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1. Recall Prob. 7, Set 11, http://kirkmcd.princeton.edu/examples/Ph205/ph205set12.pdf.

A string of mass m and length l has both ends fixed, and mass M is attached at
distance b from one end.

Find the shift in the angular frequency of the nth (transverse) normal mode using
Rayleigh’s perturbation method (pp. 235-237 of
http://kirkmcd.princeton.edu/examples/Ph205/ph205l22.pdf.)
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2. A string is stretched with tension T between fixed points x = 0 and l. It has linear
mass density,

ρ(x) =

⎧⎪⎨
⎪⎩

ρ0 + ε (0 < x < b),

ρ0 − ε (b < x < l).
(1)

That is, it is made of two strings of different densities, joined at x = b.

(a) Solve the transverse wave equations for each substring separately, and match
solutions at x = b to show that the normal modes have angular frequencies Ω
related by,

c1 tan
Ωb

c1
= −c2 tan

Ω(l − b)

c2
, where ci =

√
T

ρ0 ± ε
, (2)

is the wave velocity on string i.

This result is “exact”, but not very transparent.

(b) Use Rayleigh’s perturbation method to find the shift in angular frequencies rela-
tive to the case of ε = 0.

Note that if b = l/2 there is no shift in frequencies — a simple result not readily
apparent from part (a).
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3. Planetary String Theory.

A string of linear mass density ρ is stretched with tension T around the equator of a
sphere of radius a.

Consider transverse oscillations of the string, which slides without friction on the sur-
face of the sphere, but somehow does not slip off it.

Let θ(φ, t) be the angular displacement of the string. Use Lagrange’s method to find
the equation of motion. Be careful about dimensions, and remember that the string
always lies on the surface of the sphere.

The normal modes have the form θ = θn cos(nφ) cos(ωnt). Show that,

ω2
n =

T

ρa2
(n2 − 1). (3)

If n = 0, the string would pop off the sphere; for n = 1 the string is not stretched and
there is no oscillation.
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4. Transverse Waves on an Inelastic Vertical String

What are the frequencies of small transverse oscillations in a vertical plane of an
inelastic string of length l and linear mass density λ whose upper point is fixed at a
point in a uniform gravitational field of strength g?

With y as the upward distance from the bottom of the string when at rest, deduce the
equation of motion for (small) transverse displacements s(y, t), and change variables
to x =

√
y to arrive at a version of Bessel’s equation,

d2s

dx2
+

1

x

ds

dx
+

4ω2

g
s = 0, (4)

for oscillations with angular frequency ω.

Estimate the lowest oscillation frequency via Rayleigh’s energy method using, say, a
trial waveform s(y) = lp − yp for y measured upwards from the lower end of the string,
where p is to be optimized.
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5. Transverse Waves on an Inelastic Rotating String

What are the frequencies of small oscillations of an inelastic string of length l and
linear mass density λ that is constrained to move on a plane which rotates at angular
velocity Ω about a fixed axis in that plane, with one end of the string connected to a
point on that axis?

For x = outward distance from the axis for the string at equilibrium, and z = x/l,
show that the equation of motion for oscillations of the form s(x, t) = f(x) cos ωt is
Legendre’s equation,

d

dz

[
(1 − z2)

df

dz

]
+

2ω2

Ω2
f = 0. (5)

Gravity can be neglected in this problem. Also, Ωl � c, where c is the speed of light.
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6. Approximate the lowest angular frequency ω of transverse vibrations of a bar that is
clamped at one end, with the other end free, using Rayleigh’s energy method.

A brilliant guess of Rayleigh is that the shape f(x) is very nearly that which is the
solution to the statics problem of pushing on the bar at a point at distance b from the
clamped end. Then, for x > b, the bar remains straight, which satisfies the boundary
condition at the free end.

To solve the statics problem, note that the transverse wave equation for the bar, p. 241
of http://kirkmcd.princeton.edu/examples/Ph205/ph205l22.pdf, applies when s̈ = 0 —
the static limit. Show that in this case,

f(x) =

⎧⎪⎨
⎪⎩

3bx3 − x2 (0 < x < b),

3b2x − b3 (b < x < l).
(6)

Neglecting rotational kinetic energy in the wave equation, the resulting equation 1/ω2 =
g(b) can be maximized to find lowest ω, and the corresponding best choice for b.

This leads to a cubic equation (which can be solved using Wolfram Alpha).

It turns out that b = 4l/5 is about right, and that ω ≈ 3.512cd/l2, where c2 = AY/ρ
and d2 = I/ρA2 as on p. 241, Lecture 22 of the Notes.

Hint: show that KE = (ρA ω2b4/4)(3l3 − 3bl2 + b2l − 2b3/35).
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7. An elastic ring whose centerline has radius r0 undergoes transverse vibrations in the
plane of the ring, keeping the circumference, 2πr0, of the centerline constant.

The lowest mode is show on the right above.

During the vibration, a wedge-shaped element of the ring can move both radially and
azimuthally, while deforming and rotating. Denoting the coordinates of the center of
the deformed element as r + δr and θ + δθ, show that the condition on the centerline
implies that δr = −r0d(δθ)/dθ, by noting that the length ds = r0 dθ of a small segment
of the centerline does not change as the ring deforms.

Construct the Lagrangian of the system, with θ as the independent variable, ignoring
the (small) effects of kinetic energy of rotation, and of possible shearing motion. The
potential energy associated with deformation of bar that is straight when undeformed,
p. 239 of http://kirkmcd.princeton.edu/examples/Ph205/ph205l22.pdf, is approximately
correct for the ring, but with an approximation to the radius of curvature, namely,

1

R
≈ 1

r
+

d2

dθ2

1

r
. (7)

Use Hamilton’s principle to deduce the equation of motion, which should contain a 6th

derivative. For in-plane oscillatory modes of the form δθ = ε cosnθ cos ωt, show that
the angular frequency obeys,

ω2 =
Y I

ρ2Ar4
0

n2(n2 − 1)2

n2 + 1
, (8)

where Y is Young’s modulus of elasticity, I is the moment of inertia of a cross section
of the ring about its midline (perpendicular to the paper in the figure above),1 ρ is the
(volume) mass density, and A is the area of the cross section.

The modes with n = 0 and 1 are suppressed:
n = 0 ⇒ rotation of the ring with no deformation;
n = 1 ⇒ translation of the ring with no deformation.

1Many texts define their I to be our I/ρ.
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8. Consider a square drum head of edge length l, mass density ρ0 per unit area and surface
tension T . A small mass m is attached at (x, y) = (a, b) from one corner. What are
the three lowest frequencies?

We can use Rayleigh’s perturbation method if we know the form of the relevant un-
perturbed modes.

