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1. Spinning Basketballs.

The Harlem Globetrotters can balance a basketball stably on a finger by spinning the
ball. That stability is possible if the basketball acts like a gyroscope and precesses,
rather than falling off the finger.

Consider a sphere, of mass m and radius a with moment of inertia I about its center,
that rolls without slipping on a fixed sphere of radius b. Derive, and decompose into
components, the (vector) equations of motion.

Show that the total angular velocity ω obeys ω ·d1̂/dt = 0 = 1̂ ·dω/dt, where 1̂ points
outward along the line of centers of the two spheres and makes angle θ to the vertical,
ẑ, and hence,

ω = ω1 1̂ +
a+ b

a
1̂ × d1̂

dt
, (1)

where ω1 = ω · 1̂ = constant, and that,

(
I +ma2

) a+ b

a
1̂ × d21̂

dt2
+ I ω1

d1̂

dt
+mga 2̂ = 0. (2)

Note that 1̂ rotates about ẑ at rate φ̇ and about 2̂ = 1̂ × ẑ at rate θ̇ (be careful with
signs).

After obtaining the 3 component equations of motion, first consider steady motion,
θ̇ = 0, φ̇ = Ω = constant, to show that ω1 must satisfy,

ω1 >
2

I

√
mg(a+ b) (I +ma2) cos θ0, (3)

for steady motion.

The spinning sphere will fall off the fixed sphere if the force of contact between them
vanishes. Show that this happens (during steady motion) if,

Ω2 <
g cos θ0

(a+ b) sin2 θ0

. (4)

Use the relation between Ω and ω1 to show this indicates that too much spin is bad,
as well as too little.
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Consider nutations about steady precession,

θ = θ0 + ε sinαt, φ̇ = Ω + δ sinαt, (5)

for small constants ε and δ to show that α2 > 0 for large enough ω1, in which case the
nutations are stable.

For a basketball of radius a = 12 cm, which is a hollow sphere with I = 2mq2/3,
balanced vertically on a finger of radius of curvature b ≈ 1 cm, the spin required for
gyroscopic stability is greater than 6 revolutions per second, which seems higher than
in videos of “balanced”, spinning basketballs. That is, their stability is due to active
stabilization by horizontal motion of the support finger rather than gyroscopic effects.

One of many YouTube videos on how to spin a basketball,
https://www.youtube.com/watch?v=lLxUq6nhkb4

in which the spin seems to be only 1-2 revolutions per second.



Princeton University 1988 Ph205 Set 11, Problem 2 3

2. The Golfer’s Nemesis.

Can a golf ball roll into the cup, roll around on its vertical wall and pop back out?1

Consider a sphere of radius a that rolls without slipping inside a vertical cylinder of
radius b > a.

If Ω = φ̇ = angular velocity of the point of contact about the vertical, 1̂ points from
the center of the sphere to the point of contact, ẑ is vertical, and 2̂ = ẑ× 1̂, show that
the component equations of motion are,

ẑ : Ω̇ = 0, (6)

1̂ : a ω̇1 = Ωz, (7)

2̂ :
(
I +ma2

)
z̈ = −ma2g − Ia ω1 Ω. (8)

Show that z of the center of mass executes simple harmonic motion, and if at t = 0,
z = 0, ż = ż0, and ω1 = ω10, then,

z =
ma2g + IaΩω10

I Ω2
(cosαt− 1) +

ż0

α
sinαt, where α = Ω

√
I

I +ma2
. (9)

With what velocity and angular velocity must the ball arrive at the rim of the cup to
fall in and execute the above oscillatory motion, and possibly pop back out?

1This behavior is distinct from the possibility that the ball bounces off the flagpole in the hole, or the
plastic insert therein, as occurs from time to time.
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3. Off the Rim.

A frequent occurrence in basketball or golf is that the ball rolls around in the rim of
the hoop/cup for a while, then sometimes goes in, sometimes not...

Consider a sphere of radius a that rolls without slipping on a horizontal hoop of radius
b > a. An equilibrium of steady rolling exist with zero “spin” component, ω0 = ω · 1̂ =
0, where ω is the total angular velocity of the sphere and 1̂ is directed from the point
of contact with the hoop to the center of the sphere. Show that in the case the angular
velocity of the point of contact about the vertical is,

Ω =

√
3g tan θ0

5(b− a sin θ0)
, (10)

for a spherical shell, where θ is the angle of 1̂ to the vertical.

For a basketball of radius 12 cm and a hoop of radius 24 cm, Ω0 ≈ 0.6 revolution per
second at θ0 = 45◦.

Show that this equilibrium is unstable (for b/a = 2). That is, for Ω greater/less than
ω0, the sphere rises/falls, and only in the latter case does it pass through the hoop as
desired.
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4. A circular hoop of radius a rotates constant angular velocity Ω in a horizontal plane
about a fixed point on the hoop. A bead of mass m slides freely on the hoop.

(a) Use θ as shown in the figure as the coordinate with Lagrange’s method to deduce
the equation of motion.

(b) Show that the Hamiltonian is,

H =
p2

θ

8ma2
− pθ Ωcos θ − ma2

2
Ω2 sin2 2θ, (11)

and that Hamilton’s equations lead to the equation of motion found in part (a).

(c) Deduce the equation of motion via an analysis in the rotating frame of the hoop.
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5. The Piano.

A piano wire is struck by a sharp blow from a hammer, and a fairly pure note is
produced.2 This is perhaps surprising in view of the analysis on p. 229 of
http://kirkmcd.princeton.edu/examples/Ph205/ph205l21.pdf of the effect of an impulse.
Helmholtz3 has suggested that a better approximation to the effect of the hammer is
that it exerts a force,

F (x, t) =

⎧⎪⎨
⎪⎩
F δ(x− b) sin 2πt

T
(0 < t < T/2),

0 (otherwise).
(12)

That is, the force goes through one half period of s sinusoidal oscillation.

The force is applied at distance b from one end of a wire of length l and mass density
ρ per unit length, which is fixed at both end and subject to a tension that makes the
transverse wave velocity equal to c.

Consider a Fourier analysis of the vibrations, s(x, t) =
∑

n φn(t) sin(nπx/l), and use
Green’s method4 to solve the differential equations for the φn to show that,

s(x, t) =
2FT

π2c ρ

∑
n

1

n(1 − (ncT
2l

)2)
sin

nπb

l
cos

nπcT

4l
sin

nπx

l
sin

nπc(t− T/4)

l
. (13)

If we take b = l/2, the midpoint, and T = 2l/c, the fundamental period, then,

s(x, t) =
F l

π2T

∑
n

sinnπ

n(1 − n2)
sinnπx sin

nπc(t− T/4)

l
, (14)

so all harmonics vanish except n = 1, since limn→1
sin nπ
1−n2 = π cosnπ

−2n
= π

2
.

2Awaiting the sensation of a short sharp shock, from a cheap and chippy chopper on a big black block!
— The Mikado, Act 1, Gilbert & Sullivan (1885).

3H.L.F. Helmholtz, On the Sensations of Tone, 2nd English ed. (Longmans, Green, 1885), pp. 380-
394, http://kirkmcd.princeton.edu/examples/mechanics/helmholtz_85.pdf. See also, pp. 74-80 (and
pp. 545-546), particularly the footnotes, which recount interest in England in Helmholtz’ theories of the
piano in the years 1883-1885.

4p. 145 of http://kirkmcd.princeton.edu/examples/Ph205/ph205l13.pdf
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6. The Violin.

From experiments, Helmholtz deduced that the action of the bow of a violin is to force
the string of length l into a transverse vibration at x0, the point of application of the
bow (0 < x0 < l), with the approximate form,

which is periodic with the period of the fundamental, free oscillation, t1 = 2l/c, where
c is the velocity of transverse waves on the stretched string. The rising motion occupies
time t0 < t1 related by x0/l = t0/t1.

Make a Fourier analysis in time of the motion of the point of contact to show that,

s(x0, t) =
2s0t

2
1

π2t0(t1 − t0)

∑
n

1

n2
sin

nπx0

l
sin

2nπt

t1
. (15)

In general, we expect the motion of the entire string to the analyzable as,

s(x, t) =
∑
n

sin
nπx

l

(
An cos

2nπt

t1
+Bn sin

2nπt

t1

)
, (16)

so it follows from eq. (15) that An = 0 and,

s(x, t) =
2s0t

2
1

π2t0(t1 − t0)

∑
n

1

n2
sin

nπx

l
sin

2nπt

t1
. (17)

On p. 228 of http://kirkmcd.princeton.edu/examples/Ph205/ph205l21.pdf, we saw that a
string plucked at x = b at time t = 0 has the Fourier analysis,

s(x, t) =
2s0l

2

π2b(l− b)

∑
n

1

n2
sin

nπx

l
sin

nπb

l
. (18)

Hence, at any time t the violin string looks like the initial form of a string plucked at
position b = 2lt/t1.

The crest of the wave motion moves along the string with velocity c = 2l/t1. The
“vibration” is better described as a traveling wave than a standing wave.
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7. A string of length l is fixed at both ends and stretched with tension T .

(a) A mass M is attached to the midpoint of the string.

