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1. A regular hexagon has edges of length 2a. The edges are rigid rods of mass m that
are joined together with frictionless pivots. If a blow is struck perpendicular to the
midpoint of the lower edge, show that the ratio of the velocities v1 and v2 of the lower
and upper edges is 10 : 1 just afterwards.
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2. Rods AB and BC , shown in the figure below, each have mass m and length 2a.
They are joined at B by a frictionless pivot. Initially the rods are at rest, with angle
ABC = 90◦. A blow is struck at the midpoint of AB such that the system moves as a
rigid body in the next instant (i.e., the angle ABC remains 90◦ just after the impulse).
Show that the impulse makes angle 45◦ to rod AB, and that velocity vA =

√
13 vC just

after the impulse.
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3. A uniform disk of mass m rotates without friction in a vertical plane about a point on
its circumference. Initially the disk is balanced above the pivot point – then it falls.
Show that the force on the pivot is

√
17 mg/3 when the disk has rotated by 90◦, and

11mg/3 when it has rotated by 180◦.

It is instructive to consider the force component along both x-y and r-θ axes.
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4. Billiards

(a) Returning Ball. If the (uniform) cue ball, of radius a is struck with the cue
horizontal, the ball can never return. But if the cue is tilted it is possible.

Suppose the impulse and the center of the ball lie in a vertical plane, and that the
impulse is applied at height h above the table. Show that the angle θ of the cue

to the horizontal must obey tan θ > 1/
√

2a/h − 1 for the ball to return (assuming
that friction at the table during the impulse can be ignored, and that the ball
remains in contact with the table at all times).

(b) Follow Shots and Draw Shots. The cue ball, 1, strikes another ball, 2, of the
same mass and radius such that the initial (horizontal) velocity v1,i of ball 1 is
along the line of centers of the balls 1 and 2, with ball 2 initially at rest. The
initial angular velocity ω1,i is perpendicular to the vertical plane that contains
the line of centers, but ω1,i is not necessarily equal to v1,i/a.

Assume no friction between the balls, and that the collision is elastic.

Show that when ball 2 finally rolls without slipping, v2,f = 5v1,i/7, independent
of μ the coefficient of sliding friction of the ball with the table.

Also show that when ball 1 finally rolls without slipping, v1,f = 2ω1,i/7.

Hence, ball 1 follows ball 2 unless ω1,i ≤ 0.

(c) English (optional).

If the cue is not horizontal, and not pointing at the center of the ball, the latter
acquires “english”, and does not move in a straight line. We wish to deduce the
path of the center of mass of the ball.

If the ball is not to move in straight line, there must be some friction perpendicular
to vcm of the ball. This requires there to be some rotation about an axis parallel
to vcm, which rotation is called “english”.

The concept of “english” also includes rotation of the ball about the vertical axis,
but this does not influence the motion of the ball between collisions. If the area
of contact of the ball with the table is small, there is negligible torque about the
vertical (z) axis, so ωz never changes, and does not affect vcm.

A uniform sphere, of moment of inertia I = ma2/5 about its center, has angular
momentum L = Iω for any direction of angular velocity ω.
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To discuss the motion of the ball, first deduce its initial motion after being struck
by the cue, and then deduce the subsequent motion (changes in which are caused
by friction of the table against the ball.

Some suggestions:

To find the initial motion, use a coordinate system with z vertical, and the cue
in the x-x plane, with the origin at the center of the ball (initially at rest). Let
(X, Y, Z) be the coordinates of the point of contact of the cue with the ball,
X2 + Y 2 + Z2 = a2.

If P is the magnitude of the impulse, and the cue makes angle θ to the horizontal,
then P = (P cos θ, 0,−P sin θ).

Calculate vx,i, ωx,i and ωyi .

To discuss the subsequent motion of the ball, define u to be the velocity of the
point on the ball in instantaneous contact with the table (u = 0 for rolling without
slipping). Also define α as the angle of u to the x-axis: ux = u cosα, uy = u sinα.

The force of sliding friction is then F = −μmg û.

The equations of motion are then mv̇ = F and Iω̇ = r×F, where r = (0, 0,−a).

Relate u to v and ω, and find u̇x and u̇y, and then u̇ and α̇.

Show that the ball begins to roll without slipping at time t = 2ui/7μg after being
struck by the cue, and that α is constant.

Hence, in a coordinate system with x′ along u, vy′ and v̇x′ are constant. The path
of the ball is a parabola whose axis makes angle α to the x-axis.

Verify that,

tan α =
−5

2
Y
a

sin θ(
1 + 5

2
Z
a

)
cos θ + 5

2
X
a

sin θ
. (1)

If either sin θ = 0 or Y = 0, then α = 0 and the path reduces to a straight line.
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5. A ball of radius a collides with a bumper of height h < a. Just before the collision the
center of the ball has velocity v0 perpendicular to the bumper, and angular velocity
ω0 directed along v0 × g, as in the figure. Suppose there is no slipping at the bumper
during, or after, the collision.

(a) Show that the ball can jump up onto the cushion/step if,

v0 ≥ a

a − h

√
14gh

5
and ω0 = 0, (2)

or v0 ≥ a

7a − 5h

√
70gh

5
and ω0 =

v0

a
. (3)

Show also that if ω0 = v0/a and a < h < 7a/5 and condition (3) holds, the ball
jumps upward and to the left, and then falls onto the table.

(b) If v0 and h are great enough the ball will lose contact with the cushion/step and
fly into the air. For v0 = v0,min found in eqs. (2) and (3), show that the ball flies
if h ≥ 7a/17.

(c) (Optional.) Suppose the step is just a narrow slat of height h < a. Again suppose
there is no slipping at the bumper during, or after, the collision. If the ball flies
up and loses contact with the slat, will the ball hit the slat again?

Show that the ball will hit the slat at time t after the initial collision given by a
real positive root (if this exists) of the equation,

1

4
g2t2 − gvt cosα + v2 − ag sin α = 0, (4)

where v is the velocity of the center of the ball just after the collision, and alpha
is the angle of the center of the ball to the top of the slat, as shown in the figure.
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6. Relativistic Rocket. We don’t use much special relativity in Ph205, but you may
wish to do this problem to keep limber.

In the nonrelativistic rocket problem we used conservation of mass and momentum to
deduce the equation of motion.1 In the relativistic version, we replace conservation of
momentum by conservation of total energy, include the rest energy/mass.

Try it yourself. If you find you need help, consider the following suggestions:

Consider a typical relativity trick. First discuss the equation of motion in the rest
frame in of the rocket, and then transform to the lab frame in which the rocket is
moving.

In the rest frame of the rocket, let m� be the rest mass of the rocket (plus fuel) at
some time t�. After a short time, the rocket has mass m�

1, and velocity dv� as a result
of spewing out exhaust of mass dm� < 0 at velocity u > 0 relative to the rocket.

Consider conservation of mass/energy and momentum in this frame to show that for
small dv� and |dm�| � m�,

dv� ≈ −u
dm�

m�
(5)

In the lab frame, the velocity of the rocket changes from v to v + dv during the above
process. Use the relativistic velocity transformation of dv� to the frame where the
rocket has velocity v to show that,

dv� ≈ γ2dv = c d
(
tanh−1 v

c

)
, (6)

where γ = 1/
√

1 − v2/c2 and c is the speed of light.2 Finally, show that,

v

c
=

(
m�

0

m�

)2u/c − 1(
m�

0

m�

)2u/c
+ 1

, (7)

where m� = m�
0 when v = 0.

1See p. 80 of http://kirkmcd.princeton.edu/examples/Ph205/ph205l7.pdf
2For what it’s worth,γ2 dv is a relativistic invariant even for finite dv.
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7. A ladder rests at angle θ against a frictionless wall with its feet on a frictionless floor.
If the ladder starts from rest at angle θ0, show that it loses contact with the wall when,

cos θ =
2

3
cos θ0. (8)
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8. A thin rod of length 2a and mass m has point masses m attached at both ends. A
string tied to the middle of the rod goes over a massless pulley and is attached to a
mass of 3m. At a time when the system is at rest, one of the masses at the ends of
the rods falls off. Show that the just after this, the angular acceleration of the rod is
θ̈ = 18g/17a, and the tension in the string is 30mg/17, neglecting the radius of the
pulley.
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9. A rhombus with rigid sides of length 2a and frictionless pivots at its corners lies on a
table without friction. At what distance d from an acute corner should an impulse be
applied, perpendicular to the side, such that the rhombus rotates and translates but
does not change shape?

At what distance should the (perpendicular) impulse be applied such that the long
diagonal of the rhombus translates but does not rotate, while the rhombus collapses
to a straight line (along the diagonal)?

The problem shows the importance of a good choice of coordinates in Lagrange’s
method. Here, there are 4 degrees of freedom: rotation of the diagonal, deformation,
and x-y translations of the center.