The form of the perturbed (1,1) mode is clear, but the (2,1) mode is degenerate with
the (1,2). After the mass is added, the forms,

f1,2 = sin
πx

l
sin

2πy

l
, f2,1 = sin

2πx

l
sin

πy

l
, (9)

are not normal modes any more.

The new normal modes are linear combinations of f1,2 and f2,1 such that mass m lies
on the nodal curve of one of the modes,

f2a =
Af1,2 + Bf2,1√

A2 + B2
, f2a =

Bf1,2 − Af2,1√
A2 + B2

, . (10)

Show that the perturbed angular frequencies are,

Ω1,1 ≈ ω1,1

(
1 − 2m

ρ0l
2

sin2 πa

l
sin2 πb

l

)
, (11)

Ω2a = ω1,2 = ω2,1, (12)

Ω2b ≈ ω2,1

[
1 − 8m

ρ0l
2

sin2 πa

l
sin2 πb

l

(
cos2 πa

l
+ cos2 πb

l

)]
, (13)

where the ωi,j are the unperturbed frequencies.

That is, the degeneracy has been broken by the perturbation.

Rayleigh’s method must be modified slightly to deal with degenerate modes.
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9. Consider transverse vibrations of a circular membrane of radius a, mass density ρ per
unit area, and surface tension T .

Use F = ma in polar coordinates for an area element r dr dθ to show that displacement
s(r, θ, t) obeys the wave equation,

1

c2

∂2s

∂t2
=

∂2s

∂r2
+

1

r

∂s

∂r
+

1

r2

∂2s

∂θ2 , with c2 =
T

ρ
(14)

(or use Lagrange’s method).

Try separation of variable, s = f(r)g(θ)h(t) to show that solutions are possible with
g = cosnθ or sinnθ, h = cos ωt or sin ωt, and,

d2f

dr2
+

1

r

df

dr
+

(
ω2

c2
− n2

r2

)
f = 0 , (15)

which is Bessel’s equation of order n. The “boundary” equations for f are that f(a) =
0 = f ′(0).

Apply Rayleigh’s method to estimate the lowest normal frequency (n = 0), to show
that ω0 ≈ 2.414c/a (compared to the “exact” value 2.405c/a).

See also Scientific American, p.172, Nov. 1982,
http://kirkmcd.princeton.edu/examples/mechanics/rossing_sa_247-5_172_82.pdf.
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10. A rectangular beam of length l, width w and height h is supported at the same height
at both ends. The supports do not constrain the slope of the beam at its end (such
that s′′(end) = 0). Mass M is hung at distance x0 from one end.

Give a Fourier-series expansion for the vertical displacement s(x) of the beam, ignoring
the deflection of the beam due to its own weight, and ignoring the variation in the
deflection across the width of the beam.

Recall from p. 240, Lecture 22 of the Notes that the elastic potential energy of the
displaced beam is,

V =
II

2ρ

∫
(s′′)2 dx, (16)

where Y is the Young’s modulus of the beam, I is the moment of inertial per unit
length of a cross section of the beam about its horizontal midline, and ρ is the mass
density per unit length.

Show that,

s(x) =
23Mgl3

π4Y wh3

∑
n

1

n4
sin

nπx0

l
sin

nπx

l
. (17)

The deflection varies with the thickness h of the beam as 1/h3, so we say that the
stiffness of the beam is proportional to 1/h3.
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11. Charlie Chaplin’s Cane

When Charlie leans on his cane, it pops into a bow shape

Consider a tall, slender beam (the cane) of length l, with a vertical force F applied to
the top end, and the bottom end in no-slip contact with the ground, such that the ends
of the beam are free to rotate. Show that the critical force, such that buckling/bowing
in the x-y plane of an initially vertical beam occurs for any larger force, is given by,

Fcrit =
π2Y I

ρl2
, (18)

where Y is Young’s modulus of elasticity, I =
∫

ρy2 dx dy is the moment of inertia per
unit length of a cross section of the beam,2 and ρ is its (volume) mass density.

You may ignore gravity, and the compression of length l of the beam.

For compressive force F , less than the critical force Fcrit on the beam, it remains
straight. At the critical force, any small transverse displacement in the x-y plane is
also at static equilibrium. Therefore, consider the conditions for static equilibrium of
such a displacement.

For this, both the total force and torque on any segment of the bar must be zero.

On p. 239, Lecture 22 of the Notes we found that the potential energy stored in a short
section of length dl of a bent, elastic bar is,

dV =
Y I

2ρ

dl

R2
, (19)

where R is the local radius of curvature. Relate the derivation of this to the torque
(often called the bending moment) on a cross section of the beam due to the internal
forces on one side of it.....

2Many authors define I as our I/ρ.
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Solutions

1. A string of mass m and length l has both ends fixed, and mass M is attached at
distance b from one end.

We can write the linear mass density of the string + mass M as ρ(x) = m/l +M δ(x−
b) ≡ ρ0 + ρ1.. Then, from p. 236, Lecture 22 of the Notes,
http://kirkmcd.princeton.edu/examples/Ph205/ph205l22.pdf,
the angular frequency of the nth (transverse) normal mode is given by,

Ωn = ωn

(
1 − 1

ρ0l

∫ l

0
ρ1(x) sin2 nπx

l
dx

)
= ωn

(
1 − M

m
sin2 nπb

l

)
, (20)

where ωn = nπc/l is the angular frequency of the nth normal mode of the unperturbed
string.

This is consistent with various results found in Prob. 7, Set 11,
http://kirkmcd.princeton.edu/examples/Ph205/ph205set12.pdf.

For example, if sin(nπb/l) = 0, mass M is at a node of the nth normal mode, which
mode is unaffected by the presence of mass M (in the limit that its extent in x goes
to zero).
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2. A string is stretched with tension T between fixed points x = 0 and l. It has linear
mass density,

ρ(x) =

⎧⎪⎨
⎪⎩

ρ0 + ε (0 < x < b),

ρ0 − ε (b < x < l).
(21)

That is, it is made of two strings of different densities, joined at x = b.

(a) Each substring obeys the transverse wave equation,

s′′i (x, t) =
T

ρ0 ± ε
s̈i(x, t) =

1

c2
i

s̈i(x, t). (22)

The boundary conditions are,

s1(x, t) = 0 = s2(l, t), s1(b, t) = s2(b, t), s′1(b, t) = s′2(b, t), (23)

noting that the point at x = b would have infinite acceleration if the slopes of the
two substrings were different there.