Ignoring the mass of the string, show that transverse oscillations of mass M have

angular frequency Ω0 = 2
√
T/lM .

(b) Suppose mass M attached at distance b < l from one end of the string (of mass
m).

Consider the intervals [0, b] and [b, l] to show that the normal (angular) frequencies
Ω obey the transcendental equation,

Ω sin
Ωb

c
sinΩ

l − b

c
=

t

Mc
sin

Ωl

c
, (19)

where c =
√
T l/m is the velocity of waves on the string.

(c) Consider again the case where mass M is attached at b = l/2, but don’t neglect
the mass m of the string.

Show that there are two classes of solutions, for which the angular frequency Ω
obeys:

i. Mass M does not move, and Ω = 2nπc/l.

ii. Mass M moves, and,

Ωl

2c
tan

Ωl

2c
=
m

M
. (20)

(d) If M � m, show that the lowest frequency is,

Ω ≈ πl

c

(
1 − M

m

)
, (21)

which implies that Ω = πc/l when M = 0.

(e) If m � M , keep enough higher-order terms to show that the lowest frequency is,

Ω ≈ Ω0

(
1 − m

6M

)
≈ 2

√
T

l(M +m/3)
, (22)

so that (for this mode) the mass of the string appears as a correction m/3 to mass
M .
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8. A uniform bar of mass m has rest length l0. One end is fixed and the other end is
attached to a mass M .

Set up the boundary conditions, and solve the wave equation for longitudinal (spring-
like) oscillations, ignoring gravity.

Show that,

cot(Ωl0) =
M

m
Ωl0, where Ω =

ω

l0

√
m

k
, (23)

k is the spring constant of the bar, and ω is the angular frequency of the oscillations.

By suitable approximation, show that the angular frequency of the lowest mode is,

ω ≈
√

k

M +m/3
, (24)

as found in Prob. 5, Set 1, http://kirkmcd.princeton.edu/examples/ph205set1.pdf.
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Solutions

1. Spinning Basketballs.

This problem is the Example on p. 354, §415 of E.A. Milne, Vectorial Mechanics
(Metheun; Interscience Publishers, 1948),
http://kirkmcd.princeton.edu/examples/mechanics/milne_mechanics.pdf

We consider a sphere, of mass m and radius a with moment of inertia I about its center,
that rolls without slipping on a fixed sphere of radius b. We use a set of principal axes
(but not body axes) about the center of the sphere of radius a, where 1̂ points outward
along the line of centers of the two spheres and makes angle θ to the vertical, ẑ. Also,
2̂ = 1̂ × ẑ/ sin θ (which is always horizontal), and 3̂ = 1̂× 2̂ (which lies in the vertical
plane of 1̂ and ẑ).

The center of the sphere of radius a is at position r = (a + b) 1̂ with respect to the
center of the fixed sphere of radius b, which we take as the origin of coordinates in the
lab frame. Then, the velocity of the center of the sphere of radius a is,

v =
dr

dt
= (a + b)

d1̂

dt
. (25)

The (nonholonomic) constraint of rolling without slipping is that the point of contact
on the spinning sphere of radius a with the sphere of radius b is instantaneously at rest
in the lab frame,

vcontact = 0 = v + ω × a = (a + b)
d1̂

dt
− aω × 1̂, (26)

where ω is the total angular velocity of the sphere radius a in the lab frame, and
a = −a 1̂ is the vector from the center of the sphere of radius a to the point of
contact.5

5At this point in the analysis we could also note that v = −(a + b)φ̇ sin θ 2̂ + θ̇ 3̂ where φ̇ is the angular
velocity of the center of the spinning sphere about the z-axis. Then (25) implies eq. (47) below. We could
also use eq. (26) to find,

1̂× (ω × a) = −a ω − ω1 a = −1̂× v = (a + b) θ̇ 2̂ + (a + b) φ̇ sin θ 3̂, ω = ω1 1̂− a + b

a
θ̇ 2̂− a + b

a
φ̇ 3̂, (27)

where ω1 = ω · 1̂, in agreement with eq. (45) below.
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The force and torque equations of motion of (center of) the sphere of radius a are,

m
dv

dt
= m(a + b)

d21̂

dt2
= F−mg ẑ, F = m(a + b)

d21̂

dt2
+mg ẑ, (28)

dL

dt
= I

dω

dt
= τ = a× F = −ma(a+ b)1̂ × d21̂

dt2
−mga 1̂ × ẑ. (29)

From eq. (26) we have that,

ω · d1̂
dt

= 0, (30)

while from eq. (29) we have that,

1̂ · dω
dt

= 0. (31)

Hence,

d

dt
(ω · 1̂) =

dω1

dt
= 0, (32)

and ω1 = ω · 1̂ is constant.

Also, we can multiply eq. (26) by 1̂ to find that,

ω = ω1 1̂ +
a+ b

a
1̂ × d1̂

dt
,

dω

dt
= ω1

d1̂

dt
+
a + b

a
1̂ × d21̂

dt2
, (33)

and then rewrite the equation of motion (29) as,

(
I +ma2

) a+ b

a
1̂ × d21̂

dt2
+ I ω1

d1̂

dt
+mga 1̂× ẑ = 0. (34)

For steady motion, with θ = θ0 = constant, the spinning sphere, and the triad of
principal axes, precess about the vertical at constant angular velocity Ω = ω123 = Ω ẑ,
and hence,

d1̂

dt
= ω123 × 1̂ = Ω × 1̂ = Ω ẑ × 1̂, (35)

d21̂

dt
= Ω × d1̂

dt
= Ω × (Ω× 1̂) = (Ω · 1̂)Ω −Ω2 1̂ = Ω2(cos θ0 ẑ − 1̂). (36)

1̂ × d21̂

dt
= Ω2 cos θ0 1̂ × ẑ. (37)

Then, all terms in the equation of motion (34) are proportional to 1̂× ẑ, and we have,

(
I +ma2

) a+ b

a
Ω2 cos θ0 − I ω1 Ω +mga = 0, (38)

Ω =
Iω1 ±

√
I2 ω2

1 − 4 (I +ma2) (a + b)mg cos θ0

2 (I +ma2) a+b
a

cos θ0

=
ω1 ±

√
ω2

1 − ω2
1,“min”

Iω2
1,“min”/2mga

, (39)
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where for steady precession at rate Ω to exist, we must have,

ω1 ≥ ω1,“min” =
2

I

√
mg(a + b) (I +ma2) cos θ0, (40)

which (not surprisingly) limits steady motion to angle θ0 < 90◦.

For a basketball of radius a = 12 cm, which is a hollow sphere with I = 2ma2/3
(k = 2/3), balanced vertically (θ0 = 0) on a finger of radius of curvature b ≈ 1 cm
� a, the minimum ω1 required for gyroscopic stability is about 6 revolutions per
second.6 This seems higher that the rotation rates of spinning basketballs in online
videos,7 so it seems likely that their apparent stability is due to active stabilization by
horizontal motion of the supporting finger, rather than gyroscopic stabilization.

The spinning sphere remains in contact with the fixed sphere only if the outward force
of contact, F · 1̂, is positive. From eqs. (28) and (36), we have for steady motion,

F = m(a+ b)
d21̂

dt2
+mg ẑ = m(a + b)Ω2(cos θ0 ẑ − 1̂),+mg ẑ, (41)

F · 1̂ = mg cos θ0 +m(a+ b)Ω2(cos2 θ0 − 1) = mg cos θ0 −m(a+ b)Ω2 sin2 θ0. (42)

Hence, the spinning sphere flies off the fixed sphere if,8

Ω2 >
g cos θ0

(a+ b) sin2 θ0

. (43)

In particular, if ω1 is ω1,“min” of eq. (40), the spinning sphere flies of when,

ma2 sin2 θ0

(I +ma2) cos2 θ0
> 0, (44)

so only at θ0 = 0 can there be steady motion with ω1 = ω1,“min”.

That is, the true minimum of ω1 for steady motion in contact with the fixed sphere is
the root of the quartic equation obtained by combining eqs. (39) and (43). A numerical
study9 indicates that spinning sphere always flies off for Ω with the positive root in
eq. (39), while for the negative root, steady motion in contact with the fixed sphere is
possible for any θ0 < 90◦ for large enough ω1 (much larger than ω1,“min” of eq. (40) as
θ0 approaches 90◦).

To discuss nutation about steady motion, we note that the angular velocity ω123 of the
principal axes consists of the term −θ̇ 2̂, together with their rotation φ̇ ẑ = φ̇(cos θ 1̂−

6The Ω corresponding to this minimum ω1 is 3ω1/4, which describes the rotation of the mathematical
triad 1̂-2̂-3̂. However, ω1 describes the rotation of the physical sphere, as visible to observers of spinning
basketballs.

