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1. Falling Chimney

If a chimney is undermined on one side, so that it falls, rotating
about its base, it usually snaps before hitting the ground. We
can estimate the most likely position of the break by an exten-
sion of the principles of statics to a dynamic situation. This is
the spirit of D’Alembert.

You might wish to convince yourself that the above picture
shows the behavior after the break by performing a home ex-
periment. A ball rests on the one end of a stick held initially
at some angle to the horizontal, with the other end of the stick
on the floor. Let the system loose. The stick will appear to fall
faster that the ball. A cup placed on the stick can catch the
ball after the stick hits the floor. Hence, the top end of the stick
falls with acceleration greater than 1 g, and if the stick is weak,
it will snap in the sense shown in the first figure.

Consider the lower portion of the chimney below a distance x
from its base. The internal forces acting the lower portion across
a slice of the chimney at x can be combined into a net force F
applied at the center of the slice, and a net torque τ acting about
the center of the slice — a principle of statics. “Clearly” τ is
perpendicular to the vertical plane of the falling chimney. The
torque τ is due to pairs ±F′ of forces along the slice, such that
this torque is the same when computed about any point along
the centerline of the chimney between 0 and x. With respect to
points on the centerline of the portion of the chimney from x to
l, the force and torque on the slice are −F and −τ .

The chimney might break at x for any of 3 reasons:

1. The tension F‖ along the chimney is too great for the mortar between the bricks
to sustain. However, F‖ is compressive in the case of the falling chimney, and
cannot lead to a break.

2. The shear F⊥ across the slice is too great.

3. The torque τ is too great and the chimney bends and snaps.

Show that for an unbroken, falling chimney (of mass m, length l, with uniform, linear
mass density m/l, and radius small compared to l) at angle θ to the vertical,

τ (x) =
mgx(l − x)2 sin θ

4l2
, and F⊥ =

mgx(l − x)(l − 3x) sin θ

4l2
, (1)

such that the chimney most likely breaks at x = l/3 if torque matters, but at x = 2l/3
if shear matters. We take τ to be positive when out of the page.

Empirically, most chimneys break near x = 1/3, suggesting that they break due to the
torque effect.
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Hint: Consider torque analyses of the entire chimney, and of the two portions described
above.
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2. The Napkin Ring

This everyday problem requires careful analysis.

A napkin ring in the form of a cylindrical shell of mass m and radius r rests on a
horizontal table at point 2. You press on it with force F1 at some point 1. Discuss the
conditions required so that the ring does not move. The possible motion for a solid
sphere, rather than a cylindrical ring, will be considered in Prob. 4, Set 4.

Let μ1 and μ2 be the coefficients of friction at points 1 and 2.
First, what is the direction of F1, and the value of μ1,min, for
static equilibrium?

If μ1 < μ1,min, then the ring will slip (with respect to your finger
pressing on it) at point 1 no matter how small F1 is. Show that if
you start with F1 small and increase it, the ring will roll without
slipping at point 2.

Next, suppose that μ1 < μ1,min such that the ring never slips at point 1. What about
slipping at point 2?

Let α and β be the angles shown in the figure. Show that for static equilibrium,

cotβ = cot α +
mg

F1 sinα
. (2)
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3. Consider an arbitrary motion of a rigid body (recall Chasles’ theorem1). Show that for
any pair of particles i and j within the body, the work done by the forces they exert
on another during a small displacement of the body obeys δWij = fij ·δri + fji ·δrj = 0.
Hence, δWinternal =

∑
ij ΔWij = 0, as claimed on p. 32 of

http://kirkmcd.princeton.edu/examples/Ph205/ph205l3.pdf.