Waves of angular frequency Ω that satisfy the boundary conditions at the x = 0
and l have the form,

s1 = a1 sin k1x cos Ωt, s2 = a2 sin k2x cos Ωt. (24)

The wave equations (22) tell us that ki = Ω/ci, and then the matching conditions
at x = b imply that,

a1 sin
ωb

c1
= a2 sin

Ω(l − b)

c2
, (25)

a1
Ω

c1
cos

Ωb

c1
= −a2

Ω

c2
cos

Ω(l − b)

c2
, (26)

c1 tan
Ωb

c1
= −c2 tan

Ω(l − b)

c2
. (27)

(b) For ε � ρ0 we can use Rayleigh’s perturbation method, noting that when ε = 0
the nth (transverse) normal mode has angular frequency ωn = nπc0/l where c0 =√

T/ρ0.

Then,
Ωn = ωn

(
1 − 1

ρ0l

∫ l

0
ρ1(x) sin2 nπx

l
dx

)

= ωn

[
1 − ε

2ρ0l

∫ b

0

(
1 − cos

2nπx

l

)
dx +

ε

2ρ0l

∫ l

b

(
1 − cos

2nπx

l

]
dx

)

= ωn

[
1 − ε

2ρ0l

(
b− l

2nπ
sin

2nπb

l

)
+

ε

2ρ0l

(
l − b +

l

2nπ
sin

2nπ(l − b)

l

)]

= ωn

(
1 +

ε(l − 2b)

2ρ0l
+

ε

nπρ0

sin
2nπb

l

)
. (28)

Note that if b = l/2 there is no shift in frequencies — a simple result not readily
apparent from part (a).
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3. Planetary String Theory.

This problem is based on sec. 139, p. 213 of Lord Rayleigh, Theory of Sound, 2nd ed.
(Macmillan, 1894), http://kirkmcd.princeton.edu/examples/mechanics/rayleigh_theory_of_sound_1.pdf

A string of linear mass density ρ is stretched with tension T around the equator of a
sphere of radius a.

Denoting the latitude θ(φ, t) as the angular displacement of the string, its kinetic energy
is,

KE =
∫ 2π

0

ρ(aθ̇)2

2
a dφ =

a3ρ

2

∫ 2π

0
θ̇

2
dφ. (29)

The stored potential energy is the work done in stretching the string from its nominal
equilibrium configuration along the equator,

V =
∫

T dl − 2πaT, (30)

where for two points on the surface of the sphere, separated by dθ and dφ,

dl2 = a2[(dθ)2 + cos2 θ(dφ)2] ≈ a2(dφ)2

⎡
⎣1 − θ2 +

(
dθ

dφ

)2
⎤
⎦ , (31)

dl ≈ a dφ

⎡
⎣1 − θ2

2
+

1

2

(
dθ

dφ

)2
⎤
⎦ . (32)

Then,

V =
∫ 2π

0
aT

⎡
⎣−θ2

2
+

1

2

(
dθ

dφ

)2
⎤
⎦ dφ, (33)

and the Lagrangian of the system is,

L =
∫ l

0
L dφ =

∫ 2π

0
(KE − V ) dφ ≈

∫ 2π

0

⎡
⎣a3ρ θ̇

2

2
+

aT θ2

2
− aT

2

(
dθ

dφ

)2
⎤
⎦ dφ. (34)

The equation of motion follows from the Lagrangian via Hamilton’s principle as on
p. 240, Lecture 22 of the Notes,

d

dt

∂L
∂θ̇

+
d

dφ

∂L
∂ dθ/dφ

=
∂L
∂θ

, a3ρ θ̈ − aT
d2θ

dφ2 = aT θ. (35)
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For a normal mode of the form θ = θn cos(nφ) cos(ωnt), the equation of motion (35)
implies that,

− a3ρω2
n + aTn2 = aT, ω2

n =
T

ρa2
(n2 − 1). (36)

If n = 0, the string would pop off the sphere; for n = 1 the string is not stretched and
there is no oscillation.
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4. Transverse Waves on an Inelastic Vertical String

The equilibrium state of the string is, of course, that it hangs vertically, with its lower
end at y = 0 and its upper end at y = l.

The tension in the string is,
T (y) = λgy. (37)

The equation of motion for a transverse displacement s(y, t) in a vertical plane of a
segment dy of the string is

λ dx s̈ = T (y + dy)s′(y + dy) − T (y)s′(y) =
∂Ts′

∂y
dy = λg

∂(ys′)]
∂y

dy (38)

For oscillations at angular frequency ω of the form s(y, t) = s(y)eiωt, eq. (38) reduces
to,

d(ys′)
dy

+
ω2

g
s = y

d2s

dy2
+

ds

dy
+

ω2

g
s = 0. (39)

This is a form of Bessel’s equation of order zero, as can be seen using the substitution
x =

√
y, with which eq. (39) becomes,

x2 d2s

dx2
+ x

ds

dx
+

4ω2

g
x2s = 0, (40)

whose solutions are,

s(y) = s0J0(2ω
√

y/g). (41)

The condition that s(y = l) = 0 determine a series of frequencies of small oscillation,

2ω

√
l

g
= 2.405, 5.520, 8.654, . . . , (42)

or,

ω = 1.202

√
g

l
, 2.760

√
g

l
, 4.318

√
g

l
, . . . (43)

Rayleigh noted that for a springlike system, 〈KE〉 = 〈PE〉 (virial theorem), so that a
trial waveform with parameter p can be used to estimate the frequency ω(p) using this
constraint. Then the lowest frequency is obtained by minimizing ω(p) with respect to
the parameter p.

We consider the form,
s(y, t) = (lp − yp)eiωt, (44)

for which the time-average kinetic energy is,

〈KE〉 =

〈∫ l

0

λṡ2

2
dy

〉
=

λω2

4

∫ l

0
(lp − yp)2 dy =

λω2

4
l2p+1

(
1 − 2

p + 1
+

1

2p + 1

)

=
λω2

4
l2p+1 2p2

(p + 1)(2p + 1)
, (45)
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and the time-average potential energy (= work done in stretching the string) is,

〈PE〉 =

〈∫ l

0
T (

√
1 + s′2 − 1) dy

〉
≈

〈∫ l

0

Ts′2

2
dy

〉
=

λg

4

∫ l

0
y(−pyp−1)2 dy =

λg

4
l2pp

2
.

(46)
Equating the kinetic and potential energies, we have that,

ω2(p) =
g

l

(p + 1)(2p + 1)

4p
. (47)

The minimum frequency occurs for p = 1/
√

2, which implies that its value is,

ω ≈
√

g

l

√
1.707 · 2.414

2.828
= 1.207

√
g

l
, (48)

which compares well with the “exact” value of 1.202
√

g/l.