We desire coordinates such that each corresponds to the motion in only one of these
degrees of freedom. That is, the kinetic energy depends only on the four q̇2

j and not on
any q̇j q̇l. Then, if the generalized impulse associated with coordinate j vanishes, there
is no impulsive motion in that coordinate.
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10. Super-Ball Bounces. A Super-Ball can be idealized as a rigid sphere whose collisions
with another idealized, rigid object conserve mechanical energy.

For collisions in which the motion of relevant mass centers lies in a plane, the Super-
Ball can be described by 5 variable coordinates, x and y of its center, and its “spin”
angular velocity ω.

During the collision, angular momentum is conserved about the point of contact rele-
vant to the collision.

Thus, far, we have 2 relations among 5 variables of the Super-Ball.

It seems common to suppose that there is no slipping of the Super-Ball at the point
of contact during the collision. This has the implication that ωx and ωy are reduced
to zero during the collision, as well as the velocity of the point of contact of the ball
during the collision. With these assumptions, there are enough conditions to determine
the motion of the Super-Ball after the collision.

However, the literature seems to favor imposition of an additional condition, that
kinetic energy for motion perpendicular to the plane of the collision is separately con-
served.

With all these conditions, the problem is overconstrained.

Consider two cases in which a Super-Ball moves in the x-y plane, with the y-axis
vertical, and initial angular velocity ωx = ωy = 0 but ωz nonzero, and eventually
collides with a hard floor at y = 0. For each case, discuss the motion supposing that
either energy of the y-motion is conserved, or that there is no slippage at the point of
contact of the collision with the floor.

(a) A Super-Ball is dropped vertically with spin ω = (0, 0, ω) onto a hard floor.
Discuss the subsequent motion of the ball through several bounces.

(b) Under what conditions does the Super-Ball bounce back and forth continuously
between two fixed points on a hard floor?

(c) (Optional.)

Another surprising behavior of a Super-Ball is that when thrown hard (so that
its trajectory consists essentially of straight-line segments) with no initial spin
onto the floor such that it bounces up and under a table, after the bounce on the
underside of the table, and another bounce on the floor, the ball returns close to
from where it was thrown. Verify that this is predicted by our model.
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11. Mass m1 is connected to mass m2 by a string that passes through a hole in a frictionless,
horizontal table.

(a) Derive the equations of motion, and construct an effective potential for it.

What is the equilibrium radius r0 for angular momentum, L0?

Show that the angular frequency of small oscillations about r0 is,

ω =

√
3m2g

(m1 + m2)r0
. (9)

(b) Suppose that m1 initially moves is a circle of radius r0, when some dust is sprinkled
on the table, resulting in a small coefficient μ of sliding friction. How far does m1

travel, and for what time, supposing also that the motion remains approximately
circular at all times?
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12. (From the 1990 Final Exam)

A thin hemispherical shell of mass m and radius a is initially at rest on a frictionless,
horizontal surface when it receives a horizontal, tangential impulse P at a point on its
diameter.

What is the velocity vA just after the impulse of the point of contact A on of the bowl
with the horizontal surface?

Show that the rim of the shell never touches the horizontal surface during the subse-
quent motion.
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13. (Optional challenge problem:) Motion of a Leaky Tank Car

Discuss the motion of a tank car, initially at rest on frictionless, horizontal tracks,
after a drain is opened, supposing the water flows out of the drain vertically in the rest
frame of the car.

This problem is nontrivial if the drain is off center.

A qualitative discussion can be given with no equations, independent of the form ṁ(t)
of the flow of water.

For greater detail, suppose that the flow obeys the usual Torricelli approximation for
that out of a small hole in a tank.

A solution is at http://kirkmcd.princeton.edu/examples/tankcar.pdf.
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Solutions

1. This problem is from Ex. 2, p. 332 of E.J. Routh, The Elementary Part of a Treatise
on the Dynamics of a System of Rigid Bodies, 7th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_elementary_rigid_dynamics.pdf

The impulsive motion of the hexagonal structure, consisting of six rods of mass m and
length 2a, can be described via coordinates, x = xcm, y = ycm and θ, with y upwards
in the figure below.

The centers of the six rods are at,

x1,2 = x x3,5 = x− a(1 + cos θ), x4,6 = x + a(1 + cos θ), (10)

y1,2 = y ∓ 2a sin θ, y3,4 = y − a sin θ, y5,6 = y + a sin θ. (11)

The kinetic energy is, for ẋ = 0,

T =
∑

i

m(ẋ2
i + ẏ2

i )

2
+ 4

Iθ̇
2

2
= 2ma2 sin2 θ θ̇

2
+ 3mẏ2 + 6ma2 cos2 θ θ̇

2
+

2ma2θ̇
2

3

= 3mẏ2 + 4ma2 cos2 θ θ̇
2
+

8ma2θ̇
2

3
, (12)

noting that the moment of inertia of each rod about its center is I = ma2/3.

The generalized forces associated with an upward force F at point 1 are,

Qy = F · ∂r1

∂y
= F, Qθ = F · ∂r1

∂θ
= −2aF cos θ, (13)

and the generalized impulses associated with the impulse P =
∫

F dt (at time t = 0)
are,

Py = P, Pθ = −2aP cos θ. (14)

Lagrange’s equations for the motion just after the impulse (with ẏ = 0 = θ̇ just before
it, and cos θ = 1/2) are,

Py = P =
∂T

∂ẏ
= 6mẏ, ẏ =

P

6m
, (15)

Pθ = −2aP cos θ =
∂T

∂θ̇
= 8ma2 cos2 θ θ̇

2
+

16ma2θ̇

3
. θ̇ = − 3P

22ma
. (16)
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The velocities of points 1 and 2 just after the impulse, when cos θ = 1/2, are,

v1 = ẏ − 2a cos θ θ̇ =
P

6m
+

3P

22m
=

40P

132m
, (17)

v2 = ẏ + 2a cos θ θ̇ =
P

6m
− 6P cos θ

22m
=

4P

132m
, (18)

and,

v1

v2
= 10. (19)



Princeton University 1988 Ph205 Set 4, Solution 2 17

2. This problem is from Ex. 1, p. 163 of E.T. Whittaker, A Treatise on Analytical Dy-
namics of Particles and Rigid Bodies (Cambridge U. Press, 1904, 1917, 1927, 1937),
http://kirkmcd.princeton.edu/examples/mechanics/whittaker_dynamics_17.pdf

To use a Lagrangian method, we adopt coordinates (x, y) of point B and angles θ and
φ of rods AB and BC to a fixed direction, where initially,

x = y = θ = 0, (20)

φ = 90◦, ẋ = ẏ = θ̇ = φ̇ = 0. (21)

The centers of rods AB and BC, at points 1 and 2, are,

x1 = x + a cos θ, y1 = y + a sin θ, x2 = x + a cos φ, y2 = y + a sinφ, (22)

and the kinetic energy is,

T = m
(
ẋ2 − aẋ(sin θ θ̇ + sin φ φ̇) + ẏ2 + aẏ(cos θ θ̇ + cos φ φ̇) +

2

3
a2θ̇

2
+

2

3
a2φ̇

2
)

, (23)

recalling that the moment inertia of each rod about its center is I = ma2/3.

The generalized impulses associated with P = (Px, Py), which is applied at point 1,
and Lagrange’s equation of motion just after the impulse when the initial conditions
(20), but not (21), still hold, are,

Px = P · ∂r1

∂x
= Px =

∂T

∂ẋ
= m[2ẋ− a(sin θ θ̇ + sinφ φ̇)] = 2mẋ − maφ̇, (24)

Py = P · ∂r1

∂y
= Py =

∂T

∂ẏ
= m[2ẏ + a(cos θ θ̇ + cosφ φ̇)] = 2mẏ + maθ̇, (25)

Pθ = P · ∂r1

∂θ
= −aPx sin θ + aPy cos θ = aPy

=
∂T

∂θ̇
= m

[
−aẋ sin θ + aẏ cos θ +

8

3
a2θ̇

]
= maẏ +

4

3
ma2θ̇, (26)

Pφ = P · ∂r1

∂φ
= 0 =

∂T

∂φ̇
= m

[
−aẋ cos φ − aẏ sinφ +

8

3
a2φ̇

]
= −maẋ +

4

3
ma2φ̇. (27)

We desire that the initial motion be like that of a rigid body, so φ̇ = θ̇, and hence
eq. (27) tells us that (just after the impulse),

ẋ =
4

3
aθ̇. (28)



Princeton University 1988 Ph205 Set 4, Solution 2 18

Then, eq.(24) implies,

Px =
8

3
maθ̇ − maθ̇ =

5

3
maθ̇, (29)

and eqs. (25)-(26) imply,

Py = 2mẏ + amθ̇ = mẏ +
4

3
maθ̇, ẏ =

maθ̇

3
, Py =

5

3
maθ̇ = Px. (30)

Thus, the impulse P should be applied at 45◦ to the center of rod AB for the initial
motion be to that of a rigid body.

