertical, with magnitude,

a = g − T

M
. (33)

The initial angular acceleration of the rod about its lowest point is,

α =
a

(l/2) sin θ
, (34)

where l is the length of the rod. This is also the initial angular acceleration of the rod
about its center of mass.

The torque equation for this angular acceleration is,4

τ = T
l

2
sin θ = Icmα =

Ml2

12

g − T/M

(l/2) sin θ
, (36)

recalling that the moment of inertia of the rod about its center of mass is Icm = Ml2/12,
and hence,

3T sin2 θ = Mg − T, T =
Mg

1 + 3 sin2 θ
. (37)

If the rod was initially horizontal, θ = π/2, the tension in one string just after cutting
other is Mg/4, while if the rod was initially vertical, θ = 0 or π, the tension in the
longer string just after cutting the shorter one is Mg.

4As the center of mass of the system is accelerating, it is prudent to make the torque analysis about the
center of mass to avoid consideration of possible “fictitious” forces associated with accelerated coordinate
systems.

For example, the lowest point on the rod (where the longer string is attached) is still at rest immediately
after the other string is cut, so it is tempting to make an analysis about this point as well. Recalling that
the moment of inertia of a rod about either end is I = ml2/3, we would then find (ignoring any “fictitious”
torques),

τ = Mg
l

2
sin θ = Iα =

Ml2

3
g − T/M

(l/2) sin θ
,

3
4
Mg sin2 θ = Mg − T, T = Mg

(
1 − 3

4
sin2 θ

)
. (35)

This happens to agree with eq. (37) for θ = 0, π/2 and π, but not in general.



Princeton University 1988 Ph205 Set 1, Solution 7 19

7. (a) If the velocity v of the sphere is large compared to the velocity a of the air
molecules, the latter can be regarded as at rest.

In time Δt the sphere, of cross sectional area A, sweeps through volume ΔV =
AvΔt, and accumulates mass Δm = ρΔV = ρAvΔt, supposing the collisions with
the air molecules were completely inelastic, and ρ is the mass density of air.

The molecules that stuck to the moving sphere took on momentum ΔP = Δmv =
ρAv2Δt, so the reaction/drag force on the moving sphere would be

Fdrag =
ΔP

Δt
= ρAv2. (38)

(b) If the speed s of the molecules is large compared to v of the moving sphere, and
half the molecules move towards the sphere, during time Δt the mass of molecules
swept up by the front rear of the sphere is Δmfront = ρA(v + s)Δt/2, while the
mass of molecules that overtake the rear of the sphere is Δmfront = ρA(s−v)Δt/2.

The change in velocity of the molecules that stuck to the front of the sphere is
from −s to v, so Δv = v − (−s) = v + s, and the change in momentum of these
molecules is ΔPfront = ρA(v + s)2Δt/2.

The change in velocity of the molecules that stuck to the rear of the sphere is
from s to v, so Δv = v − s, and the change in momentum of these molecules is
ΔPrear = −ρA(s− v)2Δt/2.

The total change in momentum is ΔP = 2ρAvsΔt, so the corresponding drag
force on the moving sphere is,

Fdrag =
ΔP

Δt
= 2ρAvs. (39)

(c) We now suppose that the air molecules all have the same speed s and their
directions are isotropic.

In our analysis we first suppose all the molecules has a single velocity s, and later
average of the direction of s.

To compute the number of these molecules that stick to the moving sphere during
time Δt, we go to a frame in which the sphere is at rest, and the velocity of the
molecules is s − v. The mass density of the molecules in this frame is still ρ
(supposing that both v and s are small compared to the speed of light, so that
we can neglect effects of special relativity). So, the mass density swept up in time
Δt is,

Δm = ρA |s− v|Δt = ρA
√

v2 + s2 + 2vs cos θΔt, (40)

where the direction of the approaching molecules makes angle θ to v.
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After averaging over directions, the drag force will be in the direction of v, so
we are interested in the change of momentum (in the lab frame) of the stuck
molecules in that direction, namely,

ΔPv = Δm(v − (−s cos θ)) = Δm(v + s cos θ)