1M. Chasles, Note sur les propriétés générales du systéme de deux corps semblables entr’eux, Bull. Sci.
Math. Astr. Phys. Chem. 14, 321 (1830),
http://kirkmcd.princeton.edu/examples/mechanics/chasles_bsmpc_14_321_30.pdf
This theorem was first proved by G. Mozzi, Discorso matematico sopra il rotamento momentaneo dei corpi
(Naples, 1763), http://kirkmcd.princeton.edu/examples/mechanics/mozzi_discorso.pdf
although the result seems to have been known to Leonardo da Vinci. See also, M. Ceccarelli, Screw axis
defined by Giulio Mozzi in 1763 and early studies on helicoidal motion, Mech. Machine Theory 35, 761
(2000), http://kirkmcd.princeton.edu/examples/mechanics/ceccarelli_mmt_35_761_00.pdf
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4. Three identical, cylindrical logs rest on the tilted bed of a lumber truck, as shown
below. Ignoring friction, what is the minimum angle θ such that all three logs remain
touching?
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5. A rubber band of mass m, rest length l0 and spring constant k lies without friction on
a billiard ball of radius r, What is the polar angle θ from the vertical axis of the ball
to the band?
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6. An equilibrium is said to be stable if δW ≥ 0 in any small displacement from the
equilibrium.

(a) A dime of thickness 2h is balanced on a coat hanger
whose wire has radius a. What is the condition for
stability?

Try it!

If done well, you can twirl the coat hanger about a
horizonal axis and the dime will stay on.

(b) An oblate spheroid has height 2h along its axis, and
radius R. It is balance on a sphere of radius r. Show
that the equilibrium is stable if,

1

h
>

1

r
+

1

ρ
, (3)

where ρ is the radius of curvature of the spheroid at
the point of contact. What is the value of ρ?

If the equilibrium is stable, the spheroid is a rocking
stone; if not, a rolling stone.
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7. A physical pendulum has mass m and moment of inertia I about a pivot point.

The center of mass is at distance R from the pivot point. Where is the center of
oscillation (i.e., the location of a point mass m that has the same period as that of the
physical pendulum)?

Next, suppose that the physical pendulum is hung from the center of oscillation found
above. Show that the old pivot point is the new center of oscillation, and hence the
period of oscillation is unchanged.
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8. Two “point” masses m are joined by a “massless” rod of length 2l, the center of which
is constrained to move in a circle of radius a. There are no external forces.

Describe the possible motion using the technique of separation into center-of-mass
motion and motion relative to the c.m. Verify your analysis using Lagrange’s method.
Identify the generalized forces.
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9. A mass m slides without friction along a rod that is constrained to rotate in a plane
with constant angular velocity ω. There are no external forces.

Use Lagrange’s method to find r(t) if r(0) = r0 and ṙ(0) = v0.
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10. A double cylinder of mass m and moment of inertia I hangs from a string wrapped
around the cylinder of radius r. A mass M is suspended from a string wrapped around
the cylinder of radius R.

(a) What is the condition of static equilibrium? Discuss the special case that r = R.

(b) Use elementary (Newtonian) methods to find the acceleration of the center of
mass of the cylinder if the system is not in equilibrium.

(c) Use Lagrange’s method to find the acceleration.

The Newtonian method requires consideration of the tensions in the strings, while
Lagrange’s method avoid this, as the tensions are constraint forces.
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11. The double cylinder of the previous problem rests on a horizontal surface with friction.
A string wrapped around the cylinder of radius r make angle θ to the horizontal and
is pulled with constant tension T .

(a) What is the condition of static equilibrium? What is the minimum coefficient of
friction required for this?

(b) Suppose that the system is not in equilibrium, and the coefficient of friction is
great enough that the cylinder rolls without slipping. Find the acceleration of the
cylinder by Newtonian methods. For what angle θ would the motion be the same
even if the friction were zero?

(c) Find the acceleration using Lagrange’s method, by constructing a “potential”
V such that the work done by the tension T during a small displacement of
the system is dW = −dV . What is the generalized force associated with this
“potential”?

This problem is called Grandma and the Cat. Grandma drops her spool of thread
and the cat paws it out of reach. Can she retrieve the spool simply by pulling on the
thread? Does she need Lagrange to figure it out?
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Solutions

1. The torque equation for the entire (unbroken) chimney about its base is,

ml2

3
θ̈ = mg

l

2
sin θ, θ̈ =

3g sin θ

2l
, (4)

noting that F and τ are zero at the top of the chimney,

We next consider the torque equation for lower portion of the chimney, from 0 to x,
again taking the point of reference as the base of the chimney, and taking τ to be out
of the page,

m
x

l

x2

3
θ̈ = m

x

l
g
x

2
sin θ + xF⊥ − τ , τ = xF⊥ +

mgx2(l − x) sin θ

2l2
, (5)

using eq. (4) to obtain the second form of eq. (5).