For additional discussion, see A.B. Western, Demonstration for observing J0(x) on a
resonant rotating vertical chain, Am. J. Phys. 48, 54 (1980),
http://kirkmcd.princeton.edu/examples/mechanics/western_ajp_48_54_80.pdf

An early paper on this topic is by J.H. Rohrs, Oscillations of a Suspension Chain,
Trans. Camb. Phil. Soc. 9, Part III, 49 (1851),
http://kirkmcd.princeton.edu/examples/mechanics/rohrs_tcps_9(3)_49_51.pdf
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5. Transverse Waves on an Inelastic Rotating String

This problem was suggested by Sam Treiman.

The equilibrium state of the string is that is lies along the line in the rotating plane
that passes through the point of connecting and is perpendicular to the axis. Let x
measure the distance along this line, with x = 0 at the axis. Let s(x, t) be the (small)
transverse displacement (in the rotating plane) of the string from its equilibrium state.

Then, in the rotating frame, an segment dx of the string about point x experiences
a “fictitious” outward force λ dx Ω2x, which is balanced by the x-component of the
tension T (x) in the string. For small oscillations the x-component of T is well approx-
imated as T , so,

T (x + dx) − T (x) = T ′ dx = λΩ2x dx, T ′ = λΩ2x, (49)

and,

T (x) =
λΩ2

2
(l2 − x2), (50)

noting that the tension vanishes at the free end, T (l) = 0.

We ignore effects of the Coriolis force in the approximation that the motion is purely
transverse.

The equation of transverse motion for a segment of the string is,

λ dx s̈ = T (x + dx)s′(x + dx) − T (x)s′(x) =
∂(Ts′)

∂x
dx =

λΩ2

2

∂[(l2 − x2)s′]
∂x

dx. (51)

For oscillations at angular frequency ω of the form s(x, t) = s(x)eiωt, eq. (51) reduces
to,

d[(l2 − x2)s′]
dx

+
2ω2

Ω2
s = 0. (52)

Changing to the dimensionless variable z = x/l, this becomes,

d

dz

[
(1 − z2)

ds

dz

]
+

2ω2

Ω2
s = 0. (53)

We recognize this as Legrendre’s equation, whose solutions are the Legendre polyno-
mials Pm(z) where,

2ω2

Ω2
= m(m + 1), (54)

for non-negative integers m.

The string obeys the boundary condition that s(0) = 0, which is satisfied only by
Legendre polynomials of odd m. Hence the frequencies of small oscillation are,

ω = Ω

√
m(m + 1)

2
(m odd), (55)

ω = Ω,
√

6Ω,
√

15Ω, ... (56)
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The corresponding waveforms are,

s(z) = s0z,
s0

2
(5z3 − 3z),

s0

8
(63z5 − 70z3 + 15z), ... (57)

where s0 is the amplitude of the oscillation at z = 1 (x = l).

We have obtained this solution to a second-order differential equation using only a
single boundary condition. Note that by expanding eq. (53), and setting z = 1, we
obtain,

ds

dz
=

ω2

Ω2
s (z = 1), (58)

which is a kind of “automatic” boundary condition that can be satisfied by a real
string.
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6. This problem is based on sec. 182, p. 287 of Lord Rayleigh, Theory of Sound, 2nd ed.
(Macmillan, 1894), http://kirkmcd.princeton.edu/examples/mechanics/rayleigh_theory_of_sound_1.pdf

We seek an estimate of the lowest angular frequency ω of transverse vibrations of a
bar that is clamped at one end, with the other end free. For this we follow Rayleigh
in noting that for such vibrations 〈KE〉 = 〈PE〉.
The wave equation for transverse vibrations of a bar of cross sectional area A, mass
density ρ, moment of inertial I per unit length (for rotations about the midline of a
cross sectional slice), and Young’s modulus Y is, p. 241, Lecture 22 of the Notes,

ρAs̈ − Is̈′′ +
Y I

ρ
s′′′′ = 0. (59)

In this problem we neglect the term Is̈′′ associated with the rotational kinetic energy,
and consider the approximate equation,

s̈ +
Y I

Aρ2
s′′′′ = 0 = s̈ + (cd)2s′′′′, where c2 =

AY

ρ
d2 =

I

ρA2
. (60)

We also follow Rayleigh in supposing that the shape f(x) in s(x, t) = f(x) cosωt is
very nearly that which is the solution to the statics problem of pushing on the bar at
a point at distance b from the clamped end. Then, for x > b, the bar remains straight,
which satisfies the boundary condition at the free end.

In the static limit, the wave equation (60) reduces to f ′′′′ = 0, such that,

f = a0 + a1x + a2x
2 + a3x

3, (61)

for constants ai. For a bar clamped at x = 0, we have that f(0) = 0 = f ′(0), i.e.,
a0 = 0 = a1, while for b < x < l the bar is straight, with f ′(x > b) = constant and
f ′′(x > b) = 0.

In particular, f ′′(b) = 2a2 + 6a3b = 0, i.e., a2 = −3a3b. Hence, f(x > b) = a4 + a5x,
and,

f(x < b) = a3(x
3 − 3bx2), (62)

f ′(b) = −3a3b
2 = a5, f(b) = −2a3b

3 = a4 + a5b = a4 − 3a3b
3, (63)

f(x > b) = a3(b
3 − 3b2x). (64)

We now suppose that the static forms, eqs. (62) and (64), apply approximately for
standing waves as well, and evaluate the corresponding time-average kinetic and po-
tential energies, which are equal for springlike oscillations.

Noting that the linear mass density of the bar is ρA, the time-average kinetic energy
is,

〈KE〉 =
∫ l

0

ρA 〈ṡ2〉
2

dl =
ρAω2

4

∫ l

0
f2(x) dx
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=
ρa2

3Aω2

4

∫ b

0
(x6 − 6bx5 + 9b2x4) dx +

ρa2
3Aω2

4

∫ l

b
(b6 − 6b5x + 9b4x2) dx

=
ρa2

3Aω2

4

[
b7

7
− b7 +

9b7

5
+ b6(l − b) − 3b5(l2 − b2) + 3b4(l3 − b3)

]

=
ρa2

3b
4Aω2

4

(
3l3 − 3bl2 + b2l − 2b3

35

)
. (65)

From p. 240 of the Notes, the potential energy is PE = (Y I/2ρ)
∫ l
0(s

′′)2 dx, so the
time-average potential energy is,

〈PE〉 =
IY

2ρ

∫ l

0

〈
s′′2

〉
dl =

IY a2
3

4ρ

∫ l

0
f ′′2(x) dx =

IY a2
3

4ρ

∫ b

0
36(x2 − 2bx + b2) dx

=
IY a2

3

4ρ
(12b3 − 36b3 + 36b3) =

3IY a2
3b

3

4ρ
. (66)

Equating the time-average kinetic and potential energies, we find,

1

ω2
=

ρ2bA

3IY

(
3l3 − 3bl2 + b2l − 2b3

35

)
=

l4

12c2d2

(
3b

l
− 3b2

l2
+

b3

l3
− 2b4

35l4

)
, (67)

with c and d as in eq. (60).