= ρA(v + s cos θ)
√

v2 + s2 + 2vs cos θΔt. (41)

To find the drag force, we average the momentum change (41) over θ and divide
by Δt. For isotropic directions of the molecules their numbers vary with θ as
(1/2)d cos θ, so the drag force is,

Fdrag =
∫ 1

−1

d cos θ

2
ρA(v + s cos θ)

√
v2 + s2 + 2vs cos θ

=
ρA

2

[
(v2 + s2 + 2vs cos θ)3/2

3s

+
2s

4v2s2

(
(v2 + s2 + 2vs cos θ)5/2

5
− (v2 + s2)(v2 + s2 + 2vs cos θ)3/2

3

)]1

−1

, (42)

using Dwight 193.01 and 193.11, http://kirkmcd.princeton.edu/examples/EM/dwight_57.pdf.

To go further, we must consider the cases s > v and s < v separately. After some
algebra, we find,

Fdrag =
4ρAvs

3
+

4ρAv3

15s
(s > v), (43)

= ρAv2 +
2ρAs2

3
− ρAs4

15v2
(s < v) (44)

If v = s, both eq. (43) and (44) yield Fdrag = 4ρAv2/15.
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8. (a) For a drag force F = −kr2v on a spherical raindrop of constant radius r and
vertical velocity v, the equation of motion can be written as,

m
dv

dt
= mg − kr2r,

dv

dt
= g − kr2

m
v. (45)

This first-order, linear differential equation has the solution,

v(t) =
mg

kr2
+ C e−kr2t/m. (46)

For v(0), we have,

v(t) =
mg

kr2

(
1 − C e−kr2t/m

)
. (47)

For small t,

v(t � m/kr2) ≈ mg

kr2

kr2t

m
= gt, (48)

which is just free fall.

For large t, the drop falls with the terminal velocity,

vterminal =
mg

kr2
=

4πρgr

3k
, (49)

where ρ is the mass density of the drop, such that m = 4πρr3/3.

(b) For a raindrop inside a cloud, a possible model of the growth of the drop is that
dm/dt = αr2. Noting that m = 4πρr3/3, we have that,

dm

dt
= 4πρr2 dr

dt

(
=

3m

r

dr

dt

)
= αr2,

dr

dt
=

α

4πρ
≡ β, r(t) = r0 + βt. (50)

We can write the equation of motion of the variable-mass drop as,

F =
dp

dt
=

d(mv)

dt
= m

dv

dt
+ v

dm

dt
= mg − kr2. (51)

Hence,

dv

dt
= g − v

m

dm

dt
− kr2v

m
= g − 3v

r

dr

dt
− 3kv

4πρr
, (52)

dv

dt
=

dv

dr

dr

dt
= g − v

m

dm

dt
− kr2v

m
= g − 3v

r

dr

dt
− 3kv

4πρr
, (53)

dv

dr
=

g

β
− 3v

r
− 3kv

4πβρr
=

g

β
− 3v

r

(
1 +

k

α

)
. (54)

We try a solution of the form v = Ari + Brj, for which,

dv

dr
=

iAri

r
+ jBrj−1 =

i

r
v + (j − i)Brj−1. (55)
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This works (a small miracle) for,

i = −3

(
1 +

k

α

)
≡ −γ, j = 1, (1 + γ)B =

g

β
. (56)

So far, we have that,

v(r) =
A

rγ
+

gr

β(1 + γ)
. (57)

We also have that,

v(r0) = v0 =
A

rγ
0

+
gr0

β(1 + γ)
, A = rγ

0

(
v0 − gr0

β(1 + γ)

)
. (58)

Finally, we note that r = r0 + βt to write,

v(t) =

(
r0

r0 + βt

)γ (
v0 − gr0

β(1 + γ)

)
+

g(r0 + βt)

β(1 + γ)
. (59)

There is no terminal velocity in this model, so long as the drop is inside the cloud.