We also consider the torque equation for the upper portion of the chimney from x to l
(before it breaks). All points on this segment are accelerating, so it is perhaps best to
use its center of mass as the reference point (to avoid the need to consider “fictitious”
forces2). Noting that F and τ at x on the lower end of the upper segment are equal
and opposite to those on the upper end of the lower segment, we have,

m
l − x

l

(l − x)2

12
θ̈ =

l − x

2
F⊥ + τ ,

mg(l − x)3 sin θ

8l2
=

l − x

2
F⊥ + τ, (6)

recalling eq. (4). Using eq. (5) in (6) we obtain,

l − x

2
F⊥ =

mg(l − x)3 sin θ

8l2
− mgx2(l − x) sin θ

4l2

mg(l − x) sin θ

8l2
[(l − x)2 − 3x2] =

mg(l + x)(l − x)(l − 3x) sin θ

8l
, (7)

F⊥(x) =
mg(l − x)(l − 3x) sin θ

4l2
. (8)

Then, using eq. (5),

τ (x) =
mgx(l − x)(l − 3x) sin θ

4l2
+

mgx2(l − x) sin θ

2l2
=

mgx(l − x)2 sin θ

4l2
. (9)

F⊥(x) is maximum at x = 2l/3, while τ (x) is maximum at x = l/3.

2For these, see the Appendix of http://kirkmcd.princeton.edu/examples/chimney.pdf
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https://www.youtube.com/watch?v=jI0ryk39H4w

The literature on the falling chimney includes:

E.J. Routh, The Elementary Part of a Treatise on the Dynamics of a System of Rigid
Bodies, 7th ed. (Macmillan, 1905), Arts. 150-151,
http://kirkmcd.princeton.edu/examples/mechanics/routh_elementary_rigid_dynamics.pdf

R.M. Sutton, Concerning Falling Chimneys, Science 84, 246 (1936),
http://kirkmcd.princeton.edu/examples/mechanics/sutton_science_84_246_36.pdf

J.B. Reynolds, Falling Chimneys, Science 87, 186 (1938),
http://kirkmcd.princeton.edu/examples/mechanics/reynolds_science_87_186_38.pdf

F.P. Bundy, Stress in Freely Falling Chimneys and Columns, J. Appl. Phys. 11, 112
(1940), http://kirkmcd.princeton.edu/examples/mechanics/bundy_jap_11_112_40.pdf

A.T. Jones, The Falling Chimney, Am. J. Phys. 14, 275 (1946),
http://kirkmcd.princeton.edu/examples/mechanics/jones_ajp_14_275_46.pdf

A.A. Bartlett, More on the falling chimney, Phys. Teach. 14, 351 (1975),
http://kirkmcd.princeton.edu/examples/mechanics/bartlett_pt_14_351_75.pdf

E.L. Madsen, Theory of chimney breaking while falling, Am. J. Phys. 45, 182 (1977),
http://kirkmcd.princeton.edu/examples/mechanics/madsen_ajp_45_182_77.pdf

J. Walker, Strange to relate, smokestacks and pencil points break in the same way, Sci.
Am. 240(2), 158 (1979), http://kirkmcd.princeton.edu/examples/mechanics/walker_sa_240-2_158_79.pdf

G. Varieschi and K. Kamiya, Toy models for the falling chimney, Am. J. Phys. 71, 1025
(2003), http://kirkmcd.princeton.edu/examples/mechanics/varieschi_ajp_71_1025_03.pdf

G. Varieschi and I.R. Jully, Toy Blocks and Rotational Physics, Phys. Teach. 43, 360
(2005), http://kirkmcd.princeton.edu/examples/mechanics/varieschi_pt_43_360_05.pdf
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2. This problem is from p. 109 of J.H. Jeans, Theoretical Mechanics (Ginn and Co., 1907),
http://kirkmcd.princeton.edu/examples/mechanics/jeans_mechanics_07.pdf

For static equilibrium, the sum of the torques about any
point must be zero. About point 2, the torques due to
gravity and F2 are zero, so that due to F1 must also
be zero. That is, F1 (if nonzero) points to 2, and angle
γ = α.
At point 1, the components of F1 are, for static equilib-
rium, related by,

tan α =
F1,F

F1,N
≤ μ1F1,N

F1,N
, (10)

which only holds if μ1 ≥ μ1,min = tanα.