To find the lowest angular frequency ω, we maximize eq. (67) with respect to b, which
leads to the cubic equation,

3 − 6
b

l
+

3b2

l2
− 8b3

35l3
= 0. (68)

Using Wolfram Alpha, we find that b/l ≈ 0.802, and ω ≈ 3.512cd/l2.
There are 2 other roots of eq. (68) with b/l > 1.

The problem is briefly discussed in prob. 6, §25, p. 117 of L.D. Landau and E.M. Lif-
shitz, Theory of Elasticity, 2nd ed. (Pergamon, 1970),
http://kirkmcd.princeton.edu/examples/mechanics/landau_e_70.pdf,
who find that ω = a2 cd/l2 where cos a cosh a = −1 i.e., a2 = 3.516 (in close agreement
with the above result).
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7. We consider the in-plane vibrations of an elastic ring of central radius r0 in which the
centerline does not stretch or compress. We also neglect possible shearing motions, as
well as the kinetic energy of rotations of volume elements of the ring.

Then, a wedge-shaped volume element, centered on polar coordinates r0 and θ has
displaced coordinates r0 + δr and θ + δθ.

A short segment of length r0 dθ on the undisplaced centerline has displaced length
related by

ds2 = d(δr)2 + (r0 + δr)2[dθ + d(δθ)]2 ≈ r2
0dθ2 + 2r2

0 dθ d(δθ) + 2r0 δr dθ, (69)

to first order in the very small quantities δr and d(δθ) ≈ δ(dθ). The condition that the
centerline does not stretch or compress implies that ds2 remains r2

0 dθ2, and hence,

r0 d(δθ) + δr dθ = 0, δr = −r0
d(δθ)

dθ
≡ −r0 (δθ)′. (70)

The kinetic energy of the vibrating ring, of mass density ρ and cross-sectional area A,
is,

T =
∫ 2π

0

ρA

2

[
(δṙ)2 + r2

0 (δθ̇)2
]
r0 dθ =

ρAr3
0

2

∫ 2π

0

[
(δθ̇

′
)2 + (δθ̇)2

]
dθ. (71)

We recall from p. 239 of the Notes that the potential energy for transverse vibrations
of a bar that is straight when at rest can be written as,

V =
∫

Y I

2ρR2
dx, (72)

where Y is the Young’s modulus, I is the moment of inertia per unit length of a
transverse section about the centerline at rest, R is the radius of curvature of the
displaced centerline, and x is measured along the centerline at rest. For a circular ring,
eq. (72) must be approximately true, with x = r0 dθ,

V ≈
∫ 2π

0

Y I

2ρR2
r0 dθ. (73)

The radius of curvature R of the centerline is given in polar coordinates as,3

1

R
=

1 + 2(r′)2/r2 − (r′′)/r
r(1 + (r′)2/r2)3/2

. (74)

In the approximate eq. (73) for the potential energy of the deformed ring, we should not
use the “exact” expression (74) for the radius of curvature R, but an approximation.
It turns out that it is appropriate to write,

1

R
≈ 1 + 2(r′)2/r2 − (r′′)/r

r
=

1

r
+

d2

dθ2

1

r
. (75)

3See, for example, eq. (6) of https://mathworld.wolfram.com/RadiusofCurvature.html.
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For r = r0 + δr, recalling (70),

1

r
=

1

r0 + δr
≈ 1

r0

(
1 − δr

r0

)
=

1

r0

[1 + (δθ)′], (76)

1

R
≈ 1

r
+

d2

dθ2

1

r
≈ 1

r0
[1 + (δθ)′ + (δθ)′′′] . (77)

An alternative argument is given in H. Lamb, Proc. London Math. Soc. 19, 365 (1888),
http://kirkmcd.princeton.edu/examples/mechanics/lamb_plms_19_365_87.pdf

Hence, the Lagrangian for the vibrating ring is,

L = T − V =
ρAr3

0

2

∫ 2π

0

[
(δθ̇

′
)2 + (δθ̇)2

]
dθ − Y I

2ρr0

∫ 2π

0
[1 + (δθ)′ + (δθ)′′′]2 dθ

≡
∫ l

0
L dx. (78)

To obtain the equation of motion of the vibrating ring, we apply Hamilton’s principle
that δ

∫ L dt = 0 for small variations of the centerline s + η about the equilibrium
circular line s. In the resulting variational equation, we integrate the various terms
by parts (multiple times if necessary, as on pp. 240-241, Lecture 22 of the Notes) and
apply appropriate boundary conditions to find that,

− d

dt

∂L
∂δθ̇

− d2

dθ dt

∂L
∂(δθ̇)′

− d

dθ

∂L
∂(δθ)′

− d3

dθ3

∂L
∂(δθ)′′′

= 0, (79)

−ρAr3
0 δθ̈ + ρAr3

0 (δθ̈)′′ +
Y I

ρr0

[(δθ)′′ + (δθ)′′′′] +
Y I

ρr0

[(δθ)′′′′ + (δθ)′′′′′′] = 0, (80)

δθ̈ − (δθ̈)′′ − Y I

ρ2Ar4
0

[(δθ)′′ + 2(δθ)′′′′ + (δθ)′′′′′′] = 0. (81)

For an in-plane vibrational mode of the form δθ = a cos nθ cos ωt, we have,

− ω2 − n2 ω2 − Y I

ρ2Ar4
0

(−n2 + 2n4 − n6) = 0, (82)

ω2 =
Y I

ρ2Ar4
0

n2(n2 − 1)2

n2 + 1
. (83)

The modes with n = 0 and 1 are suppressed:
n = 0 ⇒ rotation of the ring with no deformation;
n = 1 ⇒ translation of the ring with no deformation.

This problem was first solved, by other methods, in R. Hoppe, J. Reine Angew. Math.
73, 158 (1871), http://kirkmcd.princeton.edu/examples/mechanics/hoppe_jram_73_158_71.pdf

The minor effects of shear, and of rotational kinetic energy, and the more signifi-
cant effects when δr/r0 is substantial, are discussed, for example, in R.S. Seidel and
E.A. Erdelyi, J. Eng. Ind. 86, 240 (1964),
http://kirkmcd.princeton.edu/examples/mechanics/seidel_jei_86_240_64.pdf



Princeton University 1988 Ph205 Set 12, Solution 8 24

8. We consider a square drum head of edge length l, mass density ρ0 per unit area and
surface tension T . A small mass M is attached at (x, y) = (a, b) from one corner.