Just after the impulse,

vA = (ẋ2, ẏ + 2aθ̇) =
aθ̇

3
(4, 7). v2

A =
65a2θ̇

2

9
, (31)

while

vC = (ẋ2 − 2aθ̇, ẏ) =
aθ̇

3
(−2, 1). v2

C =
5a2θ̇

2

9
, (32)

and

vC =
√

13 vA. (33)
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3. This problem is from Ex. 1, p. 84 of E.J. Routh, The Elementary Part of a Treatise
on the Dynamics of a System of Rigid Bodies, 7th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_elementary_rigid_dynamics.pdf

We can use Newtonian methods, with both rectangular coordinates (x, y) and cylin-
drical coordinates (r, θ).

The constraint force F on the pivot does no work, so mechanical energy is conserved,

E =
Iθ̇

2

2
+ mgy =

3mr2θ̇
2

4
+ mgr sin θ = mgr, θ̇

2
=

4g

3r
(1 − sin θ), θ̈ = −2g cos θ

3r
,(34)

noting that the moment of inertial of the uniform disk of mass m and radius r about
this point is I = Icm+mr2 = 3mr2/2 by the parallel-axis theorem, and that the system
is initially at rest when θ = 90◦.3

The force equation for the disk, using cylindrical coordinates (r, θ),

F− mg ŷ = macm = m(r̈ − rθ̇
2
) r̂ + m(rθ̈ + 2ṙθ̇) θ̂ = −mrθ̇

2
r̂ + mrθ̈ θ̂. (36)

For θ = 0, r̂ = x̂, θ̂ = −ŷ, and,

F(θ = 0) = −mrθ̇
2
r̂ + mrθ̈ θ̂ + mg ŷ = −4mg

3
x̂− mg

3
ŷ, F (θ = 0) =

√
17 mg

3
.(37)

For θ = −90◦, r̂ = −ŷ, θ̂ = −x̂, and,

F(θ = 90◦) = −mrθ̇
2
r̂ + mrθ̈ θ̂ + mg ŷ =

8mg

3
ŷ + mg ŷ =

11mg

3
ŷ. (38)

3The result for θ̈ could also be obtained from the torque equation about the pivot point.

τ = −rmg cos θ = Iθ̈ =
3mr2θ̈

2
, θ̈ = −2g cos θ

3r
. (35)
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4. An early study of the mechanics of billiards was G. Coriolis, Théorie Mathématique
des Effets du Jeu de Billard (Paris, 1835),
http://kirkmcd.princeton.edu/examples/mechanics/coriolis_billard_35.pdf

http://kirkmcd.princeton.edu/examples/mechanics/coriolis_billard_35_english.pdf

(a) Returning Ball.

The cue imparts impulse P to the cue ball of mass m and radius a, at angle θ to
the horizontal.

IF friction can be ignored during the impulse (a doubtful assumption), the result-
ing initial velocity vi of the (center of mass of the) ball just after the impulse is
related by,

P cos θ = mvi, vi =
P cos θ

m
. (39)

and the angular velocity ωi is related by,

Pd = Pa cos α = −Iωi =
2

5
ma2ωi, (40)

ωi = −5P cos α

2ma
= −5vi

2a

cos α

cos θ
, (41)

where ωi is positive for rotation as shown in the figure, i.e., for ωi into the paper
(parallel to g × vi). The minus sign in eq. (41) holds for h < a(1 + sin θ), as in
the figure.

After the impulse is over, the ball rolls subject to sliding friction of magnitude
μmg at the point of contact with the table. The direction of this friction is
opposite to the velocity vC of the point on the ball in instantaneous contact with
the table,

vC = v + ω × a, vc = v − aω, (42)

where v is the velocity of the center of mass of the ball, and a is the vector from
the center of mass of the ball to the point of contact with the table.

Just after the impulse, eqs. (39)-(42) imply that vC, is in the same direction as
vi, which we define to be the +x direction. Initially, the sliding frictional force
μmg is in the −x direction, which decreases both v and |ω|, but increases ω as
this is initially negative.
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The equations of motion after the impulse are,

mv̇ = −μmg, v(t) = vi − μmgt, (43)

Iω̇ =
2

5
ma2ω̇ = μmga, ω(t) = ωi +

5

2

μmgt

a
. (44)

Rolling without slipping commences at time tr when v(tr) = aω(tr),

vi − μmgtr = aω1 +
5

2
μmgtr, tr =

2

7

vi − aωi

μmg
, (45)

v(tr) = vi − 2

7
(vi − aωi) =

5

7
vi +

2

7
aωi =

5

7
vi +

2

7

5

2
vi

cosα

cos θ
=

5

7
vi

(
1 − cosα

cos θ

)
.(46)

For a returning ball, v(tr) must be less than zero, which requires α < θ.

The critical case is when α = θC , which corresponds to the impulse being directed
towards the point of contact of the ball with the table.

Here, the chord along the direction of the impulse has length 2a sin θ and,

h = 2a sin2 θC, sin θC =

√
h

2a
, tan θC =

1√
2a/h − 1

. (47)

In our model, the ball returns if θ > θC, i .e., tan θ > 1/
√

2a/h − 1.

Taking friction into account, the critical angle is larger than that given by eq. (47).

(b) Follow Shots and Draw Shots.

If the elastic collision between balls 1 and 2 is along their line of centers, and
friction can be ignored during the collision, then the angular velocity of ball 1 in
unchanged during the collision, while the velocity of ball 1 is transferred to ball
2, whose angular velocity is zero. That is, just after the collision the velocities
and angular velocities of the two balls are,

v1,a = 0, ω1,a = ω1,i, v2,a = v1,i, ω2,a = 0. (48)

Because ball 1 is still spinning after the collision at time t = 0, it experiences
sliding friction μmg with the table, which propels the ball forward is ω1,i > 0, as
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in the figure, and ball 1 follows ball 2. In this case, the motion of ball 1 prior to
rolling without slipping is,

v1(t) = μgt, ω1(t) = ω1,i − 2

5

μgt

a
, (49)

Rolling without slipping commences for ball 1 at time t1 such that,

v1(t1) = μgt1 = aω1(t1) = aω1,i − 2

5
μgt1, t1 =

5

7

aω1,i

μg
, v1(t1) =

5

7
aω1,i. (50)

Meanwhile, ball 2 also experiences sliding friction, opposite to its direction of
motion,

v2(t) = v1,i − μgt, ω2(t) =
2

5

μgt

a
, (51)

Rolling without slipping commences for ball 2 at time t2 such that,

v2(t1) = v1,i − μgt2 = aω2(t2) =
2

5
μgt2, t2 =

5

7

v1,i

μg
, v2(t2) =

2

7
v1,i. (52)

If aω1,i > 2v1,i/5, then ball 1 eventually collides again with ball 1 (and we could
continue the analysis....).

On the other hand, is ω1,i < 0, then ball 1 is propelled backwards by sliding
friction after the collision, and we speak of a draw shot. The analysis of eq. (50)
holds, but with the signs reversed.

(c) English. See Art. 239, p. 183 of E.J. Routh, The Advanced Part of a Treatise on
the Dynamics of a System of Rigid Bodies, 6th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_advanced_rigid_dynamics.pdf

See also Ch. V Sec. I, Ex. 3, p. 124 of J.H. Jellett, A Treatise on the Theory of
Friction (Macmillan, 1872),
httphttp://kirkmcd.princeton.edu/examples/mechanics/jellett_friction.pdf

If the cue is not horizontal, and not pointing at the center of the ball, the latter
acquires “english”, and does not move in a straight line. We wish to deduce the
path of the center of mass of the ball.

If the ball is not to move in straight line, there must be some friction perpendicular
to vcm of the ball. This requires there to be some rotation about an axis parallel
to vcm, which rotation is called “english”.

The concept of “english” also includes rotation of the ball about the vertical axis,
but this does not influence the motion of the ball between collisions. If the area
of contact of the ball with the table is small, there is negligible torque about the
vertical (z) axis, so ωz never changes, and does not affect vcm.

A uniform sphere, of moment of inertia I = ma2/5 about its center, has angular
momentum L = Iω for any direction of angular velocity ω.

We first discuss the motion of the ball, first deduce its initial motion after being
struck by the cue, and then deduce the subsequent motion (changes in which are
caused by friction of the table against the ball.
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We use a coordinate system with z vertical, and the cue in the x-x plane, with
the origin at the center of the ball (initially at rest). Let R = (X, Y, Z) be the
coordinates of the point of contact of the cue with the ball, X2 + Y 2 + Z2 = a2.

If P is the magnitude of the impulse, and the cue makes angle θ to the horizontal,
then P = (P cos θ, 0,−P sin θ).