7Many videos include remarks that higher spin makes the ball more stable.
8For θ0 = 0, the spinning sphere will never fly off.
9http://kirkmcd.princeton.edu/examples/basketball.xlsx
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sin θ 3̂).10 Also, the total angular velocity ω of the sphere of radius a consists of the
“spin” angular velocity ωs of the sphere about axis 1̂ relative to the principal axes,
together with (a + b)/a times the angular velocity ω123 of the principal axes relative
to the lab frame (which subtle relation is inferred from eqs. (33) and (46)). Hence,

ω123 = φ̇ cos θ 1̂ − θ̇ 2̂ − φ̇ sin θ 3̂, ω = ωs 1̂ +
a+ b

a

(
φ̇ cos θ 1̂ − θ̇ 2̂ − φ̇ sin θ 3̂

)
.(45)

The time rate of change of the principal axes is related by,

d̂i

dt
= ω123 × î, (46)

d1̂

dt
= (φ̇ cos θ 1̂ − θ̇ 2̂ − φ̇ sin θ 3̂) × 1̂ = −φ̇ sin θ 2̂ + θ̇ 3̂, (47)

d2̂

dt
= (φ̇ cos θ 1̂ − θ̇ 2̂ − φ̇ sin θ 3̂) × 2̂ = −φ̇ sin θ 1̂ + φ̇ cos θ 3̂, (48)

d3̂

dt
= (φ̇ cos θ 1̂ − θ̇ 2̂ − φ̇ sin θ 3̂) × 3̂ = −θ̇ 1̂ − φ̇ cos θ 2̂. (49)

d21̂

dt2
= (−φ̈ sin θ − φ̇ θ̇ cos θ) 2̂ + θ̈ 3̂ + φ̇

2
sin2 θ 1̂ − φ̇

2
sin θ cos θ 3̂ − θ̇

2
1̂ − θ̇ φ̇ cos θ 2̂

= (φ̇
2
sin2 θ − θ̇

2
) 1̂ − (φ̈ sin θ + 2θ̇ φ̇ cos θ) 2̂ + (θ̈ − φ̇

2
sin θ cos θ) 3̂, (50)

1̂ × d21̂

dt2
= (φ̇

2
sin θ cos θ − θ̈) 2̂ − (φ̈ sin θ + 2θ̇ φ̇ cos θ) 3̂. (51)

Using eqs. (47) and (51), and recalling that 1̂ × ẑ = sin θ 2̂, we see that the equation
of motion (34) has nonzero 2̂- and 3̂- components,

(
I +ma2

) a + b

a
(φ̇

2
sin θ cos θ − θ̈) − I ω1φ̇ sin θ +mga sin θ = 0, (52)

(
I +ma2

) a + b

a
(φ̈ sin θ + 2θ̇ φ̇ cos θ) − I ω1θ̇ = 0. (53)

For steady motion, θ = θ0 = constant, θ̇ = 0, φ̇ = Ω = constant, eq. (53) is trivial,
while eq. (52) leads to eq. (38).

We also digress to consider a use of Lagrange’s method, with coordinates θ, φ = angle
of 2̂ to the x-axis, and ψ = angle of rotation of the sphere about the 1̂ axis.

The center of the sphere of radius a is at distance a + b from the origin = center
of fixed sphere of radius b, and hence the velocity of its center can be written as
v = (a+ b)(θ̇ 3̂ − φ̇ sin θ 2̂). The kinetic energy of the center-of-mass motion is,11

Tcm =
mv2

2
=
ma2

2

(a+ b)2

a2

(
θ̇

2
+ sin2 θ φ̇

2
)
. (54)

10We could continue using the triad 1̂, ẑ, 1̂× ẑ as in eq. (34), but since 1̂ and ẑ are not orthogonal, the
algebra is somewhat more intricate.

11As a check, we note that the rolling constraint (26) can be written as v = a×ω = −a 1̂×ω, and hence
the kinetic energy of the motion of the center of mass is Tcm = mv2/2 = ma2(ω2 −ω2

1)/2. Using eq. (45) we
again obtain eq. (54).
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The kinetic energy of rotation is, recalling eq. (45) and noting that ωs = ψ̇,

Trot =
I ω2

2
=
I

2

(
ψ̇ +

a + b

a
φ̇ cos θ

)2

+
I

2

(a + b)2

a2

(
θ̇

2
+ φ̇

2
sin2 θ

)
, (55)

and the potential energy is V = mg(a + b) cos θ. The Lagrangian is,

L = Tcm + Trot − V =

I

2

(
ψ̇ +

a + b

a
φ̇ cos θ

)2

+
(I +ma2)

2

(a+ b)2

a2

(
θ̇

2
+ sin2 θ φ̇

2
)
−mg(a+ b) cos θ. (56)

The Lagrangian does not depend on ψ, so ∂L/∂ψ̇ = I
[
ψ̇ − ((a+ b)/a)φ̇ cos θ

]
= I ω1

is a conserved generalized momentum, and ω1 is constant, as found above.

The equation of motion for coordinate θ is,

∂L
∂θ

= −I ω1
a + b

a
φ̇ sin θ +

(
I +ma2

) (a + b)2

a2
φ̇

2
sin θ cos θ +mg(a+ b) sin θ

=
d

dt

∂L

∂θ̇
=
(
I +ma2

) (a + b)2

a2
θ̈, (57)

(
I +ma2

) a + b

a

(
φ̇

2
sin θ cos θ − θ̈

)
− I ω1 φ̇ sin θ +mga sin θ = 0 (58)

in agreement with eq. (52).

The equation of motion for coordinate φ is, recalling that ω1 is constant,

∂L
∂φ

= 0 =
d

dt

∂L

∂φ̇
=

d

dt

[
a + b

a
I ω1 cos θ +

(
I +ma2

) (a + b)2

a2
sin2 θ φ̇

]

= −a+ b

a
Iω1 θ̇ sin θ +

(
I +ma2

) (a + b)2

a2

(
φ̈ sin2 θ + 2θ̇ φ̇ sin θ cos θ

)
, (59)

(
I +ma2

) a + b

a

(
φ̈ sin θ + 2θ̇ φ̇ cos θ

)
− Iω1 θ̇ = 0, (60)

as found above in eq. (53).

The difficult step in the Lagrangian method is arriving at eq. (45) for the total angular
velocity ω, for which the vectorial method, and awareness of the rolling constraint, is
helpful.

We now consider nutations of the form,

θ = θ0 + ε sinαt, φ̇ = Ω + δ sinαt, (61)

sin θ ≈ sin θ0 + ε cos θ0 sinαt, cos θ ≈ cos θ0 − ε sin θ0 sinαt, (62)

for small constants ε and δ. Then, to first order in ε and δ, eq. (53) becomes,

(
I +ma2

) a+ b

a
(α δ sin θ0 cosαt+ 2α εΩcos θ0 cosαt)− αεI ω1 cosαt = 0, (63)

δ = ε
Iω1

(I +ma2) a+b
a

sin θ0

− 2εΩcos θ0

sin θ0
, (64)
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and eq. (52) becomes, recalling eq. (38) for the 0th-order terms,

(
I +ma2

) a + b

a
[(Ω2 + 2Ω δ sinαt)(sin θ0 + ε cos θ0 sinαt)(cos θ0 − ε sin θ0 sinαt) + εα2 sinαt]

−I ω1 (Ω + δ sinαt)(sin θ0 + ε cos θ0 sinαt) +mga(sin θ0 + ε cos θ0 sinαt) = 0, (65)(
I +ma2

) a + b

a
(εΩ2 cos 2θ0 + 2δ Ωsin θ0 cos θ0 + εα2)

−I ω1 (εΩcos θ0 + δ sin θ0) + εmga cos θ0 = 0, (66)

α2 = −Ω2 cos 2θ0 − 2Ω cos θ0
I ω1

(I +ma2) a+b
a

+ 4Ω2 cos2 θ0

+
I ω1

(I +ma2) a+b
a

(
Ωcos θ0 +

I ω1

(I +ma2) a+b
a

− 2Ω cos θ0

)
− mga cos θ0

(I +ma2) a+b
a

(67)

= Ω2(1 + 2 cos2 θ0) +
I2 ω2

1

(I +ma2)2
(

a+b
a

)2 − 3I ω1 Ωcos θ0

(I +ma2) a+b
a

− mga cos θ0

(I +ma2) a+b
a

. (68)

For sufficiently large ω1, α
2 > 0, and the nutations exist as ongoing, small oscillations.

However, the condition for this is not simple.

We can extract a somewhat simpler condition if we restrict our attention to the “min-
imum” ω1 for steady motion, as found in eq. (40) above. For this case, the associated
Ω is given by eq. (39), and is called Ωmin here,

Ωmin =
I1 ω1,“min”

2 (I +ma2) a+b
a

cos θ0

. (69)

Using this in eq. (68), we have (after some algebra),

α2 =
I2 ω2

1,“min”

4 (I +ma2)2
(

a+b
a

)2
cos2 θ0

− mga cos θ0

(I +ma2) a+b
a

. (70)

Since cos θ0 ≤ 1, this condition for stable nutations is slightly weaker than the condition
(40) for the existence of steady motion. That is, whenever steady motion is possible,
nutations about this motion are stable.

It was noted in sec. 41, p. 101 of H. Lamb, Higher Mechanics (Cambridge U. Press,
1920), http://kirkmcd.princeton.edu/examples/mechanics/lamb_higher_mechanics.pdf
that if we restrict our attention to motion in which angle θ is very small (as for balanced,
spinning basketballs), we can give an analysis using only x-y-z coordinates.