If μ1 < μ1,min, the ring slips at point 1 for any value of the normal force F1,N , and the
ring takes on an initial velocity v0 to the right, and an initial angular velocity ω0, which
is defined to be positive for backspin (ω0 out of the page). Aspects of the subsequent
motion will be the topic of Prob. 4, Set 4.

If μ1 > μ1,min we consider whether the ring slips at point 2 for large F1 applied at angle
α to the radius vector to point 1, as in the figure.

We have that the normal force at point 2 is,

F2,N = F1 cos α + mg, (11)

and for static equilibrium the frictional force at point 2 must be,

F2,F = F1 sinα ≤ μ2F2,N = μ2(F1 cosα + mg). (12)

Static equilibrium is possible for,

F1 ≤ μ2mg

sinα − μ2 cosα
. (13)

For what it’s worth, if static equilibrium holds, then,

cot β =
F2,N

F2,F
= cotα +

mg

F1 sin α
< cotα, β > α. (14)
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3. During a small displacement of a rigid body, the change in position of the location ri

of a point in that body can be written, according to Chasles’ theorem, as,

δri = δr0 + δθ × (ri − r0), (15)

for some point 0 fixed with respect to the body (although not necessarily inside it)

fij = −fji. (16)

Hence,

δWij = fij · δri + fji · δrj = (fij + fji) · δr0 + fij · δθ × (ri − r0) + fji · δθ × (rj − r0)

= fij · δθ × (ri − rj) = δθ · (ri − rj) × fij .(17)

In classical mechanics, we suppose that the force between points i and j lies along their
line of centers, in which case (ri − rj) × fij = 0 and δWij = 0.

However, if we consider the particles to have electric charges qi and qj, and they are
in motion, then, in general, fij includes terms not along their line of centers, (ri − rj).
Consistency with classical mechanics is obtained by supposing that the electromagnetic
field, as well as the moving masses mi and mj, carries momentum.

In this course, we will only consider electrically neutral bodies, and will not discuss
field momentum further.
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4. We can solve this problem by a force analysis at the critical equilibrium, noting that
the contact force N31 of log 1 on log 3 goes to zero at the critical angle θcrit.

When all the logs touch one another, the forces on log 3 (of mass m) parallel to the
bed of the truck are related by (ignoring friction),

N31 + N32 cosα = mg sin θ. (18)

To find N32, which is equal in magnitude to N23, we consider the forces on log 2 parallel
and perpendicular to the bed of the truck,

N21 cos α − N23 cosα = mg sin θ, (19)

N21 sinα + N23 sinα = mg cos θ, (20)

and hence, 2N23 cosα sinα = mg cos θ cos α − mg sin θ sinα. (21)

Combining eqs. (18) and (21) for θ = θcrit and N31 = 0, we have,

mg cos θcrit cotα

2
− mg sin θcrit

2
= mg sin θcrit, cot θcrit = 3 tan α = 3

√
3. (22)

However, it is more elegant to apply the principle of virtual work to a small displace-
ment of the logs when the bed of the truck is at the critical angle θcrit. In this dis-
placement (from an equilibrium configuration), θcrit remains fixed, log 1 remains fixed,
logs 1 and 2 remain touching with centers at distance a apart, logs 2 and 3 remain
touching, but the distance l between the centers of logs 1 and 3 increases. The angle
α between the lines 1-2 and 1-3 decreases from its equilibrium value of tan α =

√
3.