We again suppose that friction can be ignored during the impulse. Then, the
velocity and angular momentum of the ball just after the impulse are given by,

vi,x =
Px

m
=

P cos θ

m
, (vi,y = 0 = vi,z), Li = Iωi = R ×P, (53)

ωi,x =
5

2ma2
(Y Pz − ZPy) = − 5

2ma2
PY sin θ, (54)

ωi,y =
5

2ma2
(ZPx − XPz) = − 5

2ma2
P (Z cos θ + X sin θ), (55)

ωi,z =
5

2ma2
(XPy − Y Px) = − 5

2ma2
PY cos θ. (56)

In the approximation of negligible area of contact of the ball with the table, friction
causes no torque about the z-axis, such that ωx = ωz,i is constant. However, both
ωx and ωy vary with time.

To discuss the subsequent motion of the ball, it is helpful to define u to be the
velocity of the point on the ball in instantaneous contact with the table (u = 0
for rolling without slipping). We also define α as the angle of u to the x-axis,

ux = u cos α, uy = u sin α. (57)

Then, with r = (0, 0,−a) as the vector from the center of mass of the ball to the
point of contact with the table,

u = v + ω × r, u̇x = v̇x − aω̇y, u̇y = v̇y + aω̇x. (58)

The initial value of u, just after the collision, is related by,

ux,i = vx,i − aωy,i =
P cos θ

m
+

5

2ma
P (Z cos θ + X sin θ), (59)

uy,i = u sinα = vy,i + aωx,i = − 5

2ma
PY sin θ. (60)



Princeton University 1988 Ph205 Set 4, Solution 4 24

The force of sliding friction is then F = mv̇ = −μmg û = −μmg(cos α x̂+sinα ŷ),
so the equations of motion can be written as mv̇ = F and Iω̇ = r × F.

From the force equation, we have,

v̇x = −μg cos α, v̇y = −μg sinα, (61)

From the torque equation,

Iω̇x = ryFz − rzFy = aFy = −μamg sinα, ω̇x = − 5

2a
μg sinα, (62)

Iω̇y = rzFx − rxFz = −aFx = μamg cos α, ω̇y =
5

2a
μg cosα, (63)

Iω̇z = rxFy − ryFx = 0. (64)

Then, from eqs. (59)-(63),

u̇x = v̇x − aω̇y = −μg cosα − 5

2
μg cosα = −7

2
μg cos α, (65)

u̇y = v̇y + aω̇x = −μg sinα − 5

2
μg sinα = −7

2
μg sinα (66)

Also, from eq. (57),

u̇x = u̇ cos α − u sin α α̇, u̇y = u̇ sinα + u cosα α̇. (67)

Together, eqs. (65)-(67) imply that,

u̇ = −7

2
μg, u = ui − 7

2
μgt, α̇ = 0, α = constant. (68)

Rolling without slipping commences when u = 0, at time,

tr =
2ui

7μg
, (69)

after the impulse. After time tr, the path of the ball on the table is a straight line
with,

vx(t > tr) = vi,x − μg cos αtr =
P cos θ

m
− 2

7
ui cosα (70)

vy(t > tr) = vi,y − μg sinαtr = −2

7
ui sinα, (71)

where vi is given by eq. (53).

Hence, in a coordinate system with x′ along u,

v̇y′ = 0, vy′ = vy′,i, y′ = vy′,it, t =
y′

vy′,i
, (72)

v̇x′ = −μg, vx′ = vx′,i − μgt, x′ = vx′,it− μgt2

2
=

vx′,i

vy′,i
y′ −−μgy′2

2v2
y′,i

, (73)

recalling that just after the impulse x = y = 0 = x′ = y′.
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The path of the ball is a parabola whose axis makes angle α to the x-axis.

Recalling eqs. (59)-(60), we also have that,

tan α =
uy,i

ux,i
=

−5
2

Y
a

sin θ(
1 + 5

2
Z
a

)
cos θ + 5

2
X
a

sin θ
. (74)

If either sin θ = 0 or Y = 0, then α = 0 and the path reduces to a straight line.
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5. This problem is from Art. 174, p. 142 of E.J. Routh, The Elementary Part of a Treatise
on the Dynamics of a System of Rigid Bodies, 7th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_elementary_rigid_dynamics.pdf

A ball of radius a collides with a bumper of height h. Just before the collision the
center of the ball has velocity v0 perpendicular to the bumper, and angular velocity
ω0 directed along v0 × g, as in the figure. Suppose there is no slipping at the bumper
during, or after, the collision.

(a) Angular momentum is conserved during the collision about the point of contact
A of the ball with the bumper (whether or not slipping occurs at point A, but
Lf = IA ω only for no slipping),

Li = Iω0 + mv0(a − h) = Lf = IA ω = (I + ma2)ωf =
7

5
ma2ωf , (75)

where I = 2ma2/5, IA = 7ma2/5, and ω is the angular velocity of the ball just
after the collision. Hence,4

ωf =
5

7ma2

(
2ma2 ω0

5
+ mv0(a − h)

)
=

2

7
ω0 +

5v0(a − h)

7a2
. (76)

If the ball is to jump up onto the cushion/step, its potential energy must increase
by at least mgh during the collision, where h is the height of the step. For this,
the kinetic energy just after the collision must satisfy,

KEf =
IA ω2

f

2
≥ mgh, ω2

f ≥ 2mgh

IA
=

10gh

7a2
, (77)

4a4ω2
0 + 20

ω0v0a
2(a − h)

a2
+ 25v2

0(a − h)2 ≥ 70a2gh. (78)

If ω0 = 0, the condition is,

v0 ≥ a

a − h

√
14gh

5
. (79)

Of course, we must have v0 > 0 for the ball to collide with the bumper, which
requires h < a (for ω0, 0.

If ω0 = v0/a, the condition (77) is,

ωf =
v0

7a

(
2 +

5(a − h)

a

)
=

v0(7a − 5h)

7a2
≥
√

10gh

7a2
v0 ≥ a

7a − 5h

√
70gh. (80)

4If ω0 were negative, ω could be negative, with the implication that after the collision with the bumper,
the ball would rotate into the table. We avoid discussion of this ambiguous case by supposing that ω0 > 0.
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The requirement that v0 > 0 implies that h < 7a/5 for collisions when ω0 = v0/a.

Does the ball stay in contact with point A after the collision?

The mechanical energy of the ball is conserved after the collision, so if the ball
remains in contact with the bumper,

E =
IA ω2

f

2
+ mg(a − h) =

IA ω2

2
+ mga sin θ, (81)

where θ is the angle of the center of the ball from the horizontal at point A (see
the figure on the previous page), and ω = θ̇.

The radial force at A is nonzero, and the ball is in contact with A, only if maω2 =

maθ̇
2

< mg sin θ. In particular, just after the collision (when ω = ωf ), we must
have sin θf > 0, i.e., h < a, for the ball to remain in contact with point A.

For the case of ω0 = v0/a and a < h < 7a/5, sin θf < 0 and the ball rises
after the collision, with vx < 0, but immediately loses contact with point A and
subsequently falls back onto the table to the left of the bumper.

In general, since ω = θ̇ decreases as the ball rises after the collision, if the ball
loses contact with point A after the collision, it does so immediately.

(b) We consider h < a, where sin θf = (a − h)/a.

For ω0 = 0 and v0 = v0,min of eq. (79) the critical condition that the ball remain
in contact with point A after the collision is,

maω2
f = ma

(
5v0,min(a − hc)

7a2

)2

= ma

⎛
⎝ 5

7a

√
14ghc

5

⎞
⎠

2

=
10mghc

7a

= mga sin θc = mg(a − hc), hc =
7a

17
. (82)

The ball flies off the bumper if,

h

a
>

hc

a
=

7

17
. (83)

Similarly, for ω0 = v0/a and v0 = v0,min of eq. (80) the critical condition that the
ball remain in contact with point A after the collision is,

maω2
f = ma

(
v0,min(7a − 5hc)

7a2

)2

= ma

(√
70ghc

7a

)2

=
10mgh

7a

= mga sin θc = mg(a − hc), hc =
7a

17
. (84)

Again, the ball flies off the bumper if,

h

a
>

hc

a
=

7

17
. (85)
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(c) We now suppose the step is just a narrow slat of height h < a, and again there is
no slipping at the bumper during the collision. The velocity v of the center of the
ball after the collision is large enough that the ball immediately flies into the air.
That is, v2 > ag sin α, recalling that the ball flies if ma ω2 = mv2/a > mg sin α.

We use a coordinate system centered on the point of contact of the ball with the
slat, and α is the initial angle of the center of mass of the ball with respect to the
−x axis.