The center of the spinning sphere is at r = (x, y, z) where r = a + b. The rolling
constraint (26) can then be written as,

v = ṙ = (ẋ, ẏ, ż) = a × ω =
a

a+ b
(z ωy − y ωz, x ωz − z ωx, y ωx − xωy), (71)

noting that a = −ar/(a+ b) and ω = (ωx, ωy, ωz).
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The general equations of motion are, taking the torque about the center of the sphere,

mr̈ = F−mg ẑ, I ω̇ = a ×F = − a

a + b
r × F. (72)

For motion with small θ, we have that z ≈ a + b, Fz ≈ mg, and ωz ≈ constant. The
constraint relation (71) reduces to,

ẋ = aωy − aωz

a + b
y, ẏ = −aωx +

aωz

a+ b
x, (73)

and the equations of motion (72) reduce to mẍ = Fx, mÿ = Fy and,

I ω̇x = aFy − mga

a + b
y = maÿ− mga

a + b
y, I ω̇y = −aFx +

mga

a + b
x = −maẍ+

mga

a+ b
x.(74)

Using eq. (74) in the time derivative of eq. (73), we find,

ẍ = a ω̇y − aωz

a + b
ẏ = −ma

2

I
ẍ+

mga2

I(a+ b)
x− aωz

a+ b
ẏ, (75)

(
I +ma2

) a + b

a
ẍ+ I ωz ẏ −magx = 0, (76)

ÿ = −a ω̇x +
aωz

a + b
ẋ = −ma

I
ÿ − mga2

I(a+ b)
y +

aωz

a+ b
ẋ, (77)

(
I +ma2

) a + b

a
ÿ − I ωzẋ−magy = 0. (78)

Lamb noted that it is clever to introduce the complex variable ζ = x + iy where
i =

√−1 here. Then, eqs. (76) and (78) combine into the form,

(
I +ma2

) a + b

a
ζ̈ − iI ωz ζ̇ −mag ζ = 0. (79)

We seek oscillatory behavior with ζ ∝ eiαt, which implies that,

(
I +ma2

) a+ b

a
α2 − I ωz α +mag = 0, (80)

α =
Iωz ±

√
I2 ω2

z − 4 (I +ma2) (a + b)mg

2 (I +ma2) a+b
a

. (81)

This oscillatory behavior (nutation) exists for,

(
I +ma2

) a + b

a
α2 − I ωz α +mag = 0, (82)

ωz >
2

I

√
(I +ma2) (a + b)mg, (83)

which is the same condition found in eq. (40) for θ0 = 0, where ω1 = ωz.
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Lamb noted that if the real values of eq. (81) are α±, then the trajectory of the center
of the spinning sphere has the form,

x = A+ cos(α+t+ β+) + A− cos(α−t+ β−), y = A+ sin(α+t+ β+) + A− sin(α−t+ β−),(84)

which describe an epicyclic curve.

He also considered a velocity-dependent friction somehow acting only on the center of
the sphere, for which the mathematics is analytically tractable and implies that one of
the oscillations, with angular frequency α+ or α−, is exponentially damped, while the
other grows exponentially until the spinning sphere flies off the fixed one.
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2. The Golfer’s Nemesis.

This problem is discussed in §421, p. 357 of E.A. Milne, Vectorial Mechanics (Metheun;
Interscience Publishers, 1948),
http://kirkmcd.princeton.edu/examples/mechanics/milne_mechanics.pdf

We consider a sphere, of mass m and radius a with moment of inertia I about its
center, that rolls without slipping on a fixed, vertical cylinder of radius b > a. We use
a set of principal axes (but not body axes) about the center of the sphere of radius a,
where 1̂ points outward along the horizontal line from the center of the spheres to the
point of contact with the cylinder. Axis 3̂ is vertical (parallel to ẑ), and axis 2̂ = ẑ× 1̂
is also horizontal).

The center of the sphere of radius a is at position r = (b − a) 1̂ + z ẑ with respect to
the origin at the bottom center of the cylinder. Then, the velocity of the center of the
sphere of radius a is,

v =
dr

dt
= (b− a)

d1̂

dt
+ ż ẑ . (85)

The (nonholonomic) constraint of rolling without slipping is that the point of contact
of the sphere of radius with the cylinder is instantaneously at rest in the lab frame,

vcontact = 0 = v + ω × a = (b− a)
d1̂

dt
+ ż ẑ + aω × 1̂, (86)

where ω is the total angular velocity of the sphere radius a in the lab frame, and
a = a 1̂ is the vector from the center of the sphere of radius a to the point of contact.

The force and torque equations of motion for (the center of) the sphere are,

m
dv

dt
= m(b− a)

d21̂

dt2
+mz̈ ẑ = F−mg ẑ, F = m(b− a)

d21̂

dt2
+m(g + z̈) ẑ, (87)

dL

dt
= I

dω

dt
= τ = a ×F = ma(b− a) 1̂ × d21̂

dt2
−m(g + z̈)a 2̂, (88)

where I is the moment of inertia of the sphere about its center.

We define Ω = Ω ẑ as the angular velocity of the center of the sphere (and also of the
point of contact, as well as of the triad 1̂-2̂-3̂) about the vertical axis, such that,

d1̂

dt
= Ω × 1 = Ω 2̂,

d21̂

dt
= Ω̇ 2̂ + ΩΩ × 2̂ = −Ω21̂ + Ω̇2̂, 1̂ × d21̂

dt
= Ω̇ ẑ. (89)
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The velocity (85) of the center of the sphere can now be written as,

v = −Ω(b− a) 2̂ + ż ẑ , (90)

so the 2̂-component of the total angular velocity ω of the sphere about its center
(and also that about the point of contact) is vz/a = ż/a, and the ẑ-component is
v2/a = −(b− a)/a. Thus,

ω = ω1 1̂ +
ż

a
2̂ − Ω

b− a

a
ẑ,

dω

dt
= ω̇1 1̂ + Ωω1 2̂ +

z̈

a
2̂ − Ωż

a
1̂ − Ω̇

b− a

a
ẑ, (91)

With these, the equation of motion (88) becomes,

I

[(
ω̇1 − Ωż

a

)
1̂ +

(
Ωω1 +

z̈

a

)
2̂ − Ω̇

b− a

a
ẑ

]
= ma(b− a) Ω̇ ẑ −m(g + z̈)a 2̂, (92)

The components of the equation of motion imply,

ẑ : Ω̇ = 0, Ω = constant, (93)

1̂ : ω̇1 =
Ωż

a
, ω1 =

Ωz

a
+ ω10, (94)

2̂ :
(
I +ma2

)
z̈ + I Ω2z = −ma2g − I Ωω10. (95)

The center of the sphere executes simple harmonic motion in z,12 and if at time t = 0,
z = 0, ż = ż0, ω1 = ω10, then,

z =
ma2g + IaΩω10

I Ω2
(cosαt− 1) +

ż0

α
sinαt, where α = Ω

√
I

I +ma2
. (96)

We now consider under what conditions a golf ball could roll into a cup/vertical cylinder
such that at time t = 0 the motion is described by eq. (96).

According to eqs. (90) and (91), the velocity v0 and the angular velocity ω0 at this
time must be,

v0 = −Ω(b− a) 2̂ + ż0 ẑ , ω0 = ω10 1̂ +
ż0

a
2̂ − Ω

b− a

a
ẑ. (97)

12This motion can be regarded as a nutation about steady motion with angular velocity Ω in a horizontal
circle at z = −(ma2g + Ia Ω ω10)/I Ω2.
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The figure above shows side and top views of the ball as it enters the cup, after rolling
into it from the left while on the horizontal surface. At time t = 0, the ball has fallen
through height a, so ż0 = −√

2ag. If the ball arrived at the top of the cup with
horizontal velocity v0 (in the −2̂ direction), then this is also the horizontal velocity
when the center of the ball has fallen to z = 0, and so Ω = v0/(b − a). The angular
velocity of the ball did not change while it fell into the cup, so the angular velocity at
the time of arrival was,

ωarrival = ω0 = ω10 1̂ −
√

2g

a
2̂ − v0

a
ẑ, v0 = −Ω(b− a) 2̂. (98)

If the ball had been simply rolling without slipping prior to arrival at the cup, then
ω10 = v0/a and the 2̂- and ẑ-components of ωarrival would be zero. Hence, only under
special conditions of rolling with slipping at the moment of arrival at the cup could
the ball roll into it and pop back out after following motion of the form )96.

For a golf ball of uniform mass density, I = 2ma2/5, and α =
√

2/7 Ω = Ω/1.87. If the
golf ball does pop out of the hole, it does so in somewhat less than one period of the
vertical oscillation, i.e., in less the 1.87 revolutions of the ball around the vertical axis
of the cup.
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3. Off the Rim.

We consider a sphere of radius a that rolls without slipping on a horizontal hoop of
radius b > a.