Then, the virtual work done by gravity during the small displacement from an equi-
librium configuration is zero. Ignoring friction, this implies,

δW = mg(δh2 + δh3) = 0, (23)

where h2,3 is the height of the center of log 2,3 above the center of log 1. Now,

h2 = a sin(α + θcrit), δh2 = a cos(α + θcrit) δα, h3 = l sin θcrit, δh3 = δl sin θcrit,(24)

l

2
= a cos α, δl = −2a sin α δα, δh3 = −2a sinα sin θcrit δα,(25)

From eq. (23), −δh3 = δh2, and hence,

2 sin α sin θcrit = cos(α + θcrit) = cos α cos θcrit − sinα sin θcrit, (26)

cot θcrit = 3 tan α = 3
√

3, tan θcrit =

√
3

9
, θcrit = 10.9◦. (27)
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5. As the band falls and stretches, gravitational potential energy is transforms into spring
energy. In the absence of friction these changes are equal and opposite. A calculation
of this related the initial, unstretched band to its final configuration is messy, but the
calculation for a small step is easy.

For a change with respect to the final, static equilibrium, we invoke the principle of
virtual work,

δW = 0 = δ(mgh) + δ

(
k(l − l0)

2

2

)
= mg δh + k(l − l0) δl. (28)

From the geometry of a band with minor radius small compared to that of the ball,

h = r cos θ, l = 2πr sin θ, (29)

δh = −r sin θ δθ, δl = 2πr cos θ δθ, (30)

and from eqs. (28) and (29),

mgr sin θ δθ = 2πk(l − l0)r cos θ δθ, (31)

l = 2πr sin θ = l0 +
mg

2πk
tan θ. (32)
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6. The equilibrium of the dime or spheroid is stable if its center of mass rises as the object
rolls (without slipping) away from equilibrium.

(a) As the dime rolls through angle θ on the wire of the coat hanger, the point of
contact of the dime with the wire moves by distance rθ. This implies that the
center of mass of the dime is at distance rθ from the radial line from the center
of the wire through the point of contact, as shown in the figure below.

Hence, the center of mass of the dime moves from H0 = r + h above the center of
the wire to height H, where,

H = (r + h) cos θ + rθ sin θ ≈ (r + h)

(
1 − θ2

2

)
+ rθ2 = r + h + (r − h)

θ2

2
. (33)

The equilibrium is stable if H > H0, i.e., if r > h (which is satisfied by many
hangers).

(b) Let ρ be the radius of curvature of the spheroid at the
equilibrium point of contact. If the point of contact
rotates by angle θ about the center of the supporting
sphere, then the height of the center of curvature above
the center of the sphere is (r + ρ) cos φ, and the center
of mass of the spheroid is below this by vertical distance
(ρ−h) cos(θ+φ, where φ is the angle about the center of
curvature between the initial and final points of contact.
Also, by the law of sines for the triangle containing θ and
φ, φ ≈ rθ/ρ.

Hence, the height above the center of the sphere of the center of mass of the rotated
spheroid is,

H = (r + ρ) cos θ − (ρ − h) cos(θ + φ) ≈ (r + ρ)

(
1 − θ2

2

)
+ (h − ρ)

⎛
⎝1 − θ2

2

(
1 +

r

ρ

)2
⎞
⎠

= r + h − rθ2

2
− ρθ2

2
+

(ρ − h)θ2

2

(
1 +

r

ρ

)2

.(34)

For stability, we need H > r + h, and hence,

− (r + ρ) +
(ρ − h)

ρ2
(r + ρ)2 > 0,

(ρ − h)

ρ2
(r + ρ) > 1, (35)

rρ > hr + hρ,
1

h
>

1

r
+

1

ρ
. (36)



Princeton University 1988 Ph205 Set 2, Solution 6 20

If the spheroid were a sphere of radius R, then ρ = h = R and there is no stability for
finite r.

One student felt the preceding solution was not mathematical enough, and submitted
the version on the following, handwritten pages.

The radius ρ of curvature at a point on the spheroid is related
by ρ = ds/dθ where ds is the arc length along the spheroid
from that point subtended by small angle dθ about the center
of curvature.
Taking the origin at the center of the spheroid, its equation at
equilibrium in the (vertical) x-y plane is,

x2

R2
+

y2

h2
= 1, y = ±h

√
1 − x2

R2
. (37)

At the point (x, y) = (0,−h), we have that, ds ≈ dx and,

dθ =
y(dx) − y(0)

dx
≈ −h

dx

(
1 − dx2

R2
− 1

)
=

hdx

R2
, (38)

and (in the limit of zero dx),

ρ =
ds

dθ
=

R2

h
. (39)
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7. The center of oscillation is the point such that is all the mass of the physical pen-
dulum were concentrated there, the angular frequency of small oscillations would be
unchanged.

