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1. (a) A uniform rod of length 2a has its ends constrained to slide, without friction, on
two wires that makes 45◦ angles as shown in the figure. Show that the length of
a simple pendulum with the same frequency of oscillation is l = 4a/3.

(b) The gizmo of part (a) is rearranged so that it is forced to rotate at constant
angular velocity Ω about the now-vertical wire.

Construct an effective potential to show that the equilibrium angles are θ0 = 0
and cos θ0 = 3g/4aΩ2, where θ is the angle of the sliding rod of length 2a to the
vertical.

Also show that the frequency of small oscillations is,

ω =

√
3g

4a
− Ω2, or ω = Ω

√
1 −

(
3g

4a Ω2

)2

, (1)

depending on which equilibrium is stable.
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2. A mass m is connected to n strings and n other masses m. The strings hang over
the edge of a circular table of radius a, and are constrained to pass over fixed points,
equally spaced, on the circumference of the circle. There is no friction.

If the motion of the hanging masses is purely vertical, show that the frequency of small

oscillations is ω =
√

ng/(n + 2)a for n > 2, while for n = 2, ω =
√

2g/a of oscillations

transverse to the strings on the table (and ω = 0 for “oscillations” along the strings).
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3. A cone of half angle α has its axis vertical and tip downwards. A particle slides freely
on its interior surface.

Construct and sketch the effective potential to answer the following:

What is the equilibrium radius r0 as a function of the angular momentum L0 about
the vertical axis?

What is the equilibrium angular velocity Ω = φ̇?

What is the angular velocity of small oscillations about the equilibrium orbit?

Sketch the orbits of small oscillations for cones with sinα = 1/2
√

3 and 1/
√

3.
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4. Consider the central force problem (for a fixed force center) with a potential of the
form,

V (r) = −C

rλ
, (λ �= 0). (2)

Show that circular orbits are stable only for λ < 2,1 and that orbits which depart
slightly from circularity can be written as,

r(t) = r0(1 + ε cos ωt), θ(t) = Ω t − 2ε√
2 − λ

sinωt, (3)

where ε � 1, ω = Ω
√

2 − λ, and Ω is the angular velocity of the circular orbit of
radius r0. These orbits are simple closed curves only if

√
2 − λ is an integer.2

Sketch orbits for λ = 1 (gravity), λ = −2 (springs), and λ = −7.

Note that the shape, but not the detailed time dependence, of the oscillating orbits is
well described by a single epicycle, as first introduced by Apollonius (≈ 200 BC), who
also introduced the deferent to explain better the no-so-small oscillation of the orbit of
the Moon about the Earth.3

1This result in known as Bertrands’ Theorem, due to J. Bertrand, Théorème relatif au mouvement d’un
point attiré vers un centre fixe, Comptes Rendus Acad. Sci. 77, 849 (1873),
http://kirkmcd.princeton.edu/examples/mechanics/bertrand_cras_77_849_73.pdf
http://kirkmcd.princeton.edu/examples/mechanics/bertrand_cras_77_849_73_english.pdf

2More complicated closed curves exist for any rational ratio of ω/Ω.
3See, for example, J.L.E. Dreyer, A History of Astronomy from Thales to Kepler (Dover, 1953),

http://kirkmcd.princeton.edu/examples/mechanics/dreyer_53.pdf, and G. Gallavotti, Quasi periodic
motions from Hipparchus to Kolmogorov, Rend. Mat. Acc. Lincei 12, 125 (2001),
http://kirkmcd.princeton.edu/examples/mechanics/gallavotti_rmac_12_125_01.pdf.
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5. (a) Show that the period of a speck of dust around the surface of a spherical boulder
in outer space is the same at that of a low-altitude satellite around the Earth
(i.e., the period of an orbit just above the surface of a sphere depends only on
the density of the sphere).

(b) Satellite Paradox. A satellite is in a near-circular orbit about the Earth, which
orbit is in Earth’s upper atmosphere. The satellite experiences a drag force F =
−αv with small α, and its orbit remains essentially circular at all times. Deduce
v(t) and the radius r(t) of the orbit, for initial values of v0 and r0.

As a first approximation, you may assume that α is constant, although it actually
depends on the radius r of the orbit.

Hint: “brute force” use of F = ma is insufficient here.
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6. A comet in a parabolic orbit about the Sun has perihelion at distance p.

Recall that a parabola has eccentricity ε = 1.

(a) What is the total energy of the comet?