Before treating the general motion, we consider the special case of steady motion with
no “spin” about the line, 1̂, between the point of contact of the sphere with the hoop
and the center of the sphere (in the lab frame).13

In this case, the angle θ0 between the vertical, ẑ, and 1̂ is constant, and the center
of the sphere moves in a horizontal circle of radius b − a sin θ0 with constant angular
velocity Ω.

The rolling constraint for the velocity of the point of contact on the ball (not on the
rim) is,

vcontact = v + ω × a = 0, (99)

where v is the velocity of the center of the sphere, ω is its total angular velocity, and
a = −a1 points from the center of the sphere to the point of contact.

To evaluate the rolling constraint, it may be helpful to consider the general case when
θ and φ̇ = Ω vary with time. For this, we introduce the principal axes (not body axes)
1̂,2̂,3̂, with origin at the center of the sphere. 1̂ points from the point of contact with
the hoop to the center of the sphere, 2̂ = ẑ × 1̂/ sin θ is horizontal, and 3̂ = 1̂ × 2̂
is in the vertical plane containing the centers of the hoop and the sphere. Also, ẑ =
cos θ 1̂ + sin θ 3̂.

The velocity of the center of the sphere is,

v = −φ̇(b− a sin θ) 2̂ − a θ̇ 3̂. (100)

where Ω = φ̇ is the angular velocity of the sphere about the center of the hoop.

13The problem of steady motion was posed in Prob. 9.21 of D. Morin, Introduction to Classical Mechanics
(Cambridge U. Press, 2008), http://kirkmcd.princeton.edu/examples/mechanics/morin_mechanics_07.pdf
There it was stated “A basketball rolls without slipping around a basketball rim in such a way that the
contact points trace out a great circle on the ball”. This implies that there is no “spin” about direction 1̂
in the rotating frame where the center of the ball is at rest. It’s best to start the analysis in the rotating (′)
frame to find that ω′ = Ωb 3̂/a, and then transform to the lab frame via ω = ω′ +Ω ẑ to perform the torque
analysis (thereby avoiding the need to consider the torque due to the “fictitious” azimuthal, centrifugal and
Coriolis forces in the rotating frame). A different value for Ω is obtained than in our eq. (106).
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From the rolling constraint (99) we have, recalling that a = −a 1̂,

1 × (ω × a) = −aω − ω1 a = −1̂ × v = −a θ̇ 2̂ + φ̇(b− a sin θ) 3̂, (101)

ω = ω1 1̂ + θ̇ 2̂ − φ̇
b− a sin θ

a
3̂. (102)

For steady motion, with of no “spin” about 1̂, φ̇ = Ω and θ̇ = 0, the total angular
velocity ω is

ω = −Ω
b− a sin θ

a
3̂. (103)

Then, the rolling constraint (99) implies,

Ω(b− a sin θ0) = −ωa. (104)

The torque equation of (steady) motion about the point of contact is,

τ contact = −a×mg = −mag 1̂ × ẑ = mag sin θ0 2̂

=
dLcontact

dt
= Icontact

dω

dt
=
(
I +ma2

)
Ω ẑ × ω = −

(
I +ma2

)
Ωω cos θ0 2̂, (105)

Ω = − mag sin θ0

(I +ma2)ω cos θ0
, Ω2 =

ma2g tan θ0

(I +ma2) (b− a sin θ0)
, (106)

using eq. (104), and defining 2̂ = ẑ × 1̂/ sin θ0, which is into the page in the figure
above.

For a spherical shell of radius a = 12 cm, I = 2ma2/3, with b = 2a and θ0 = 45◦,
the frequency of revolution of the sphere about the center of the hoop is 2π/Ω =

2π
√

5a(4 −√
2)/6g ≈ 0.6 Hz.

Also, there is a formal equilibrium with θ0 = 0 = Ω, at which the sphere is perched
on a point on the rim. For “spin” ω1 = 0 this equilibrium is unstable, but we need to
consider whether it might be stable for large enough ω1.

The angular velocity of the triad 1̂,2̂,3̂ is,

ω123 = θ̇ 2̂ + φ̇ ẑ = φ̇ cos θ 1̂ + θ̇ 2̂ + φ̇ sin θ 3̂. (107)

The time rate of change of the principal axes is related by,

d̂i

dt
= ω123 × î, (108)

d1̂

dt
= (φ̇ cos θ 1̂ + θ̇ 2̂ + φ̇ sin θ 3̂) × 1̂ = φ̇ sin θ 2̂ − θ̇ 3̂, (109)

d2̂

dt
= (φ̇ cos θ 1̂ + θ̇ 2̂ + φ̇ sin θ 3̂) × 2̂ = φ̇ sin θ 1̂ + φ̇ cos θ 3̂, (110)

d3̂

dt
= (φ̇ cos θ 1̂ + θ̇ 2̂ + φ̇ sin θ 3̂) × 3̂ = θ̇ 1̂ − φ̇ cos θ 2̂. (111)
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The force and torque equations of motion of (the center of) the sphere of radius a are,

F−mg ẑ = m
dv

dt
= −mφ̈(b− a sin θ) 2̂ +ma φ̇ θ̇ cos θ 2̂ −ma θ̈ 3̂

−mφ̇(b− a sin θ)(φ̇ sin θ 1̂ + φ̇ cos θ 3̂) −maθ̇(θ̇ 1̂ − φ̇ cos θ 2̂)

= −m(φ̇
2
(b− a sin θ) sin θ + a θ̇

2
) 1̂ +m(2a φ̇ θ̇ cos θ − φ̈(b− a sin θ)) 2̂

−m(a θ̈+ φ̇
2
(b− a sin θ) cos θ) 3̂, (112)

dL

dt
= I

dω

dt
= Iω̇1 1̂ + Iθ̈ 2̂ + I

(
φ̇ θ̇ cos θ − φ̈

b− a sin θ

a

)
3̂ + Iω1(φ̇ sin θ 2̂ − θ̇ 3̂)

+Iθ̇(φ̇ sin θ 1̂ + φ̇ cos θ 3̂) − Iφ̇
b− a sin θ

a
(θ̇ 1̂ − φ̇ cos θ 2̂)

= I

(
ω̇1 − φ̇ θ̇

b− 2a sin θ

a

)
1̂ + I

(
θ̈ + ω1 φ̇ cos θ + φ̇

2 b− a sin θ

a
cos θ

)
2̂

+I

(
2φ̇ θ̇ cos θ − ω1 θ̇ − φ̈

b− a sin θ

a

)
3̂

= τ = a ×F (113)

= −ma(2a φ̇ θ̇ cos θ − φ̈(b− a sin θ)) 3̂ −ma(a θ̈+ φ̇
2
(b− a sin θ) cos θ) 2̂ +mag sin θ 2̂,

where I is the moment of inertia of the sphere about its center. The components of
the equation of motion (113) are:

1̂ : ω̇1 = φ̇ θ̇
b− 2a sin θ

a
, (114)

2̂ :
(
I +ma2

)(
θ̈ + φ̇

2 b− a sin θ

a
cos θ

)
+ I ω1 φ̇ cos θ = mag sin θ, (115)

3̂ :
(
I +ma2

)(
2φ̇ θ̇ cos θ − φ̈

b− a sin θ

a

)
= I ω1 θ̇. (116)

For steady motion with θ = θ0 = constant and φ̇ = Ω = constant, we have that ω1 =
constant from eq. (114), eq. (116) is trivial, and eq. (115) leads to,

Ω2 +
IΩω1

I +ma2
=

ma2g tan θ0

(I +ma2) (b− a sin θ0)
(117)

which reduces to eq. (106) for the special case of no “spin”, i.e., ω1 = 0.

The coupled equations of motion (114)-(116) are intricate, and we limit further discus-
sion to two special cases: either the “spin” ω1 is negligible, or the equilibrium is with
θ0 = 0 = Ω.

For ω1 negligible, we consider possible nutations of the form,

θ = θ0 + ε sinαt, φ̇ = Ω + δ sinαt, (118)

sin θ ≈ sin θ0 + ε cos θ0 sinαt, cos θ ≈ cos θ0 − ε sin θ0 sinαt, (119)
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for small constants ε and δ. Then, to first order in ε and δ, eq. (116) becomes,

2Ωα ε cosαt cos θ0 ≈ α δ cosαt
b− a sin θ0

a
, δ ≈ 2 εΩ

a

b− a sin θ0

cos θ0. (120)

and eq. (115) becomes,

mag(sin θ0 + ε cos θ0 sinαt) ≈ −α2 ε
(
I +ma2

)
sinαt (121)

+
(
I +ma2

)
(Ω2 + 2Ω δ sinαt)

(
b

a
− sin θ0 − ε cos θ0 sinαt

)
(cos θ0 − ε sin θ0 sinαt),

εm a g cos θ0 ≈ −α2 ε
(
I +ma2

)
− ε

(
I +ma2

)
Ω2

[
b− a sin θ0

a
sin θ0 + cos2 θ0

]

+2Ω δ
(
I +ma2

) b− a sin θ0

a
cos θ0, (122)

α2 ≈ −mag cos θ0

I +ma2
− Ω2

[
b− a sin θ0

a
sin θ0 + cos2 θ0

]
+ 4Ω2 cos2 θ0. (123)

For this case we also have Ω2 given by eq. (106), so,

α2 ≈ −mag cos θ0

I +ma2
− mag sin2 θ0

(I +ma2) cos θ0
+ 3

mag sin θ0 cos θ0

(I +ma2) (b/a− sin θ0)

=
mag

(I +ma2) (b/a− sin θ0) cos θ0
[3 sin θ0 cos2 θ0 − sin2 θ0 − cos2 θ0(b/a− sin θ0)].(124)

A numerical calculation (https://kirkmcd.princeton.edu/examples/rim.xlsx) indicates
that α2 < 0 for any angle θ0 when b/a > 1.88.14 In regulation basketball, b/a is
very close to 2, so α2 < 0 for any θ0, and the equilibrium with ω1 = 0 is unstable.
That is, if a basketball starts to roll around the hoop, it quickly falls in or out.