The torque equation for the physical pendulum, of mass m and
moment of inertia Ip with respect to the pivot point is,

Ipθ̈ = −mgR sin θ ≈ −mgRθ, (40)

where θ is the angle of the center of mass from the vertical. The
angular frequency of small oscillation is,

ωp =

√
mgR

Ip
, (41)

whereas this would be
√

g/l for a simple pendulum of mass m
and length l. Hence, the center of oscillation is at distance,

l =
Ip

mR
, (42)

from the pivot, along the line to the center of mass.

By the parallel axis theorem, the moment of inertia of the physical pendulum about
its center of oscillation is,

Ico = Icm + m(R − l)2 = Ip − mR2 + m(R − l)2 = Ip + m(l2 − 2lR). (43)

If the physical pendulum were hung from the center of oscillation, at distance R − l
from the center of mass, the angular frequency of small oscillations would be,

ωco =

√
mg(R − l)

Ico

, (44)

and the new center of oscillation would be at distance,

l′ =
Ico

m(R − l)
=

lR + l2 − 2lR

R − l
= −l, (45)

from the original center of oscillation. The new center of oscillation is at distance
(R− l)− l′ = R from the center of mass, which is just the position of the original pivot
point.
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8. In this idealized problem there are no torques about either the center of the rod of
length 2l or the center of the fixed circle of radius a on which the pivot of the rod
slides. Hence, the rod rotates with constant angular velocity ω about the pivot point,
which is the center of mass of the moving rods. Also, the pivot point moves in a circle
with (a different) constant angular velocity Ω.

The angular momentum of the center-of-mass motion is Lrmcm = 2ma2Ω, while the
angular momentum of the motion relative to the c.m. is Lrel = 2ml2ω. The total
angular momentum is the sum of these two.

To use Lagrange’s method, we note that this system has two degrees of freedom, which
we take to be the angle α of the radius of the circle to the pivot point, and angle β of
the rod relative to the reference direction for angle θ. The kinetic energy is the sum
of that of the center of mass motion plus that of the motion relative to the center of
mass,

T = ma2α̇2 + ml2β̇
2
, (46)

the potential energy V is 0, and the Lagrangian is simply L = T . Then, since ∂L/∂α =
0 = ∂L/∂β, there are two constant canonical momenta,

∂L
∂α̇

= 2ma2α̇ = Lcm, and
∂L
∂β̇

= 2ma2β̇ = Lrel. (47)

We might have taken the second angle to be γ (= α − β), between the rod and the
radius vector to the pivot. Then, the Lagrangian would be L = ma2α̇2 + ml2(α̇− γ̇)2,
which leads to conserved canonical momentum that are linear combinations of the
angular momenta of eq. (47).
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9. This system has a single degree of freedom, r, the distance of mass m from the center
of rotation at constant angular velocity ω = dθ/dt.

The kinetic energy is,

T =
mṙ2

2
+

mr2ω2

2
, (48)

and the potential energy V is zero. Lagrange’s equation of motion is, for L = T −V =
T ,

d

dt

∂L
∂ṙ

= mr̈ =
∂L
∂r

= mω2r. (49)

This has solutions of the form,

r = A eωt + B e−ωt, (50)

so for r(0) = r0 and ṙ(0) = v0, we have,

A + B = r0, A −B =
v0

ω
, A =

r0

2
+

v0

2ω
, B =

r0

2
− v0

2ω
, (51)

and finally,

r = r0 cosh ωt +
v0

ω
sinhωt. (52)



Princeton University 1988 Ph205 Set 2, Solution 10 24

10. .