The position of the center of the ball, while in flight after the collision at time
t = 0 is,

x = −a cos α + v sinα t, y = a sinα + v cos αt − 1

2
gt2, (86)

will hit the slat at some positive time t if X(t) = 0 = Y (t), at which time,

a2 = x2 + y2 = (−a cosα + v sinα t)2 + (a sinα + v cos αt − gt2/2)2

= a2 + v2t2 +
g2t4

4
− ga sinα t2 − gv cosα t3. (87)

The second collision with the slat occurs at the smaller, positive, real root (if it
exists) of the equation,5

1

4
g2t2 − gvt cosα + v2 − ag sinα = 0, (88)

t =
2

g2

(
gv cos α −

√
g2v2 cos2 α − g2(v2 − ag sinα)

)

=
2

g

(
v cosα −

√
ag sinα − v2 sin2 α

)
. (89)

The second collision occurs for v in the range,

ag

sinα
> v2 > ag sinα. (90)

5If the second collision occurs (at the origin) for some time t, then at a larger time another point on the
circumference of the ball would pass through the origin if somehow that slat had been removed before the
second collision. Hence, there are two positive, real roots to eq. (88), or none.
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6. Relativistic Rocket. The relativistic rocket may have first been discussed by J. Ack-
eret, Zur Theorie der Raketen, Helv. Phys. Acta 19, 103 (1946),
http://kirkmcd.princeton.edu/examples/GR/ackeret_hpa_19_103_46.pdf

In the rest frame of the rocket, let m� be the rest mass of the rocket (plus fuel) at
some time t�. After a short time, the rocket has mass m�

1, and velocity dv� as a result
of spewing out exhaust of mass dm� < 0 at velocity u > 0 relative to the rocket.

In general, dm� �= m�
1 − m� in general, but this holds to a first approximation when

dv� is small (compared to c, the speed of light).

Conservation of momentum, in this approximation, is that,

m�
1 dv ≈ m�dv� ≈ −dm� u, dv� ≈ −u

dm�

m�
. (91)

In the lab frame, the velocity of the rocket changes from v to v + dv during the above
process. The relativistic velocity transformation of dv� to the frame where the rocket
has velocity v tells us that,

v + dv =
v + dv�

1 + v dv�/c2
, v + dv� ≈ v + dv +

v2 dv�

c2
, (92)

dv� ≈ dv

1 − v2/c2
≡ γ2dv = c d

(
tanh−1 v

c

)
. (93)

combining eqs. (91) and (93), we integrate (noting the − sign in eq. (91) to find,

tanh−1 v

c
=

u

c
ln

m�
0

m�
, (94)

v

c
= tanh

(
u

c
ln

m�
0

m�

)
=

(
m�

0

m�

)u/c −
(

m�
0

m�

)−u/c

(
m�

0

m�

)u/c
+
(

m�
0

m�

)−u/c
=

(
m�

0

m�

)2u/c − 1(
m�

0

m�

)2u/c
+ 1

, (95)

where m� = m�
0 when v = 0.

The result (95) can also be written as,

m�
0

m�
=

(
1 + v/c

1 − v/c

)c/2v

. (96)

This form follows that of Tsiolkovsky, https://en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation,
who analyzed nonrelativistic rockets in 1903.
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7. We use Lagrange’s method for the ladder problem, with angle θ as the single generalized
coordinate. The ladder has mass m, and length 2l.

The ladder loses contact with the wall when the normal force at the moving point C
vanishes. It is awkward to include this force as a constraint force, so we first deduce
the equation of motion of the ladder when in contact with the wall via Lagrange’s
method, and then consider the normal force.

The center of mass of the ladder is at point B moves in a circle of radius l about the
fixed point A. The moment of inertia of the ladder about its center of mass is,

Icm =
m l2

3
. (97)

The kinetic energy T of the sliding ladder consists of the kinetic energy of the motion
of the center of mass plus the kinetic energy of rotation about the center of mass,

T =
m v2

cm

2
+

Icm θ̇
2

2
=

m (lθ̇)2

2
+

m l2 θ̇
2

6
=

2m l2 θ̇
2

3
. (98)

The gravitational potential energy V of the ladder relative to the floor is,

V = m g l cos θ. (99)

The equation of motion of the ladder follows from Lagrange’s equation,

d

dt

∂L
∂θ̇

=
∂L
∂θ

, (100)

where the Lagrangian is L = T − V . From eqs. (98)-(100) we find that,

θ̈ =
3g

4l
sin θ. (101)

The ladder loses contact with the vertical wall when (horizontal) contact force FC

vanishes. This contact force causes the horizontal acceleration of the center of mass,

FC = m ax. (102)

The x coordinate of the center of mass (so long as the ladder remains in contact with
the wall) is,

xcm = l sin θ, ax = ẍcm = l cos θ θ̈ − l sin θ θ̇
2

=
3g

4
cos θ sin θ − l sin θ θ̇

2
. (103)
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The angular velocity θ̇ of the ladder follows from conservation of energy,

E0 = m g l cos θ0 = E = T + V =
2m l2 θ̇

2

3
+ m g l cos θ, (104)

so that,6

θ̇
2

=
3g

2l
(cos θ0 − cos θ). (105)

The ladder loses contact with the vertical wall when FC = m ax vanishes, which occurs
when

ax = 0 =
3g

4
cos θ sin θ − 3g

2
sin θ(cos θ0 − cos θ), (106)

cos θ =
2

3
cos θ0. (107)

As the above analysis involved some use of Newtonian methods, the reader might wish
to consider use of Newtonian methods only. This could involve a torque analysis, which
is straightforward for torques computed about either points A or B. But, if torques are
computed about an accelerating point of than the center of mass, such as C , “fictitious
forces” must be included in the analysis. See
http://kirkmcd.princeton.edu/examples/ladder.pdf.

For general comments on torque analyses with accelerated reference points, see
http://kirkmcd.princeton.edu/examples/torque.pdf.

6The equation of motion (101) can also be deduced by taking the time derivative of eq. (105), or conversely
the energy equation (104) could be obtained by integrating the equation of motion (101).
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8. This problem is Ex. 12, p. 170 of E.J. Routh, The Elementary Part of a Treatise on
the Dynamics of a System of Rigid Bodies, 7th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_elementary_rigid_dynamics.pdf

After the mass at the left end of the rod has fallen off, we describe the system by five
coordinates, x and y of the center of the rod relative to the center of the pulley, the
angle θ of the rod to the horizontal, the angle φ to the vertical of the string from the
pulley to the rod, and the vertical coordinate y′ of the mass 3m. We suppose that the
latter mass has no horizontal motion.

If the initial coordinates are x0 = r, y0, θ0 = 0 = φ0 and y′
0 (which also hold just after

one mass m falls off), then the length of the string is y0 + y′
0 + 2πr, which we take to

be independent of time. In this case, y′ is not an independent coordinate.

At a time after one mass m has fallen off, the length of the string from the pulley to
the center of the rod is,

l =
√

(x − r cosφ)2 + (y + r sinφ)2 =
√

x2 + y2 + r2 − 2rx cos φ + 2ry sinφ. (108)

Then,
y′ = y0 + y′

0 + 2πr − y − r(2π − φ) − l

= y0 + y′
0 + rφ −

√
x2 + y2 + r2 − 2rx cos φ + 2ry sinφ. (109)

The general motion is complex, and deducing the equations of motion for all four
independent coordinates x, y, θ and φ is tedious. However, if we confine our attention
to the motion just after one mass falls off, we see that ẍ = 0 = φ̈, and only ÿ and θ̈
are nonzero then. This simplification permits a Newtonian analysis.

The equation of motion for the mass 3m is,

3mÿ′ = −3mÿ = 3mg − T, (110)

where T is the tension in the string, and ÿ′ = −ÿ holds just after one mass falls off.

For the rod of mass m with another mass m at one end, we note that its center of mass
is at distance a/2 from the center of the rod. In general,

ycm = y +
a

2
sin θ, ẏcm = ẏ +

a

2
cos θ θ̇, ÿcm = ÿ +

a

2
cos θ θ̈ − a

2
sin θ θ̇

2
, (111)

and just after one mass falls off, ÿcm = ÿ + (a/2) θ̈. Hence the equation of motion for
the center of mass of the rod system, just after one mass falls off, is,

2mÿcm = 2mÿ + ma θ̈ = 2mg − T. (112)
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Combining eqs. (110) and (112),

ÿ = −g + a θ̈

5
. (113)

To determine θ̈, we consider the torque equation about the center of mass of the rod
system, whose moment of inertia (about the cm) is,

Icm = Irod,cm + m
(

a

2

)2

+ m
(

a

2

)2

=
5ma2

6
. (114)

recalling that Irod,cm = ma2/3. Then, just after one mass falls off,

Icm θ̈ =
5ma2

6
θ̈ = mg

a

2
− mg

a

2
+ T

a

2
= (3mg + 3mÿ)

a

2

=
[
3mg − 3

5
m(g + a θ̈)

]
a

2
= (12mg − 3ma θ̈)

a

10
, (115)

θ̈ =
18g

17a
. (116)

Finally, the tension in the string just after one mass falls off is,

T = 3mg + 3mÿ =
12mg − 3ma θ̈

5
=

mg

5

(
12 − 54

17

)
=

30mg

17
. (117)

For a Lagrangian analysis to find the behavior just after one mass falls off, we could
suppose that x = x0 and φ = 0 always, although this wouldn’t give correct results for
any finite time after the mass fell off.