We now turn to the equilibrium of a sphere whose center is at rest directly above some
point on the hoop, with the sphere spinning about the vertical.

We consider possible, small nutations about this equilibrium as in eqs. (118)-(119), but
here, θ0 = 0 = Ω. Then, the right side of eq. (114) is of second order, so in the first
approximation ω1 is constant. Equation (116) now implies that,

− δ
(
I +ma2

) b
a

cosαt = εI ω1 cosαt, δ = −ε I

I +ma2

aω1

b
, (125)

and eq. (115) leads to,

εmag sinαt ≈ −α2 ε
(
I +ma2

)
sinαt+ δ I ω1 sinαt,

mag ≈ −α2
(
I +ma2

)
− I

I +ma2

aω1

b
I ω1, (126)

α2 ≈
(

I

I +ma2

)2

ω2
1

a

b
− mag

I +ma2
. (127)

14When stability is possible, it is most stable angle for θ0 ≈ 42◦.
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This equilibrium stable for,

ω1 >
I +ma2

I

√
gb

a2

ma2

I +ma2
. (128)

For a basketball of radius a = 12 cm and a hoop with b/a = 2, the minimum “spin”
ω1 for stability of this equilibrium is only 2 Hz.15

In the limit of b → ∞, the hoop becomes a long, straight wire for small φ, say along
the x direction. Then, the horizontal vector 2̂ is x̂, and the quantity φ(b−a sin θ ≈ φ b
takes on the significance of the position x of the center of the sphere along the wire (for
small φ). Furthermore, φ̇(b−a sin θ) → ẋ and φ̈(b−a sin θ) → ẍ. Then, the component
equations of motion (114)-(116) become,

1̂ : a ω̇1 = θ̇ ẋ, (129)

2̂ :
(
I +ma2

)
θ̈ = mag sin θ, (130)

3̂ : −
(
I +ma2

)
ẍ = aI ω1 θ̇. (131)

These are the equations of motion found on p. 214 of
http://kirkmcd.princeton.edu/examples/Ph205/ph205l20.pdf, but with x → −x. See also
§424, p. 360 of Milne’s Vectorial Mechanics, especially eqs. (7)-(9).

In particular, eq. (130) indicates that once θ is nonzero, further motion only increases
θ (until the sphere loses contact with the wire).

A finite radius of curvature b of the (horizontal) wire leads to more intricate 2- and 3-
components of the equations of motion, i.e., eqs. (115)-(116), which permit gyroscopic
stabilization of the sphere for large enough “spin” ω1 (at some values of θ0).

15Gyroscopic stability of a basketball on a curved hoop occurs for smaller ω1 than when balancing it on
your finger (Prob. 1 above).
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4. This is Prob. 4.16, p. 62 of D.F. Lawden, Analytical Mechanics (Allen & Unwin, 1972),
http://kirkmcd.princeton.edu/examples/mechanics/lawden_72.pdf

A circular hoop of radius a rotates constant angular velocity Ω in a horizontal plane
about a fixed point on the hoop. A bead of mass m silds freely on the hoop.

(a) The potential energy V of the bead can be taken as 0, while its kinetic energy is,

T =
mv2

2
=
m

2

[
ṙ2 + r2

(
Ω + θ̇

)2
]
, (132)

r = 2a cos θ, ṙ = −2a θ̇ sin θ, (133)

T =
m

2

[
4a2 θ̇

2
sin2 θ + 4a2 cos2 θ

(
θ̇

2
+ 2 θ̇Ω + Ω2

)]

= 2ma2
(
θ̇

2
+ 2 θ̇Ωcos2 θ + Ω2 cos θ2

)
. (134)

The equation of motion via Lagrange’s method is, with L = T − V = T ,

d

dt

∂L
∂θ̇

= 4ma θ̈ − 8ma θ̇Ωsin θ cos θ

=
∂L
∂θ

= −8ma θ̇Ωsin θ cos θ − 4maΩ2 sin θ cos θ, (135)

θ̈ = −Ω2 sin θ cos θ. (136)

Steady motion exists for θ0 = 0, and small oscillations about this equilibrium
have angular velocity ω = Ω.

(b) The Hamiltonian for this system is,

H = θ̇ pθ − L, (137)

where,

pθ =
∂L
∂θ̇

= 4ma2 θ̇ + 4ma2 Ωcos2 θ, θ̇ =
pθ

4ma2
− Ωcos2 θ. (138)

Then,

H = 4ma
(
θ̇

2
+ θ̇Ωcos2 θ

)
− 2ma2

(
θ̇

2
+ 2 θ̇Ωcos2 θ + Ω2 cos2 θ

)
(139)

= 2ma2
(
θ̇

2 − Ω2 cos θ2
)

= 2ma2

(
p2

θ

(4ma2)2
− 2pθ Ωcos2 θ

4ma2
+ Ω2 cos4 θ −Ω2 cos2 θ

)

=
p2

θ

8ma2
− pθ Ωcos2 θ − 2ma2 Ω2 sin2 θ cos2 θ =

p2
θ

8ma2
− pθ Ωcos2 θ − ma2

2
Ω2 sin2 2θ.
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Hamilton’s equations are,

θ̇ =
∂H

∂pθ
=

pθ

4ma2
− Ωcos2 θ, ⇒ pθ = 4ma2 θ̇ + 4ma2 Ωcos2 θ, (140)

and,

ṗθ = −∂H
∂θ

= −pθ Ωsin 2θ +ma2 Ω2 sin 4θ

= −4ma2 θ̇Ωsin 2θ − 4ma2 Ω2 sin 2θ cos2 θ

+4ma2 Ω2 sin 2θ cos 2θ − 4ma2 Ω2 sin θ cos θ

= −4ma2 θ̇Ωsin 2θ − 4ma2 Ω2 sin θ cos θ, (141)

using Dwight 403.04, from which we can obtain,

θ̈ =
ṗθ

4ma2
+ θ̇Ωsin 2θ = −Ω2 sin θ cos θ, (142)

as in eq. (136), but rather more laboriously.

(c) The (unknown) constraint force has a component tangential to the hoop, so F =
ma is difficult to apply. We avoid use of the constraint force by considering a
torque analysis about the center of the hoop in the rotating frame of the hoop.

The angular momentum about this point is,16

L = mv⊥ = 2maθ̇, (143)

where the subscript ⊥ indicates the component perpendicular to the radius from
the center of the hoop to the mass m. The torque about the center of the hoop
is due to the centrifugal force FC = mΩ2r = 2maΩ2 cos θ,17

τ = −aFC,⊥ = −aFC sin θ = −2maΩ2 cos θ sin θ. (144)

Hence the torque equation of motion in the rotating frame, τ = dL/dt, implies,

θ̈ = −Ω2 sin θ cos θ. (145)

as found in parts (a) and (b).

16While v⊥ = a(2θ̇) in the rotating frame follows from the figure on the previous page, we also note that
it can be deduced from the r− and θ−components of the velocity in the rotating frame, recalling eq. (133),
v⊥ = −ṙ sin θ + r θ̇ cos θ = 2a θ̇(sin2 θ + cos2 θ) = 2aθ̇.

17The constraint force, and the Coriolis force in the rotating frame, 2Ω × v⊥, are both along the radius
from the center of the hoop to the mass, and so exert no torque about the latter.
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5. The Piano.

A piano wire is struck by a sharp blow from a hammer, and a fairly pure note is
produced.

Following Helmholtz, we suppose the force of the hammer blow can be described as,

F (x, t) =

⎧⎪⎨
⎪⎩
F δ(x− b) sin 2πt

T
(0 < t < T/2),

0 (otherwise).
(146)

That is, the force goes through one half period of s sinusoidal oscillation.

The force is applied at distance b from one end of a wire of length l and mass density
ρ per unit length, which is fixed at both end and subject to a tension that makes the
transverse wave velocity equal to c.