For small r0 and small v0,

v(t) ≈ gt

(1 + γ)
=

gt

4 + 3k/α
<

gt

4
. (60)
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9. The effect on the vertical cylinder of a sudden horizontal velocity v of the ground is
equivalent to the case of the ground remaining at rest and the center of mass of the
cylinder being given a sudden horizontal velocity v. In either view, a large impulsive
force acts at the point on the base of the cylinder that remains fixed relative to the
ground. This force exerts no torque about the fixed point, so the change ΔL in angular
momentum of the cylinder during the impulse equals that associated with the sudden
horizontal velocity of the center of mass (in the frame where the ground remains at
rest). Hence,

ΔL = mvl cos θ = Ip ω0, and so ω0 =
mvl cos θ

Ip
, (61)

where m is the mass of the cylinder, Ip is its moment of inertial about the fixed point,
and ω0 is the initial angular velocity just after the impulse. Recalling that the moment
of inertia of a thin disc about an a diameter is mr2/4, the moment of inertia Ip is,
using the parallel axis theorem,

Ip =
∫ h

0

m dy

h

(
r2

4
+ r2 + y2

)
=

m

4

(
5r2 +

4h2

3

)
=

ml2

12
(15 sin2 θ + 16 cos2 θ)

=
ml2

12
(15 + cos2 θ), (62)

noting that r = l sin θ and h = 2l cos θ.

The column will fall over if the initial kinetic energy Ip ω2
0/2 just after the earthquake

is sufficient that the center of mass of the column can rise from h/2 = l cos θ to l.
Hence, the minimum velocity of the ground needed to topple the column is related by,

mgl(1 − cos θ) =
Ip ω2

0,min

2
=

m2v2
minl

2 cos2 θ

2Ip
, (63)

and so,

v2
min =

2gIp(1 − cos θ)

ml cos2 θ
=

gl

6

(1 − cos θ)(15 + cos2 θ)

cos2 θ
. (64)

As the column rotates about the fixed point with angular velocity ω(φ), where φ is the
angle of the diagonal to the vertical, it will lose contact with the ground if the normal
force N goes to zero.
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Referring to the figure above, the y-equation of motion of the center of mass of the
cylinder is,

Fy = mÿ = m
d2

dt2
(l cos φ) = ml

d

dt
(ω sinφ) = ml(ω̇ sinφ − ω2 cos φ) = N −mg, (65)

noting that dφ/dt ≡ φ̇ = −ω. The normal force goes to zero if there is an angle φ such
that,

g = l(ω2 cos φ− ω̇ sinφ). (66)

As the column rotates (about the z-axis), conservation of energy relates ω and φ
according to,

ω2 = ω2
0 − 2

mgl

Ip
(cosφ − cos θ). (67)

If we restrict our attention to the case that the velocity of the ground is the minimum
value (64), then using eq. (63) in (67) yields,

ω2 =
2mgl

Ip
(1 − cos φ). (68)

Taking the time derivative of eq. (68) we find that,

ω̇ = −mgl

Ip
sinφ, (69)

and the condition (66) becomes,

Ip

mgl2
=

15 + cos2 θ

12
= 2 cos φ(1 − cos φ) + sin2 φ = −3 cos2 φ + 2cos φ + 1, (70)

or,

3 cos2 φ − 2 cos φ +
3 + cos2 θ

12
= 0. (71)

Thus, the column will loose contact with the ground if,

cosφ =
2 ±

√
4 − 12(3 + cos2 θ)/12

6
=

2 ± sin θ

6
. (72)

As the column rotates, angle φ is less than θ (and φ0 = θ) so that cosφ ≥ cos θ. If the
column is to remain in contact with the ground at all times, we must have that neither
solution (72) is greater than cos θ, i.e.,

cos θ >
2 + sin θ

6
. (73)

The critical angle is roughly 61.3◦, so if the height of the column is more than 1.83
times its diameter it will remain in contact with the ground at all times while it falls
over after an earthquake that is minimally capable of causing this.
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10. (a) The angular momentum of our model of the unbalanced tire is, for a time when
the positions ri of the two masses m are ±r = ±r(cos θ x̂ + sin θ ẑ), and ω = ω ẑ,
with x̂ horizontal and ẑ vertical,

L =
∑

i=1,2

ri × pi =
∑

i

ri × m(ω × ri) = m
∑

i

[r2
i ω − (ω · ri) ri]

= 2mr2ω[ẑ − sin θ(cos θ x̂ + sin θ ẑ)] = 2mr2ω cos θ(cos ẑ − sin θ x̂). (74)

Note that L · r = 0 with r̂ = cos θ x̂ + sin θ ẑ, i.e., the angular momentum L is
perpendicular to the line along which the two masses m lie. Also, the magnitude
of L is L = 2mr2ω cos θ.