We might include the tension in the analysis via a Lagrange multiplier related to the
constraint y′ + y − y0 − y′

0 = 0 (supposing x = x0 and φ = 0 always), and taking y, y′

and θ as independent variables. This is the approach used in
http://kirkmcd.princeton.edu/examples/Ph205/ph205sol4.pdf.
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9. This problem is Ex. 18, p. 180 of E.J. Routh, The Elementary Part of a Treatise on
the Dynamics of a System of Rigid Bodies, 7th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_elementary_rigid_dynamics.pdf

The general motion of the deforming, rotating, translating rhombus can be described
by 4 coordinates qj, such as the coordinates xcm, ycm, the interior, acute angle α, and
the angle θ of the line from point A to the center of mass to the original direction of
the side struck by the impulse. Of these coordinates, perhaps only the choice of angle θ
is not straightforward. For example, we might instead use angle φ between the struck
side and its original direction.

The kinetic energy of translation of the center of mass, with no change in the angles,
is just 2m(ẋ2 + ẏ2), where m is the mass of each side of the rhombus.

The kinetic energy of rotation about a fixed center of mass, with no deformation (α

constant), is Icm θ̇
2
/2 = 4(ma2/3 + ma2) θ̇

2
/2 = 8ma2θ̇

2
/3, since the center of each

side is at distance a from the center of mass. This shows that θ rather than φ is a
desirable coordinate.

The kinetic energy of deformation (α variable while x, y and θ constant) is 4ma2(α̇/2)2/2+
4Iside(α̇/2)2/2 = 4(4ma2/3)(2α̇2) = ma2 α̇2/2 + 4(ma2/3) α̇2/8 = 2ma2 α̇2/3.

Lagrange’s equations for the impulsive motion can be written as,

Δ
∂T

∂q̇j
= Ij, (118)

where Ij is the generalized impulse associate with coordinate j,

Ij = P · ∂rP

∂qj
, (119)

where P =
∫
Fimpulse dt is the 3-force impulse, and rP is its point of application.

If Ij = 0 for some coordinate j, then there is no impulsive motion associated with that
coordinate.

In the present example, noting that D = 2a cos(α/2),

rP = (xA + d cos(θ − α/2), yA + d sin(θ − α/2))

= (xcm − D cos θ + d cos(θ − α/2), ycm − D sin θ + d sin(θ − α/2))

= (xcm − 2a cos(α/2) cos θ + d cos(θ − α/2), ycm − 2a cos(α/2) sin θ + d sin(θ − α/2)).(120)
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If we want the rhombus to move without deformation after the impulse, then we require
that Iα = 0. If we use coordinate θ, then,

0 = Iα = P · ∂rP

∂α
= P

∂rR,y

∂α
= P

[
a sin

α

2
sin θ − d

2
cos

(
θ − α

2

)]
, (121)

for the initial values of α and θ, namely θ = α/2. Hence,

d = 2a sin2 α

2
= a(1 − cosα). (122)

If instead we desire the diagonal of the rhombus not to rotate after the impulse, then
Iθ = 0,

0 = Iθ = P · ∂rP

∂θ
= P

∂rR,y

∂θ
= P

[
−2a cos

α

2
cos θ + d cos

(
θ − α

2

)]
, (123)

for the initial values of α and θ, namely θ = α/2. Hence,

d = 2a cos2 α

2
= a(1 + cosα), (124)

such that the impulse points directly at the center of mass of the initial rhombus.
Indeed, we might have concluded this with no calculation, since for no rotation of the
rhombus as a whole, the impulse must exert no torque about its center of mass.
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10. The physics of an idealized Super-Ball was first discussed by G.L. Strobel, Matrices
and Superballs, Am. J. Phys. 50, 856 (1988),
http://kirkmcd.princeton.edu/examples/mechanics/strobel_ajp_36_834_68.pdf

and by R.L. Garwin, Kinematics of an Ultraelastic Rough Ball, Am. J. Phys. 37, 88
(1969), http://kirkmcd.princeton.edu/examples/mechanics/garwin_ajp_37_88_69.pdf.

Angular momentum is conserved about the point of contact of the Super-Ball with
floor during the collision,

Lz = −mrvx + kmr2 ω = L′
z = −mrv′

x + kmr2 ω′, v′
x − vx = kr(ω′ − ω), (125)

where the Super-Ball has mass m, radius r, k = 2/5 for a uniform sphere, and vx (v′
x)

and ω (ω′) are its x-velocity and the z-component of its angular velocity just be-
fore(after) the collision (with ωx = ωy = 0 = ω′

x = ω′
y).

We first suppose that energy of the y-motion is conserved in the collision with the
floor, and, separately, the energy of the x-motion plus rotational motion is conserved.

Then, the vertical velocity after the collision with the floor is,

v′
y = −vy > 0, (126)

where vy < 0 is the vertical velocity just before the collision and v′
y is the vertical

velocity just after.

Before (after) the collision with the floor, the center of the Super-Ball has horizontal
velocity vx (v′

x).

Conservation of energy of the x-motion and the rotational motion implies that,

mv2
x

2
+

kmr2 ω2

2
=

mv′2
x

2
+

kmr2 ω′2

2
, v′2

x − v2
x = kr2(ω2 − ω′2), (127)

(v′
x − vx)(v

′
x + vx) = kr2(ω − ω′)(ω + ω′). (128)

Dividing eq. (128) by (125), we have that,

v′
x + vx = −r(ω + ω′), vc = vx + r ω = −(v′

x + r ω′) = −v′
c, (129)

where vc is the (horizontal) velocity of the point on the ball just before the collision
that will become the point of contact with the floor. Thus, we find that the velocity
of the point of contact of the ball with the floor reverses during the collision (which is
not consistent with no slipping there).

We can now eliminate v′
x from eqs. (125) and (129) to find,

r ω′ = −1 − k

1 + k
r ω − 2

1 + k
vx = −3

7
r ω − 10

7
vx. (130)
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Finally, eq. (130) and either of eqs. (125) or (129) gives,

v′
x = − 2k

1 + k
r ω +

1 − k

1 + k
vx = −4

7
r ω +

3

7
vx. (131)

We now consider some examples:

(a) A Super-Ball of mass m and radius r is dropped vertically with spin from height
h onto a hard floor.

If the spin had a vertical component, the idealization of no slipping at the point
of contact implies that this component would disappear during the first bound on
the floor.

So, it suffices to consider that the initial angular velocity ω of the Super-Ball has
only a horizontal component, ω Then, the initial horizontal velocity is vx = 0,
and the vertical velocity is yy = −√

2gh when the ball strikes the floor.

From eqs. (126), (130) and (131), the motion just after the first collision is,

v′
x = −4

7
rω, v′

y =
√

2gh, r ω′ = −3

7
r ω. (132)

After the collision, the ball rises again to its original height h, and falls back onto
the floor after time,

t =
2v′

y

g
=

2

g

√
2gh, (133)

during which time the ball moves horizontally by distance,

d = v′
xt = −8r ω

7

√
2h

g
. (134)

Then, just after the second collision of the ball with the floor,

v′′
x = −4

7
r ω′ +

3

7
v′

x =
3

7

4

7
r ω +

4

7

3

7
r ω = 0, v′′

y = −(−v′
y) =

√
2gh, (135)

r ω′′ = −3

7
r ω′ − 10

7
v′

x =
3

7

3

7
, ω′ +

4

7

10

7
r ω = r ω. (136)

The ball rises again to height h, with zero horizontal velocity, and its initial
angular velocity, but to the left of its original position by the distance of eq. (134).
After this, the ball falls again, and again bounces to the left, in a perpetual
sequence if energy is conserved.
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(b) For the ball to bounce back and forth on the same trajectory, as in the figure
below, both vx and ω must reverse during a collision with the floor.

That is, after the collision in the right figure above, the situation must look the
same as in the left figure when the right figure is viewed from the other side,
which changes x to x′′ and z to z′′, and consequently v′

x → −v′′
x and ω′ → −ω′′,

while we desire that v′′
x = vx and ω′′ = ω.

According to eqs. (130) and (131), this requires,

r ω′ = −3

7
r ω − 10

7
vx = −r ω, r ω =

10

4
vx, (137)

v′
x = −4

7
r ω +

3

7
vx = −vx, vx =

4

10
r ω. (138)

(c) We trace the results of 3 collisions of the ball, first with the floor at point A, then
with the underside of the table at point B, and again with floor at point C .

In the present model |vy| is essentially constant if the velocity is large enough that
effects of gravity are negligible.