(a) If the cylinder drops by Δy1, then it rotates by angle
Δθ = Δy1/r with respect to a fixed direction. Mean-
while, the coordinate of mass M changes by,

Δy2 = Δy1 − RΔθ = −Δy1
R − r

r
. (53)

The Newtonian equations of motion of masses M and m are,

Mÿ2 = −Mÿ1
R − r

r
= Mg − T2, T2 = Mg + Mÿ1

R − r

r
, (54)

mÿ1 = mg − T1 + T2, T1 = mg + Mg + Mÿ1
R − r

r
− mÿ1, (55)

Iθ̈ =
Iÿ1

r
= T1r − T2R

= r(m + M)g + Mÿ1(R − r) − mrÿ1 − RMg − RMÿ1
R − r

r
, (56)

and hence,

ÿ1

(
I

r
− M(R − r) + mr + RM

R − r

r

)
= (mr − M(R − r))g (57)

ÿ1

(
mr + M

(R − r)2

r
+

I

r

)
= (mr − M(R − r))g (58)

(b) For static equilibrium ÿ1 = 0, and the masses must be related by,

m = M
R − r

r
. (59)

If r = R, equilibrium is possible only for a massless cylinder (and massless string).

(c) For Lagrange’s method with for the single degree of freedom y1, we note that the
kinetic energy is,

T =
mẏ2

1

2
+

Iθ̇
2

2
+

Mẏ2
2

2
=

ẏ2
1

2

(
m +

I

r2
+ M

(R − r)2

r2

)
, (60)

and the potential energy can be written as,

V = −mgy1 − Mgy2 + constant =
(
−m + M

R − r

r

)
gy1. (61)

Lagrange’s equation of motion is then, for L = T − V ,

d

dt

∂L
∂ẏ1

=
d

dt

∂T

∂ẏ1
= ÿ1

(
m +

I

r2
+ M

(R − r)2

r2

)
=

∂L
∂y1

= −∂V

∂y1
=
(
m − M

R − r

r

)
g,(62)

which is eq. (58) divided by r.
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11. The forces on the spool are sketched in the figure below.

(a) The force and torque equations of motion are, for rolling without slipping where
the angular acceleration of the cylinder is α = −a/R with a positive to the right
and α positive when out of the paper,

T cos θ − F = ma, (63)

T sin θ + N − mg = 0, (64)

rT − RF = Iα = −Ia

R
, (65)

using the center of mass of the cylinder as the reference point for the torques.

For static equilibrium, a = 0, and hence,

F

T
= cos θ =

RF

r
, cos θ =

r

R
, (66)

T cos θ = F ≤ μN = μ(mg − T sin θ), μ ≥ T cos θ

mg − T sin θ
, (67)

and T sin θ ≤ mg so the cylinder stays on the floor.

(b) For rolling without slipping with nonzero acceleration (with T sin θ ≤ mg), we
can combine eqs. (63) and (65) to find,

a =
R

I
(R(T cos θ − ma)− rT ), a =

RT (R cos θ − r)

I + mR2
=

T

m

cos θ − r/R

1 + I/mR2
. (68)

If there were no friction, we would also have ma = T cos θ, and hence,

ma = T
cos θ − r/R

1 + I/mR2
= T cos θ, cos θ =

r/R

−I/mR2
= −mrR

I
. (69)

(c) To use Lagrange’s method with a constant tension T in the string as it winds at
fixed angle θ, we can associate a “potential” V with it, such that the work done
by the tension when the center of the cylinder moves by dx (to the right) is,

dW = −dV = −dV

dx
dx = Fgeneralizeddx. (70)

When the cylinder moves by dx, the outer cylinder of radius R rolls without
slipping, and length dx of the string becomes wound onto the inner cylinder, so
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the cylinder rotates by angle dφ = −dx/R. During this rotation, the torque of
the string does work,

dWτ = τ dφ = −rT dx

R
. (71)

Meanwhile, the point of contact of the string with the inner cylinder has moved
distance dx = dx x̂ so the tension T has done work of translation,

dWT = T · dx = T cos θ dx. (72)

The total work done is,

dW = T
(
cos θ − r

R

)
dx = −dV

dx
dx, (73)

so the “potential” can be written as,

V = −Tx
(
cos θ − r

R

)
. (74)

The kinetic energy of the motion is,

KE =
mẋ2

2
+

Iφ̇
2

2
=
(
m +

I

R2

)
ẋ2

2
, (75)

so that Lagrange’s equation of motion is, with L = KE − V and ẍ = a,

(
m +

I

R2

)
a = T

(
cos θ − r

R

)
= Fgeneralized, (76)

in agreement with eq. (69).