The transverse displacement s(x, t) of the string can be written as a sum of spatial
modes, sin(nπx/l), whose time dependence φn(t) is to be determined,

s(x, t) =
∑
n

φn(t) sin
nπx

l
. (147)

The equation of motion of the string is,

ρs̈ = c2ρs′′ + F (x, t), (148)∑
n

(
φ̈n +

n2π2c2

l2
φn

)
sin

nπx

l
=

1

ρ
F (x, t) =

1

ρ

∑
n

Fn(t) sin
nπx

l
, (149)

where the Fourier coefficients Fn(t) are related by,

∫ l

0
dx
∑
n

Fn(t) sin
nπx

l
sin

mπx

l
=
l

2
Fm(t)

=
∫ l

0
dxF (x, t) sin

mπx

l
=

⎧⎪⎨
⎪⎩
F sin 2πt

T
sin mπb

l
(0 < t < T/2),

0 (otherwise).
(150)

Hence, the coefficient φn(t) obeys the differential equation of a forced, undamped
oscillator,

φ̈n +
n2π2c2

l2
φn =

2F

ρl

⎧⎪⎨
⎪⎩

sin 2πt
T

sin nπb
l

(0 < t < T/2),

0 (otherwise).
(151)

Recalling the method of Green, discussed on p. 145 of
http://kirkmcd.princeton.edu/examples/Ph205/ph205l13.pdf, we have for φn at times t >
T/2, noting that ω1 = nπc/l,
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φn(t > T/2) =
l

nπc

2F

ρl

∫ T/2

0
dt′ sin

2πt

T
sin

nπb

l
sin

nπc

l
(t− t′)

=
2F

nπcρ
sin

nπb

l

∫ T/2

0
dt′

1

2

{
cos

[(
2π

T
+
nπc

l

)
t′ − nπ

l
t
]
− cos

[(
2π

T
− nπc

l

)
t′ +

nπ

l
t
]}

=
F

nπcρ
sin

nπb

l

⎧⎨
⎩

sin
[(

2π
T

+ nπc
l

)
T
2
− nπ

l
t
]
+ sin nπct

l
2π
T

+ nπc
l

− sin
[(

2π
T
− nπc

l

)
T
2

+ nπ
l
t
]
− sin nπct

l
2π
T
− nπc

l

⎫⎬
⎭

=
F

nπcρ
sin

nπb

l

⎧⎨
⎩

sin
[
π − nπc

l

(
t− T

2

)]
+ sin nπct

l
2π
T

+ nπc
l

− sin
[
π + nπc

l

(
t− T

2

)]
− sin nπct

l
2π
T
− nπc

l

⎫⎬
⎭

=
F

nπcρ
sin

nπb

l

⎧⎨
⎩

sin nπc
l

(
t− T

2

)
+ sin nπct

l
2π
T

+ nπc
l

+
sin nπc

l

(
t− T

2

)
+ sin nπct

l
2π
T
− nπc

l

⎫⎬
⎭

=
2F

nπcρ
sin

nπb

l

4π
T

cos nπcT
4l

sin nπct
l

(
t− T

4

)
(

2π
T

)2 −
(

nπc
l

)2 . (152)

The displacement is now given by,

s(x, t) =
2FT

π2c ρ

∑
n

1

n(1 − (ncT
2l

)2)
sin

nπb

l
cos

nπcT

4l
sin

nπx

l
sin

nπc(t− T/4)

l
. (153)

If we take b = l/2, the midpoint, and T = 2l/c, the fundamental period, then,

s(x, t) =
F l

π2T

∑
n

sinnπ

n(1 − n2)
sinnπx sin

nπc(t− T/4)

l
, (154)

so all harmonics vanish except n = 1, since limn→1
sin nπ
1−n2 = π cosnπ

−2n
= π

2
.

Even if T = 2l/c can’t be achieved exactly in practice, the series converges quickly as
the terms go as 1/n3 for large n.

In contemporary pianos, b = l/8, in which case (for T = 2l/c),

s(x, t) =
2F l

π2T

∑
n

1

n(1 − n2)
sin

nπ

8
cos

nπ

2
sinnπx sin

nπc(t− T/4)

l
, (155)

which includes harmonics n = 1, 2, 4, 6, 10, ...

Many harpsichords are built with b = l/2, which gives them a purer tone, although
perhaps less interesting than that of a piano.
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6. The Violin.

Following Helmholtz, we suppose the action of the bow of a violin is to force the
string of length l into a transverse vibration at x0, the point of application of the bow
(0 < x0 < l), with the approximate form,

which is periodic with the period of the fundamental, free oscillation, t1 = 2l/c, where
c is the velocity of transverse waves on the stretched string. That is,

s(x0, t) = 2s0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t
t0

(0 < t < t0/2),

− t−t1/2
t1−t0

(t0/2 < t < t1 − t0/2),

t−t1
t0

(t1 − t0/2 < t < t1).

(156)

The rising motion occupies time t0 < t1 related by x0/l = t0/t1.

As this waveform begins and ends each period (of duration t1) with s = 0, its Fourier
analysis has the form,

s(x0, t) =
∑
n

An sin
2nπt

t1
, (157)

where the Fourier coefficients are related by,

An =
2

t1

∫ t1

0
dt s(x0, t) sin

2nπt

t1

=
4s0

t0t1

∫ t0/2

0
dt t sin

2nπt

t1
− 4s0

t1(t1 − t0)

∫ t1−t0/2

t0/2
dt
(
t− t1

2

)
sin

2nπt

t1

+
4s0

t0t1

∫ t1

t1−t0/2
dt (t− t1) sin

2nπt

t1
=

4s0

t0t1

(
t1

2nπ

)2 [
sin

nπt0
t1

− 2nπ

t1

t0
2

cos
nπt0
t1

]

− 4s0

t1(t1 − t0)

(
t1

2nπ

)2 {
sin

2nπ

t1

(
t1 − t0

2

)
− sin

2nπ

t1

t0
2

−2nπ

t1

[(
t1 − t0

2

)
cos

2nπ

t1

(
t1 − t0

2

)
− t0

2
cos

2nπ

t1

t0
2

]}

− 2s0

(t1 − t0)

t1
2nπ

[
cos

2nπ

t1

(
t1 − t0

2

)
− cos

2nπ

t1

t0
2

]

+
4s0

t0t1

(
t1

2nπ

)2 {
sin 2nπ − sin

2nπ

t1

(
t1 − t0

2

)

−2nπ cos 2nπ +
2nπ

t1

(
t1 − t0

2

)
cos

2nπ

t1

(
t1 − t0

2

)}

+
4s0

t0

t1
2nπ

[
cos 2nπ − cos

2nπ

t1

(
t1 − t0

2

)]
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=
4s0

t0t1

(
t1

2nπ

)2 [
sin

nπt0
t1

− 2nπ

t1

t0
2

cos
nπt0
t1

]

− 4s0

t1(t1 − t0)

(
t1

2nπ

)2 {
− sin

2nπ

t1

t0
2
− sin

2nπ

t1

t0
2

−2nπ

t1

[(
t1 − t0

2

)
cos

2nπ

t1

t0
2
− t0

2
cos

2nπ

t1

t0
2

]}

− 2s0

(t1 − t0)

t1
2nπ

[
cos

2nπ

t1

t0
2
− cos

2nπ

t1

t0
2

]

+
4s0

t0t1

(
t1

2nπ

)2 {
sin

2nπ

t1

t0
2
− 2nπ +

2nπ

t1

(
t1 − t0

2

)
cos

2nπ

t1

t0
2

}

+
4s0

t0

t1
2nπ

(
1 − cos

2nπ

t1

t0
2

)

=
4s0

t1

(
t1

2nπ

)2

sin
nπt0
t1

[
1

t0
+

2

t1 − t0
+

1

t0

]

+2s0
t1

2nπ
cos

nπt0
t1

[
− 1

t1
+

2

t1
+

2

t0t1

(
t1 − t0

2

)
− 2

t0

]
+

4s0

t1

t1
2nπ

(
−2nπ

2nπ
+ 1

)
(158)

=
8s0

t1

(
t1

2nπ

)2

sin
nπt0
t1

t1
t1 − t0

=
2s0t

2
1

n2π2t0(t1 − t0)
sin

nπt0
t1

=
2s0t

2
1

n2π2t0(t1 − t0)
sin

nπx0

l
.

Thus, the Fourier analysis in time of the motion of the point of contact is,

s(x0, t) =
2s0t

2
1

π2t0(t1 − t0)

∑
n

1

n2
sin

nπx0

l
sin

2nπt

t1
. (159)

In general, we expect the motion of the entire string to the analyzable as,

s(x, t) =
∑
n

sin
nπx

l

(
An cos

2nπt

t1
+Bn sin

2nπt

t1

)
, (160)

so it follows from eq. (15) that An = 0 and,

s(x, t) =
2s0t

2
1

π2t0(t1 − t0)

∑
n

1

n2
sin

nπx

l
sin

2nπt

t1
. (161)

On p. 228 of http://kirkmcd.princeton.edu/examples/Ph205/ph205l21.pdf, we saw that a
string plucked at x = b at time t = 0 has the Fourier analysis,

s(x, t) =
2s0l

2

π2b(l− b)

∑
n

1

n2
sin

nπx

l
sin

nπb

l
. (162)

Hence, at any time t the violin string looks like the initial form of a string plucked at
position b = 2lt/t1.