The results of the collision at point A, from eqs. (130) and (131), are, for initial
spin ω = 0 and initial horizontal velocity vx,

r ω′
A = −10

7
vx, v′

A,x =
3

7
vx. (139)

To use these results as input to eqs. (130) and (131) for the collision at point B
under the table, we must transform them to a right-handed coordinate system
(xB, yB, zB) associated with that point, with the yB axis downward, as in the
figure, and the xB axis opposite to axis xA. That is,

r ωB = r ω′
A = −10

7
vx, vB,x = −v′

A,x = −3

7
vx. (140)

Then, the results of the collision at point B are,

r ω′
B = −3

7
rωB − 10

7
vB,x =

3

7

10

7
vx +

10

7

3

7
vx =

60

49
vx, (141)

v′
B,x = −4

7
rωB +

3

7
vB,x =

4

7

10

7
vx − 3

7

3

7
vx =

31

49
vx. (142)
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The transform of these results to the input for collision C with the floor is,

r ωC = r ω′
B =

60

49
vx, vC,x = −v′

B,x = −31

49
vx, (143)

and the results of collision C are,

r ω′
C = −3

7
r ωC − 10

7
vC,x = −3

7

60

49
vx +

10

7

31

49
vx =

130

343
vx, (144)

v′
C,x = −4

7
r ωC +

3

7
vC,x = −4

7

60

49
vx − 3

7

31

49
vx = −333

343
vx ≈ −vx, (145)

v′
C,y = −vy. (146)

The prediction is that the ball has almost exactly the reverse of its initial velocity
after the 3 bounces A, B and C .

We next consider the alternative hypothesis of no slipping at the point of contact
and conservation only of the total mechanical energy.

In this model, the velocity of the point on the ball in contact with the floor is zero
during, and just after, the collision,

0 = v′
c = v′

x + r ω′, v′
x = −r ω′, (147)

rather than eq. (129).

Just after the collision, the motion is rigid-body rotation about the point of contact,
plus translation perpendicular to the floor. Conservation of angular momentum about
the point of contact, eq. (125), can now be written as,

Lz = −mrvx + kmr2 ω = L′
z = −mrv′

x + kmr2 ω′ = (1 + k)mr2 ω′, (148)

rω′ =
k

1 + k
r ω − vx

1 + k
=

2

7
r ω − 5

7
vx, (149)

v′
x = −rω′ = −2

7
r ω +

5

7
vx. (150)

Finally, we determine v′
y by conservation of total mechanical energy,

mv2
x

2
+

mv2
x

2
+

kmr2 ω2

2
=

mv′2
x

2
+

mv′2
y

2
+

kmr2 ω′2

2

=
(1 + k)m

2

(
k

1 + k
r ω − vx

1 + k

)2

+
mv′2

y

2
(151)

v′2
y = v2

y +
(kr ω − vx)

2

1 + k
= v2

y +
(2r ω − 5vx)

2

35
. (152)

We now reconsider the third example, of a ball thrown without spin onto the floor and
up under a table. We will find that the ball does not return, which disfavors the model
of no slippage at the point of contact.
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We again trace the results of 3 collisions of the ball, first with the floor at point A,
then with the underside of the table at point B, and again with floor at point C .

Again, |vy| is essentially constant if the velocity is large enough that effects of gravity
are negligible.

The results of the collision at point A, eqs. (149), (150) (152), are, for initial spin ω = 0
initial horizontal velocity vx > 0 and initial vertical velocity yy < 0,

r ω′
A = −5

7
vx, v′

A,x = −r ω′
A =

5

7
vx, v′2

y = v2
y +

5v2
x

7
. (153)

To use these results as input for the collision at point B under the table, we must
transform them to a right-handed coordinate system (xB, yB, zB) associated with that
point, with the yB axis downward, as in the figure, and the xB axis opposite to axis
xA. That is,

r ωB = r ω′
A = −5

7
vx, vB,x = −v′

A,x = −5

7
vx, v2

B,y = v′2
A,y = v2

y +
5v2

x

7
. (154)

Then, the results of the collision at point B are,

r ω′
B =

2

7
rωB − 5

7
vB,x = −2

7

5

7
vx +

5

7

5

7
vx =

15

49
vx, (155)

v′
B,x = −r ω′

B = −15

49
vx, (156)

v′2
B,y = v2

B,y +
5v2

B,x

7
= v2

y +
5v2

x

7
− 5

7

25

49
v2

x = v2
y +

120

343
v2

x. (157)

The negative value of v′
B,x indicates that the ball will not return in this model. But,

we proceed to collision C .

The transform of these results to the input for collision C with the floor is,

r ωC = r ω′
B =

15

49
vx, vC,x = −v′

B,x =
15

49
vx, v2

C,y = v′2
B,y = v2

y +
120

343
v2

x. (158)

and the results of collision C are,

r ω′
C =

2

7
r ωC − 5

7
vC,x =

2

7

15

49
vx − 5

7

15

49
vx = − 45

343
vx, (159)

v′
C,x = −r ω′

C =
45

343
vx, (160)

v′2
C,y = v2

C,y +
5v2

C,x

7
= v2

y +
120

343
v2

x +
5

7

225

2401
v2

x = v2
y +

7005

16807
v2

x. (161)
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In the model with no slippage at the point of contact, the ball does not return after
collision C , in disagreement with experiment.

That, is, the model of no slippage is disfavored!7

7It could be that while there is no slippage at the point of contact at the time of peak forces during
the collision, some slippage occurs during the beginning and end of the collision, such that, in effect, the
condition (147) does not hold.
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11. (a) We use Lagrange’s methods, with coordinates r and θ of mass m1, which is con-
nected to mass m2 by a string of constant length l through a small hole in a
frictionless horizontal plane.

The kinetic energy is,

T =
m1

2
(ṙ2 + r2 θ̇

2
) +

m2

2
ṙ2. (162)

and the potential energy can be written as,

V = m2g(r − l). (163)

Then, Lagrange’s equations for L = T − V are,

d

dt

∂L
∂ṙ

= (m1 + m2)r̈ =
∂L
∂r

= m1r θ̇
2 − m2g, (164)

d

dt

∂L
∂ṙ

=
d

dt
(m1r

2θ̇) =
∂L
∂θ

= 0, m1r
2 θ̇ = L0 = constant. (165)

(m1 + m2)r̈ =
L2

0

m1r3
− m2g = − d

dr

(
L2

0

2m1r2
+ m2rg

)
≡ −dVeff

dr
. (166)

The equilibrium radius is, for r̈ = 0,

r0 = 3

√√√√ L2
0

m1m2g
, L2

0 = m1m2gr3
0, (167)

and the equilibrium angular velocity θ̇0 is related by L0 = m1r
2
0θ̇0, such that,

v0 = r0θ̇0 =
L0

m1r0
=

√
m2gr0

m1
, T0 =

m1v
2
0

2
=

m2gr0

2
. (168)

To determine the character of small oscillations about the equilibrium radius r0,
we expand the effective potential Veff about this,

Veff(r) ≈ Veff(r0) +
1

2

d2Veff(r0)

dr2
(r − r0)

2. (169)

which is a springlike potential with effective spring constant,

keff(r) =
d2Veff(r0)

dr2
=

3L2
0

m1r4
0

(170)
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The angular frequency of small oscillations about r0 is, using eqs. (167) and (170),

ω =

√
keff

m1 + m2

=

√√√√ 3L2
0

m1(m1 + m2)r
4
0

=

√
3m2g

(m1 + m2)r0

. (171)

Our solution avoided mention of F = ma, but it may be of interest to make a
connection with a “Newtonian” analysis.

We recall that in polar coordinates (r, θ), the acceleration vector a has compo-
nents,8

ar = r̈ − rθ̇
2
, aθ = rθ̈ + 2ṙθ̇. (172)

Thus, the Newtonian equations of motion for mass m1 are,

F1,r = m1ar = m1(r̈ − rθ̇
2
), F1,θ = m1aθ = m1(rθ̈ + 2ṙθ̇). (173)

In a näıve view, we might consider that the radial and azimuthal accelerations
are just m1r̈ and m1rθ̈, such that it may be disconcerting to find, according to
eq. (173),

m1r̈ = F1,r + m1rθ̇
2
, m1rθ̈ = F1,θ − 2m1ṙθ̇, (174)

which include the “coordinate forces” m1rθ̇
2

and −2m1ṙθ̇ on the righthand sides.

In the present example, the force F1 on mass m1 is purely radial, i.e., F1,θ = 0,
and we have,

rθ̈ = −2ṙθ̇, (175)

which is nonzero if coordinate r of mass m1 changes with time. That is, the
azimuthal velocity v1,θ = rθ̇ of mass 1 can change with time even though there is
no azimuthal force F1,θ.