As on p. 246, Lecture 22 of the Notes, the normal modes of out-of-plane oscillations
of a square drum/membrane (clamped along its edges) in the absence of the mass m
have the form,

sm,n(x, y, t) = fm,n(x, y) cosωm,nt, fm,n = am,n sin
mπx

l
sin

nπy

l
, (84)

ω2
m,n =

T

ρ0

⎡
⎣(

mπ

l

)2

+

(
bπ

l

)2
⎤
⎦ . (85)

Note that modes m, n and n, m have the same frequency, so any linear combination,

Afm,n + Bfn,m√
A2 + B2

cos ωm,nt, (86)

is also a normal mode (in the absence of mass m).

When mass M is attached, the mode 1,1 is still a normal mode. However, the degen-
erate (i.e., having the same frequency) modes 1,2 and 2,1 are no longer normal modes.
Rather, a mode of frequency ω1,2, which we denote as 2a, is such that mass M remains
at rest, while other normal mode of frequency ω1,2, denoted as 2b, is orthogonal to
mode 2a.

The mode 2a obeys,

0 = Af1,2(a, b) + Bf2,1(a, b) = Aa2 sin
πa

l
sin

2πb

l
+ Ba2 sin

2πa

l
sin

πb

l
, (87)

A = a2C sin
2πa

l
sin

πb

l
, B = −a2C sin

πa

l
sin

2πb

l
, (88)

C =
1√

sin2 2πa
l

sin2 πb
l

+ sin2 πa
l

sin2 2πb
l

, (89)

and the orthogonal mode, 2b, has A′ = −B, B ′ = A. That is,

f2a = a2C sin
2πa

l
sin

πb

l
sin

πx

l
sin

2πy

l
− a2C sin

πa

l
sin

2πb

l
sin

2πx

l
sin

πy

l
, (90)

f2b = a2C sin
πa

l
sin

2πb

l
sin

πx

l
sin

2πy

l
+ a2C sin

2πa

l
sin

πb

l
sin

2πx

l
sin

πy

l
. (91)

We estimate the angular frequencies of the normal modes in the presence of mass m
via Rayleigh’s perturbation method, sketched on p. 236, Lecture 22 of the Notes.
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To extend this method to waves on a 2-d membrane, we recall its essence to be that the
time-average kinetic and potential energies of oscillatory modes are equal. Then, for the
2-d case we have, from p. 245, Lecture 22 of the Notes, with s(x, y, t) = f(x, y) cos Ωt,

〈KE〉 =
1

2

∫ ∫
Ω2ρ

2
ḟ2(x, y) dx dy = 〈PE〉 =

1

2

∫ ∫
T

2
(f2

x + f2
y ) dx dy, (92)

where we ignore the small changes in the surface tension T during the oscillation, and
fx = ∂f/∂x, etc. We also note that different modes are orthogonal, in the sense that
their spatial parts, f(x, y) and g(x, y) obey,

∫ l

0

∫ l

0
fg dx dy = 0. (93)

Likewise, the spatial derivatives of the modes are orthogonal,

∫ l

0

∫ l

0
fxgx dx dy = 0 =

∫ l

0

∫ l

0
fygy dx dy. (94)

The potential energy, eq. (92), of a mode is unaffected by the perturbation,

〈PEm,n〉 =
T

4

(m2 + n2)π2a2
m,n

l2
l

2

l

2
=

(m2 + n2)π2a2
m,nT

16
=

a2
m,nρ0l

2 ω2
m,n

16
. (95)

(96)

This also holds for linear combinations (86) when am,n = an,m, using the orthogonality
(94) of the spatial derivatives of the modes, and recalling eqs. (89) and (91).

The perturbed mass density can be written as,

ρ(x, y) = ρ0 + δρ(x, y) = ρ0 + M δ(x− a) δ(y − b), (97)

such that the time-average kinetic energy of a perturbed mode f cosΩt is,

〈KE〉 =
Ω2ρ0

4

∫ l

0

∫ l

0
f2(x, y) dx dy +

Ω2M

4
f2(a, b) =

Ω2a2ρ0l
2

16
+

Ω2M

4
f2(a, b) (98)

where a is the amplitude of the mode. This holds for modes (such as f2a and f2b)
(with the same amplitude a) that are linear combinations of fm,n and fn,m, recalling
the orthogonality relation (93).

Equating 〈KE〉 with 〈KE〉, the perturbed angular frequency Ω is given by,

Ω2a2ρ0l
2

16

(
1 +

4M

a2ρ0l
2
f2(a, b)

)
= 〈PE〉 , (99)

Ω ≈
√√√√16 〈PE〉

a2ρ0l
2

(
1 − 2M

a2ρ0l
2
f2(a, b)

)
= ω

(
1 − 2M

a2ρ0l
2
f2(a, b)

)
, (100)

where ω is the unperturbed angular frequency of the mode.



Princeton University 1988 Ph205 Set 12, Solution 8 26

Finally, we obtain,

Ω1,1 = ω1,1

(
1 − 2M

a2
1,1ρ0l

2
f2

1,1(a, b)

)
= ω1,1

(
1 − 2M

ρ0l
2

sin2 πa

l
sin2 πb

l

)
, (101)

Ω2a = ω1,2

(
1 − 2M

a2
2ρ0l

2
f2

2a(a, b)

)
= ω1,2 = ω2,1, (102)

Ω2b = ω1,2

(
1 − 2M

a2
2ρ0l

2
f2

2b(a, b)

)
= ω1,2

(
1 − 2M

ρ0l
2

(sin2 πa
l

sin2 2πb
l

+ sin2 2πa
l

sin2 πb
l
)2

sin2 2πa
l

sin2 πb
l

+ sin2 πa
l

sin2 2πb
l

)

= ω1,2

[
1 − 8M

ρ0l
2

sin2 πa

l
sin2 πb

l

(
cos2 πa

l
+ cos2 πb

l

)]
, (103)

recalling that f2a(a, b) = 0, and eqs. (89) and (91).

That is, the degeneracy of the unperturbed modes 1,2 and 2,1 has been broken by the
perturbation.
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9. We consider transverse vibrations of a circular membrane of radius a, mass density ρ
per unit area, and surface tension T .