The crest of the wave motion moves along the string with velocity c = 2l/t1. The
“vibration” is better described as a traveling wave than a standing wave.
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7. This problem is adapted from sec. 136, p. 204 of Lord Rayleigh Theory of Sound, 2nd ed.
(Macmillan, 1894), http://kirkmcd.princeton.edu/examples/mechanics/rayleigh_theory_of_sound_1.pdf

A string of length l is fixed at both ends and stretched with tension T .

(a) A mass M is attached to the midpoint of the string.

Ignoring the mass of the string, the equation of motion of massM , with transverse
displacement s is,

Ms̈ ≈ −2T
s

l/2
s̈ = − 4T

lM
s s = s0 cos Ω0t, Ω0 = 2

√
T

lM
, (163)

where T is the tension in the string.

(b) We next consider the string to have mass m, and suppose mass M is attached at
distance b < l from one end of the string.

We consider the system as consisting two strings, 1 on interval 0 < x < b and 2
on b < x < l, each with tension T . The equation of motion of mass M can now
be written as,

Ms̈1(b) = Ms̈2(b) ≈ T (s′2(b)− s′1(b)). (164)

A normal mode of angular frequency Ω has the forms on strings 1 and 2 (fixed at

x = 0 and l, and with wave velocity c =
√
T/ρ =

√
T l/m),

s1(x, t) = A1 sin
Ωx

c
cosΩt, s2(x, t) = A2 sin

Ω(l − x)

c
cosΩt, (165)

with the constraint that s1(b, t) = s2(b, t), i.e., A1 sin(Ωb/c) = A2 sin(Ω(l − b)/c.
Hence, we can also write eq. (165) as,

s1(x, t) = A sin
Ωx

c
sin

Ω(l − b)

c
cosΩt, s2(x, t) = A sin

Ω(l − x)

c
sin

Ωb

c
cos Ωt.(166)

Then, from the equation of motion (164) we have,

− Ω2M
Ωb

c
sin

Ω(l − b)

c
= −T Ω

c

(
cos

Ω(l − b)

c
sin

Ωb

c
+ cos

Ωb

c
sin

Ω(l − b)

c

)
, (167)

Ω sin
Ωb

c
sin

Ω(l − b)

c
=

T

Mc
sin

Ω l

c
. (168)

(c) We now consider part (b) for the special case of b = l/2.

There are two classes of solutions:
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i. Mass M does not move, so the point x = b/2 is a node of the standing wave
functions, whose form is

s(x, t) = A sin
2nπx

l
cos Ωt, (169)

From the wave equation, s̈ = c2s′′, we have that,

Ω =
2nπc

l
. (170)

ii. For the modes where mass M moves, we have from eq. (168),

Ω sin2 Ωl

2c
=

T

Mc
sin

Ω l

c
=
cm

lM
2 sin

Ωl

2c
cos

Ωl

2c
, (171)

Ωl

2c
tan

Ωl

2c
=
m

M
, (172)

recalling that the tension T is related by c =
√
T l/m.

(d) If M � m, the lowest frequency obeys Ωl/2c = π/2 − ε in eq. (172), which can
be rewritten as,

M

m

Ωl

2c
sin

Ωl

2c
= cos

Ωl

2c
,

M

m

(
π

2
− ε
)

cos ε = sin ε,
M

m

(
π

2
− ε
)
≈ ε, (173)

ε ≈
M
m

π
2

1 + M
m

=
π

2

M

M +m
,

Ωl

2c
≈ π

2

(
1 − M

m+M

)
=
π

2

m

m+M
≈ π

2

(
1 − M

m

)
, (174)

Ω ≈ πc

l

(
1 − M

m

)
= Ω1

(
1 − M

m

)
, (175)

where Ω1 = πc/l is the fundamental angular frequency when mass M is not
present.

(e) If m� M , eq. (172) tells us that for the lowest-frequency mode,

m

M
=

Ωl

2c
tan

Ωl

2c
≈
(

Ωl

2c

)2

, Ω ≈ 2c

l

√
m

M
=

2

l

√
T l

m

m

M
= 2

√
T

lM
= Ω0, (176)

Where Ω0 is the angular frequency found in part (a) for M attached to the mid-
point of a massless string.

We now seek a correction to eq. (176) of order m/M . For this, we approximate
eq. (172) to 4th order in Ωl/2c,

m

M
≈ Ωl

2c

Ωl
2c

− 1
6

(
Ωl
2c

)3

1 − 1
2

(
Ωl
2c

)2 ≈
(

Ωl

2c

)2
⎛
⎝1 − 1

6

(
Ωl

2c

)2
⎞
⎠
⎛
⎝1 +

1

2

(
Ωl

2c

)2
⎞
⎠

=

(
Ωl

2c

)2
⎛
⎝1 +

1

3

(
Ωl

2c

)2
⎞
⎠ , (177)
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(
Ωl

2c

)4

+ 3

(
Ωl

2c

)2

− 3
m

M
≈ 0, (178)

(
Ωl

2c

)2

≈ −3 ± 3
√

1 + 4m
3M

2
≈ −3

2
+

3

2

[
1 +

2m

3M
− 1

8

(
4m

3M

)2
]

=
m

M
− 1

3

(
m

M

)2

, (179)

Ωl

2c
≈
√
m

M
− 1

3

(
m

M

)2

≈
√
m

M

(
1 − 1

6

m

M

)
, (180)

Ω ≈ 2c

l

√
m

M

(
1 − 1

6

m

M

)
= Ω0

(
1 − 1

6

m

M

)
. (181)

We can also proceed from the first form of eq. (180) to write,

Ω ≈ 2c

l

√√√√m

M

1

1 + 1
3

m
M

= 2

√√√√ c2m

l2(M +m/3)
= 2

√
T

l(M +m/3)
. (182)

so that (for this mode) the mass of the string appears as a correction m/3 to mass
M .

In practice, the vibration of a loaded string is not, in general, a single normal
mode, so the result (182) is not what is observed. See, for example,
http://kirkmcd.princeton.edu/examples/mechanics/sears_ajp_37_645_69.pdf.
This phenomenon can be related to renormalization-group techniques, as dis-
cussed in http://kirkmcd.princeton.edu/examples/mechanics/nunes_ajp_62_423_94.pdf.
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8. A uniform bar of mass m has rest length l0. One end is fixed and the other end is
attached to a mass M .

Longitudinal vibrations of such a bar were discussed on pp.233-234 of
http://kirkmcd.princeton.edu/examples/Ph205/ph205l21.pdf. The wave equation for lon-
gitudinal displacements s(x, t) was found to be,

s̈ =
AY

ρ
s′′, (183)

where A is the cross sectional area of the bar, Y is its Young’s modulus, and ρ = m/l0 is
its linear (rest) mass density. It was also noted that the (longitudinal) spring constant
of the bar is k = AY/l0. That is, the wave equation (183) can also be written as,

s̈ =
kl20
m
s′′. (184)

For standing waves of angular frequency ω with longitudinal displacement s = f(x) eiωt,
we have s̈ = −ω2s and s′′ = f ′′s, such that,

− ω2f =
kl20
m
f ′′m f ′′ = −ω

2m

kl20
f, (185)

f = A sinΩx+B cos Ωx, where Ω =
ω

l0

√
m

k
. (186)

In the present problem, we consider the bar to extend over 0 < x < l0 when at rest,
with the end at x = 0 fixed. Hence, B = 0 in eq. (186), and f = A sinΩx.

At x = l0, where mass M is attached, its equation of motion is, for the standing wave
s = A sinΩx eiωt,

Ms̈(l0, t) = −ω2Ms(l0, t) = F. (187)

The spring force F on mass M is not simply −ks(l0, t) because the vibrating bar does
not, in general, stretch uniformly. So, we consider a segment of the bar l0−dx < x < l0
when at rest, where dx is so small that when the bar is vibrating, the stretch over this
segment, s(l0, t) − s(l0 − dx, t) = s′(l0, t) dx, is uniform.

The internal tension in this segment is the same as when the entire bar is uniformly
stretched, by amount (l0/dx)s

′(l0, t) dx = l0 s
′(l0, t), and so the spring force in the

segment l0 − dx < x < l0 next to mass M is F = −kl0 s′(l0, t).
The equation of motion (187) for mass M can now be written as,

Ms̈(l0, t) = −ω2MA sin(Ωl0) e
iωt = F = −kl0 s′(l0, t) = −kl0AΩcos(Ωl0) e

iωt, (188)

cot(Ωl0) =
Mω2

kl0Ω
=
M

m
Ωl0. (189)
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For the lowest frequency Ω (which is very small compared to ω),

M

m
Ωl0 = cot(Ωl0) ≈ 1 − Ω2l20

2

Ωl0 − ω3l30
6

≈ (1 − Ω2l20
2

)(1 +
ω2l20

6
)

Ωl0
≈ 1 − Ω2l20

3

Ωl0
, (190)

M

m
Ω2l20 ≈ 1 − Ω2l20

3
, Ωl0 ≈

√√√√ 1
M
m

+ 1
3

, Ω =
ω

l0

√
m

k
≈ 1

l0

√√√√ 1
M
m

+ 1
3

. (191)

Hence,

ω ≈
√

k

M +m/3
, (192)

as found in Prob. 5, Set 1, http://kirkmcd.princeton.edu/examples/ph205set1.pdf.