9

In more detail for the present example, we consider the case that at time t = 0,
mass m2 is pulled a small distance Δz = d � r0 below its equilibrium position,
and then released. The subsequent motion in r = l − z has the form (ignoring
friction),

r = r0 − d cos(ωt) = r0

(
1 − d

r0
cos(ωt)

)
, ṙ = ωd sin(ωt), r̈ = ω2d cos(ωt). (176)

The motion in θ follows from eq. (165),

θ̇ =
L0

m1r
≈ L0

m1r0

(
1 +

2d

r0
cos(ωt)

)
, θ̈ = −2ωL0d

m1r2
0

sin(ωt). (177)

8See p.9 of http://kirkmcd.princeton.edu/examples/Ph205/ph205l1.pdf
9This contrasts with an analysis in a rectangular coordinate system, where the velocity in coordinate i

can change only if Fi is nonzero.
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The z-coordinate of m2 is z = l − r, and the tension F in the string is related by,

m2z̈ = m2g − F, F = m2(g − z̈) = m2(g + r̈) = m2g

(
1 +

3d

r0

m2

m1 + m2
cos(ωt)

)
, (178)

recalling eqs.(171) and (176).

The force on mass m1 is purely radial, Fr = −F , Fθ = 0.

We confirm that this is consistent with eq. (173), at order d/r0,

F1,r = m1(r̈ − rθ̇
2
)

= m1

[
3m2g

(m1 + m2)r0
d cos(ωt) − r0

(
1 − d

r0
cos(ωt)

)
L2

0

m2
1r

4
0

(
1 +

4d

r0
cos(ωt)

)]

≈ 3m1m2g

(m1 + m2)r0
d cos(ωt) −m2g

(
1 +

3d

r0
cos(ωt)

)

= −m2g

(
1 +

3d

r0

m2

m1 + m2
cos(ωt)

)
= −F, (179)

using eqs (167), (171), (176), (177) and (178). Likewise,

F1,θ = m1(rθ̈ + 2ṙθ̇)

= m1

[
r0

(
1 − d

r0

cos(ωt)

)(
−2ωL0d

m1r
2
0

sin(ωt)

)
+ 2ωd sin(ωt)

L0

m1r0

(
1 +

2d

r0

cos(ωt)

)]

≈ m1

[
−2ωL0d

m1r0
sin(ωt) + 2ωd sin(ωt)

L0

m1r0

]
= 0. (180)

(b) If m1 initially moves in a circle of radius r0 the energy of the system is, recalling
eq. (168),

E0 = T0 + V0 =
m1

2
r2
0θ̇

2

0 + m2g(r0 − l) =
3m2gr0

2
− m2gl. (181)

If this system later comes to rest due to friction of the sprinkled dust, the energy
would be only Efinal = −m2gl. That is, the energy dissipated by the dust is,

ΔE = E0 − Efinal =
3m2gr0

2
. (182)
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The force of friction is F = μm1g, so the work done by friction as mass m1 slides
distance d is W = ΔE = Fd, so the distance traveled by m1 until stops is,

d =
ΔE

F
=

3m2gr0

2μm1g
=

3m2r0

2μm1

. (183)

The rate of dissipation of energy by friction is,

dE

dt
= −Fv, (184)

where v ≈ r θ̇ is the velocity of mass m1. Assuming that the motion is always
approximately circular, eqs. (168) and (181) hold for all r, and,

dE

dt
=

3m2g

2

dr

dt
= −μm1g

√
m2gr

m1
,

dr√
r

= −2μ

3

√
m1g

m2
dt, (185)

2(
√

r −√
r0(= −2μ

3

√
m1g

m2
(t− t0), Δt =

3

μ

√
m2r0

m1g
, (186)

where Δt is the time interval over which the system comes to rest due to friction.
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12. (a) Velocity of the point of contact.

From Chasles’ theorem, the velocity of a point A on a moving/rotating rigid body
is related by

vA = vcm + ω × R, (187)

where vcm is the velocity of the center of mass of the object, and R is the position
vector from the center of mass to point A.

Due to the impulse P = P x̂ at time t = 0, the center of mass of the hemispherical
shell (of mass m and radius a) takes on velocity,

vcm(t = 0+) =
P

m
(188)

just after the impulse.

The angular velocity ω(0+) just after the impulse is related to the angular mo-
mentum Lcm(0+) about the center of mass, imparted by the impulse P,

Lx,cm(0+) = 0 = Ix,cm(0)ωx(0
+), Ly,cm(0+) = P (a − R) = Iy,cm(0)ωy(0

+),

Lz,cm(0+) = Pa = Iz,cm(0)ωz(0
+), (189)

where Ij,cm is the (principal) moment of inertia of the shell about an axis parallel
to coordinate axis j and through the center of mass. Hence, noting that R(0) =
(0, 0,−R) for the point A of contact with the horizontal surface,

ω(0+) =

(
0,

P (a − R)

Iy,cm(0)
,− Pa

Iz,cm(0)

)
, ω(0+) × R(0) =

(
−PR(a − R)

Iy,cm(0)
, 0, 0

)
, (190)

vA(0+) =

(
P

m
− PR(a −R)

Iy,cm(0)
, 0, 0

)
. (191)

We now need the values of R and Iy,cm(0).

The shell has area 2πa2, so the surface mass density is σ = m/2πa2. The z-
coordinate of the center of mass at time t = 0 is related by,

zcm m =
∫

z dm =
∫ 1

0
(−a cos θ) (2πa2σ d cos θ) = −ma

∫ 1

0
cos θ d cos θ = −ma

2
, (192)

and thus,
zcm(0) = −a

2
, R = a + zcm(0) =

a

2
. (193)
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The moment of inertia Iy,cm(0) is related to the moment of inertia about the
center C of the shell by the parallel axis theorem, Iy,C(0) = Iy,cm(0) + m z2

cm(0),
while Iy,C(0) for a hemispherical shell has the same form as that for a complete
spherical shell,

Iy,C(0) = m
(〈

r2
x

〉
+
〈
r2
z

〉)
=

2

3
m
(〈

r2
x

〉
+
〈
r2
y

〉
+
〈
r2
z

〉)
=

2

3
ma2, (194)

Iy,cm(0) = Iy,C(0) − m z2
cm(0) =

2

3
ma2 − m

a2

4
=

5ma2

12
. (195)

We note also that,

Iz,C(0) = m
(〈

r2
x

〉
+
〈
r2
y

〉)
= Iy,C =

2

3
m
(〈

r2
x

〉
+
〈
r2
y

〉
+
〈
r2
z

〉)
=

2

3
ma2

= Iy,C(0) = Iz,cm(0). (196)

Finally, the velocity of the point of contact with the horizontal surface just after
the impulse is,

vA(0+) =

(
P

m
− PR(a −R)

Iy,cm(0)
, 0, 0

)
=

(
P

m
− P (a/2)(a/2)

5
12

ma2
, 0, 0

)
=
(

3P

5m
, 0, 0

)
.(197)

(b) The rim never touches the horizontal surface.

For the shell to rotate so that its rim later touches the horizontal surface, it must
have enough kinetic energy just after the impulse to permit this.

In addition to thinking about energy, it is useful to note another conserved quan-
tity, the vertical component of angular momentum about the center of mass.

After the impulse, the only forces on the system (neglecting friction) are gravity,
and the (vertical) normal force N due to the horizontal surface, acting at the
point of contact. Hence, the torque about the center of mass, τ = R×N, has no
vertical component, and the angular momentum Lz,cm about the center of mass
is constant for t > 0.

We also note the forces on the shell are only vertical, so the horizontal velocity
vx,cm(t > 0) = P/m is constant, although the center of mass can move vertically.

Suppose the rim of the bowl touches the horizontal surface at some time T > 0.
Then, recalling eq. (189),

Lz,cm(T ) = Iz,cm(T )ωz(T ) = Lz,cm(0+) = Pa, (198)



Princeton University 1988 Ph205 Set 4, Solution 12 48

We see from the figure that the configuration of the shell when the rim touches
the horizontal surface implies that the moment of inertia Iz,cm(T ) is the same as
the initial moment of inertia Iy,cm(0), namely 5ma2/12. Hence,

ωz(T ) =
Pa

Iy,cm(0)
=

12P

5ma
, (199)

and the rotational kinetic energy about the center of mass at time T is,

KErot(T ) =
∑
k

Ik,cm(T )ω2
k,cm(T )

2
>

Iz,cm(T )ω2
z,cm(T )

2
=

1

2

5ma2

12

(
12P

5ma

)2

=
6P 2

5m
,(200)

where index k labels a principal axis at time T , of which the z-axis is one.

However, the rotational kinetic just after the impulse is, recalling eqs. (190), (192)
and (193),

KErot(0
+) =

∑
j

Ij,cm(0)ω2
j,cm(0+)

2
= 0 +

1

2
Iy,cm(0)

(
Pa/2

Iy,cm(0)

)2

+
1

2
Iz,cm(0)

( −Pa

Iz,cm(0)

)2

=
Pa2

8 5
12

ma2
+

Pa2

22
3
ma2

=
21P

20m
< KErot(T ). (201)

Furthermore, since the horizontal velocity of the center of mass is constant for
t > 0, the translational kinetic energy at time T could be greater, but not less,
than that at time t = 0+. Hence, the total kinetic energy required for the rim
to touch the horizontal surface is greater than the kinetic energy at time t = 0+,
such that the rim can never actually touch the surface for any t > 0.