For an area element r drdθ, F = ma for transverse displacement s is, recalling that
surface tension T is a force per unit length,

ρ r dr dθ s̈ = T

(
r dθ

∂s

∂r

∣∣∣∣∣
r+dr

− r dθ
∂s

∂r

∣∣∣∣∣
r

)
+ T

(
dr

r

∂s

∂θ

∣∣∣∣∣
θ+dθ

− dr

r

∂s

∂θ

∣∣∣∣∣
θ

)

= T

[
dθ dr

∂

∂r

(
r
∂s

∂r

)
+

dr

dr
dθ

∂

∂θ

(
∂s

∂θ

)]
= dr dθ T

(
r
∂2s

∂r2
+

∂s

∂r
+

1

r

∂2s

∂θ

)
(104)

1

c2

∂2s

∂t2
=

∂2s

∂r2
+

1

r

∂s

∂r
+

1

r2

∂2s

∂θ2 , with c2 =
T

ρ
. (105)

We try a separation-of-variables solution, s = f(r)g(θ)h(t), to the wave equation (105),

fgḧ

c2
=

(
d2f

dr2
+

1

r

df

dr

)
gh + f

d2g

dθ2 h, (106)

ḧ

c2h
=

1

f

(
d2f

dr2
+

1

r

df

dr

)
+

1

gr2

d2g

dθ2 . (107)

The left side of eq. (107) depends only on t, while the right side depends only on r and
theta, so each side must be constant. We choose,

ḧ

c2h
= −ω2

c2
≡ −k2, h ∝ cos ωt or sinωt. (108)

Then, eq. (107) can be rewritten as,

r2

f

(
d2f

dr2
+

1

r

df

dr

)
+

ω2r2

c2
= −1

g

d2g

dθ2 . (109)

The left side of eq. (109) depends only on r while the right side depends only on θ, so
each side must be constant. We choose,

1

g

d2g

dθ2 = −n2 , g ∝ cos nθ or sinnθ, (110)

where the condition that g(θ) = g(θ + 2π) implies that n is an integer. Now, the left
side of eq. (109) can be rewritten as, with k = ω/c

d2f

dr2
+

1

r

df

dr
+

(
k2 − n2

r2

)
f = 0 , or

d2f

d(kr)2
+

1

kr

df

d(kr)
+

(
1 − n2

(kr)2

)
f = 0 ,(111)

which is Bessel’s equation for (integer) order n, whose solutions that are finite at the
origin are the Bessel functions of the first kind, Jn(kr).

The boundary condition that s(r = a) = 0 requires that Jn(ka) = 0.
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The lowest frequency corresponds to the smallest ka that is a zero of a Bessel function,4

which is the first zero of J0, i.e., ka = 2.4048, so the lowest frequency is,

ω = 2.4048
c

a
. (112)

Without recourse to Bessel functions, we can estimate the lowest frequency using
Rayleigh’s method, pp. 235-236, Lecture 22 of the Notes.

The lowest-frequency mode will have the smoothest wavefunction, i.e., n = 0, and
hence have the form s = f(r) cos ωt. In addition to the boundary condition that
f(a) = 0, the derivative of f must vanish at the origin so the waveform is smooth
there. A simple polynomial form that satisfies these conditions is,

f(r) = ap − rp, (113)

for some constant p (not necessarily an integer).

In Rayleigh’s method, we equate the time-average kinetic and potential energies to find
an expression for the angular frequency ω(p), which we then minimize with respect to
p to find the lowest angular frequency ω.

The kinetic energy is,

KE =
ρ

2

∫ a

0
r dr

∫ 2π

0
dθ ṡ2, (114)

whose time-average for the form (113) is,

〈KE〉 =
2πρω2

4

∫ a

0
r dr (a2p − 2aprp + r2p) =

πρω2

2

(
a2p+2

2
− 2a2p+2

p + 2
+

a2p+2

2p + 2

)

=
πρ a2p+2 ω2

4(p + 1)(p + 2)
((p + 1)(p + 2) − 4(p + 1) + p + 2) =

πρ a2p+2p2 ω2

4(p + 1)(p + 2)
.(115)

The stored potential energy is the work done by the surface tension T (assumed to be
independent of the small displacement s of the membrane) in stretched it from its rest
configuration, s = 0, to a nonzero s(r, θ, t). This equals the surface tension times (the
area of the membrane at time t minus the rest area πa2),

PE = T (Area(t) − πa2) = T
(∫ ∫

dlr dlθ − πa2
)

, (116)

where the arc lengths dlr and dlθ bounding an area element of the membrane that is
displaced from the rest element r dr dθ are related by,

(dlr)
2 = (dr)2 +

(
∂s

∂r

)2

(dr)2, dlr ≈
⎡
⎣1 +

1

2

(
∂s

∂r

)2
⎤
⎦ dr, (117)

(dlθ)
2 = (r dθ)2 +

(
∂s

∂θ

)2

(dθ)2, dlθ ≈
⎡
⎣1 +

1

2r2

(
∂s

∂θ

)2
⎤
⎦ r dθ. (118)

4A table of zeroes of Bessel functions is at https://mathworld.wolfram.com/BesselFunctionZeros.html.



Princeton University 1988 Ph205 Set 12, Solution 9 29

Hence,

PE ≈ T

2

∫ a

0
r dr

∫ 2π

0
dθ

⎡
⎣(

∂s

∂r

)2

+
1

r2

(
∂s

∂θ

)2
⎤
⎦ . (119)

The time-average potential energy for the form (113) is,

〈PE〉 ≈ 2πT

4

∫ a

0
r dr

(
−p rp−1

)2
=

πp2T

2

a2p

2p
=

πa2p pT

4
. (120)

For oscillatory modes, we equate the time-average energies 〈KE〉 and 〈PE〉 of eqs. (115)
and (120) to find that,

ω2 =
T

ρa2

(p + 1)(p + 2)

p
=

T

ρa2

p2 + 3p + 2

p
=

c2

a2

(
p + 3 +

2

p

)
. (121)

To find the lowest frequency ω, we minimize eq. (121) with respect to p, which implies
that p2 = 2. Then, from eq. (121) we have,

ω =
c

a

√√
2 + 3 +

2√
2

= 2.414
c

a
, (122)

in good agreement with the “exact” result (112).

Once we have the expressions (114) and (119) for the kinetic and potential energies of
the vibrating membrane, we can consider the Lagrangian,

L = KE − PE =
ρ

2

∫ a

0
r dr

∫ 2π

0
dθ ṡ2 − T

2

∫ a

0
r dr

∫ 2π

0
dθ

⎡
⎣

(
∂s

∂r

)2

+
1

r2

(
∂s

∂θ

)2
⎤
⎦

≡
∫ l

0
L dx. (123)

The equation of motion follows from Hamilton’s principle that δ
∫ L dt for variations

s → s + η around the physical displacement s, as on pp.. 240-241 of the Notes,

d

dt

∂L
∂ṡ

− d

dr

∂L
∂ṙ

− d

dθ

∂L
∂θ̇

=
∂L
∂s

, (124)

rρ s̈ − T
d

dr

(
r
∂s

∂r

)
− T

r

∂2s

∂θ2 = 0, (125)

s̈ =
T

ρ

(
∂2s

∂r2
+

1

r

∂s

∂r
+

∂2s

∂θ2

)
, (126)

as previously found in eq. (105).
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10. We consider a rectangular beam of length l, width w and height h is supported at the
same height at both ends. The supports do not constrain the slope of the beam at its
end (such that s′′(end) = 0). Mass M is hung at distance x0 from one end.