This motion requires a torque,

τ =
dL

dt
=

d

dt

∑
i

ri ×m
dri

dt
= m

∑
i

ri × d2ri

dt2
. (75)

This example involves rigid-body rotation about the z-axis at angular velocity ω,
so for any vector A associated with that body,

dA

dt
= ω × A, (76)

and,
d2A

dt2
= ω × (ω ×A) = (ω · A)ω − ω2A). (77)

Hence,

d2ri

dt2
= (ω · ri)ω − ω2ri, ri × d2ri

dt2
= (ω · ri) ri × ω = −ω2r2 sin θ cos θ ŷ,(78)

and the required torque is,

τ = −2mω2r2 sin θ cos θ ŷ, (79)

(b) The torque τ is supplied by the equal-and-opposite forces Fj applied by two
bearings along the z-axis at positions ±d ẑ. The force Fu on the upper bearing is
in the −x direction, and has magnitude,

Fu =
mω2r2

d
sin θ cos θ. (80)



Princeton University 1988 Ph205 Set 1, Solution 10 26

(c) If the tire broke free of the bearings, and we ignore gravity, then the center of
mass remains fixed, as does the angular momentum L. Then, the tire would rotate
about the constant angular momentum vector (which is perpendicular to the line
joining the two mass) with angular velocity ω′ = L/I = L/2mr2 = ω cos θ.

(d) If angle θ is free to vary while the angular velocity ω about the vertical axis is
maintained, we note that, in the rotating frame, each mass experiences a centrifu-
gal force in the horizontal direction of magnitude mω2r cos θ, which is just mω2r
for small θ. For small oscillations, each mass experiences an effective “gravity”
geff = ω2r directed horizontally outward, and so oscillates like a simple pendulum

about θ = 0 with angular frequency Ω =
√

geff/r = ω.

Later in the course, we reconsider this problem, p. 187 of Lecture 17, using the
so-called Euler equations, which apply in the lab frame.
http://kirkmcd.princeton.edu/examples/Ph205/ph205l17.pdf

In this, we introduce the so-called principal body axes (which are mutually or-
thogonal), with 1̂ along the line joining the two masses, 2̂ in the vertical plane
containing axis 1, and 3̂ horizontal.

The principal moments of inertia are then I1 = 0, I2 = I3 = 2mr2.

With the angular velocity about the vertical fixed at ω, but angle θ free to vary,
the total angular velocity vector is,

ωtot = (ω sin θ, ω cos θ, θ̇), (81)

with respect to the principal axes.

The Euler equations, involving the torque τ = (0, τ 2, 0) about the midpoint of
the line joining the two masses are,

τ 1 = I1 ω̇tot,1 + ωtot,2ωtot,3(I2 − I3) = 0, (82)

τ 2 = I2 ω̇tot,2 + ωtot,1ωtot,3(I1 − I3) = −4mr2 ωθ̇ sin θ, (83)

τ 3 = I3 ω̇tot,3 + ωtot,1ωtot,2(I2 − I1) = 0 = 2mr2(θ̈ + ω2 sin θ cos θ) (84)

For small oscillations in θ of the form θ = θ0 cosΩt, eq. (84) tells us that,

θ̈ ≈ −ω2θ, Ω = ω, (85)

and then from eq. (83), the nonzero torque component is,

τ 2 = 2mr2ω2θ0 sin(ωt). (86)
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The analysis using the Euler equations gives the same result as the (quicker)
analysis in the rotating frame, but is more abstract, and does not identify the
forces associated with the torque. However, Euler’s equations are more helpful
in subtler examples, such as the tennis-racquet theorem, Prob. 5, Set 10 (which
example involves no torque), http://kirkmcd.princeton.edu/examples/racquet.pdf