We recall from p. 240, Lecture 22 of the Notes that the elastic potential energy of the
displaced beam is,

V =
Y I

2ρ

∫
(s′′)2 dx, (127)

where Y is the Young’s modulus of the beam, I is the moment of inertial per unit
length of a cross section of the beam about its horizontal midline, and ρ is the mass
density per unit length.

Ignoring the deflection of the beam due to its own weight, and ignoring the variation
in the deflection across the width of the beam, the Lagrangian of the system can be
written as,

L = T − Vtotal =
∫ l

0

[
ρA(s̈)2 − Y I

2ρ

∫
(s′′)2 − Mgsδ(x− x0)

]
dx ≡

∫ l

0
L dx, (128)

taking displacement s to be positive downwards, and A to be the area of the cross
section of the beam. Using Hamilton’s principle, the equation of motion is,

d

dt

∂L
∂ṡ

− d2

dt dx

∂L
∂ṡ′

− d2

dx2

∂L
∂s′′

=
∂L
∂s

, (129)

ρA s̈− Is̈′′ +
Y I

ρ
s′′′′ = Mg δ(x − x0). (130)

For static equilibrium, this reduces to,

s′′′′ =
Mgρ

Y I
δ(x − x0). (131)

The displacement s(x), which vanishes at x = 0 and at x = l, can be written as a
Fourier series of the form,

s(x) =
∑
n

An sin
nπx

l
. (132)

The equation of motion (131) then tells us,

∑
n

(
nπ

l

)4

An sin
nπx

l
=

Mgρ

Y I
δ(x − x0). (133)
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To evaluate the Fourier coefficients An, we multiply eq. (133) by sin mπx/l and inte-
grate from 0 to l,

∑
n

(
nπ

l

)4

An

∫ l

0
sin

mπx

l
sin

nπx

l
dx =

l

2

∑
n

δmn

(
nπ

l

)4

An =
l

2

(
mπ

l

)4

Am

=
Mgρ

Y I

∫ l

0
sin

mπx

l
δ(x − x0) dx =

Mgρ

Y I
sin

mπx0

l
, (134)

An =
2

l

(
l

nπ

)4
Mgρ

Y I
sin

nπx0

l
. (135)

The moment of inertia I per unit length is given by,

I =
∫ h/2

−h/2
ρwy2 dy =

ρwh3

12
, (136)

so the Fourier series for the displacement is,

s(x) =
24Mgl3

π4Y wh3

∑
n

1

n4
sin

nπx0

l
sin

nπx

l
. (137)

The terms go as 1/n4, so the series converges quickly.
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11. Charlie Chaplin’s Cane

This problem was first solved by Euler (1744), sec. 25 of,
http://kirkmcd.princeton.edu/examples/mechanics/euler_E065g_44.pdf

http://kirkmcd.princeton.edu/examples/mechanics/euler_E065g_44_english.pdf

This solution is abstracted from § 17-21 of Landau and Lifshitz, Theory of Elasticity,
http://kirkmcd.princeton.edu/examples/mechanics/landau_e_70.pdf

For compressive force F , less than the critical force Fcrit on the cane/beam, extend-
ing over 0 < x < l, it remains straight. At the critical force, any small transverse
displacement, of the form,

s(x) = s0 sin
πx

l
, (138)

in the x-y plane is also at static equilibrium. Therefore, the solution investigates the
conditions for static equilibrium of such a displacement.

For this, both the total force and torque on any segment of the beam must be zero.

On p. 239, Lecture 22 of the Notes we found that the potential energy stored in a short
section of length dl of a bent, elastic beam is,

dV =
Y I

2ρ

dl

R2
, (139)

where Y is Young’s modulus of elasticity, I is the moment of inertia per unit length of
a cross section of the beam about its midline,5 ρ is (volume) mass density and 1/R ≈
s′′ is the radius of curvature of the displacement s from the undisturbed (straight)
configuration.

Reviewing the argument leading to eq. (139), we see that,

B =
Y I ẑ

ρR
≈ Y Is′′ ẑ

ρ
, (140)

is the torque (often called the bending moment) about the centerline of a cross-sectional
slice, due to the internal forces acting over positive-x side of its area (for a beam along
x when undisturbed).

For a short segment of the beam, bounded by the cross sections at x and x + dx when
undeflected, the total torque due to the bending moments acting on the two cross
sections is dB = B(x + dx) − B(x).

5Many authors, including Landau, define I as our I/ρ.



Princeton University 1988 Ph205 Set 12, Solution 11 33

The positive-x sides of bounding cross sections of the segment are also acted upon by
net forces F(x) and F(x + dx). The torque due to these forces, about, say, the center
of the bounding cross section at x + dx segment is −dl×−F(x) = dl ×F, where dl is
the vector element of arc length along the displaced beam.

If we can neglect external forces along the beam (as in the present problem), then
dF/dl = 0.

The torque equation for static equilibrium of a short segment of the beam is therefore,

dB + dl ×F = 0, (141)

where this equation is nontrivial only for the desired critical force Fcrit.

We divide eq. (141) by dl and denote t̂ = dl/dl as the unit vector tangent to the beam,

dB

dl
+ t̂ ×Fcrit = 0, (142)

Next, we take the derivative of eq. (142) with respect to l,

d2B

dl2
+

dt̂

dl
× Fcrit + t̂ × dFcrit

dl
= 0, (143)

For a small displacement s in the x-y plane, t̂ ≈ (1, s′, 0), and dt̂/dl ≈ dt̂/dx ≈
(0, s′′, 0). For compressive force Fcrit applied in the x-direction at x = 0, the force Fcrit

along the beam is approximately −Fcrit x̂,6 so the z-component of eq. (143) is, recalling
eq. (140) and that dF/dl = 0 in this problem,

Y Is′′′′

ρ
+ Fcrits

′′ = 0. (144)

Finally, for the form (138), we obtain the critical force as,

Fcrit =
π2Y I

ρl2
. (145)

This result assumed bending in the x-y plane. In case the moment of inertia I is smaller
for bending in the x-z plane, that smaller value of I should be used in eq. (145). Of
course, for a circular cane, the moment I is the same in the x-z and y-z planes.

6Remember that the internal force F is defined as that acting on the +x side of a cross section of the
beam, so a compressive force, which is positive on the −x side of a cross section corresponds to F in the −x
direction.