(b) What is the angular momentum of the comet with respect to the Sun (neglecting
any possible “spin” of the comet)?

(c) What is the angle θ between the line from the Sun to the perihelion of the comet’s
orbit and the radius to the point where the orbits of the Earth and the comet
intersect?

(d) Show that the time spent by the comet inside the Earth’s orbit (of radius a) is,

T =
2

3

√
2a3

GM

√
1 − p

a

(
1 +

2p

a

)
, (4)

where M is the mass of the Sun, and perturbations of the comet’s orbit by the
planets are neglected.

Show also that Tmax ≈ 11 weeks.



Princeton University 1988 Ph205 Set 5, Problem 7 7

7. Consider a particle of mass m and angular momentum L about the origin, subject to
the attractive central force,

F = −C

r3
, (5)

with C > 0.

Discuss the character of circular orbits using the effective potential, and then discuss
the forms of generals orbits using the orbit equation,

d2u

dθ2 + u = · · · , u =
1

r
, (6)

to show that there are 3 classes of orbits.

Sometimes a figure is worth a thousand words (although there are no figures in J.-
L. Lagrange, Mécanique Analytique (1788),
http://kirkmcd.princeton.edu/examples/mechanics/lagrange_ma_v1_11.pdf

http://kirkmcd.princeton.edu/examples/mechanics/lagrange_ma_v2_15.pdf
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8. Precession of the Perihelion of Mercury.

A famous problem is astronomy is the precession of the perihelion of the planet Mer-
cury’s orbit by 40′′ per century in the direction of the motion of the orbit, beyond that
due to the effect of other planets in the solar system.4 The average radius of the orbit
about the Sun is 6 × 1010 m, the eccentricity is ε = 0.206, and the period is T = 0.24
Earth years.

Suppose that the force of gravity on a mass m is actually,

F = −Am

r2
− Bm

r3
. (7)

Use the orbit equation to show that the form of the orbit is,

1

r
=

1 + ε cos βθ

a(1 − ε2)
, where β =

√
1 − Bm

L2
, (8)

where L is the angular momentum of the planet. Supposing η ≡ B/Aa is very small,
show that the perihelion advances by,

Δθ ≈ πη

1 − ε2
, (9)

each revolution (invoking Kepler’s 3rd law if necessary), and that η ≈ 1.4×10−7 would
be sufficient to explain the observed precession of Mercury’s orbit.

For discussion of the precession of the perihelion in special relativity (without dust),
see, http://kirkmcd.princeton.edu/examples/perihelion.pdf

4For a review as of 1913, see W. De Sitter, Some problems of astronomy (VII The secular variation of
the elements of the four inner planets), The Observatory 36, 296 (1913),
http://kirkmcd.princeton.edu/examples/mechanics/desitter_obs_36_296_13.pdf
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9. (a) Oblate Sun.

If the Sun has equatorial radius R that is larger than the polar radius R(1 − η),
then its Newtonian gravitational potential for interaction with mass m at distance
r becomes,

V = −GMm

r
− GMmηR2(1 − 3 cos2 θ)

5r3
+ O(η2), (10)

where M is the mass of the Sun, and θ is the polar angle in a spherical coordinate
system (r, θ, φ).

Use the effective-potential method to show that for orbits in the plane θ = 90◦

the equilibrium circular radius is related to the equilibrium angular velocity Ω by,

1

r3
0

=
Ω2

GM
− 3ηR2

5r5
0

, (11)

and that the angular frequency of small oscillations about this orbit is,

ω = Ω

√
1 − 6GMηR2

5Ω2r5
0

. (12)

For M = 2× 1030 kg and R = 7× 108 m, what value of η is needed to explain the
precession of the perihelion of Mercury?

(b) General Relativity.

Einstein’s theory of general relativity as applied to planetary motion about the
Sun modifies the Newtonian force law to,

F = −GMm

r2

(
1 − 3L2

(mrc)2

)
, (13)

where c is the speed of light and L is the angular momentum. The dependence of
F on r has the same form as that of an oblate Sun in Newtonian theory. Using
part (a), you can quickly verify that Einstein’s theory predicts an advance of the
perihelion of,

Δφ =
24π3r2

0

T 2c2
, (14)

per revolution, which for Mercury is very close to 40′′ per century.

R.H. Dicke of Princeton spent a lot of effort measuring the oblateness of the Sun
(with null results) to see if general relativity might be wrong.
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Solutions

1. (a) We take the origin at the vertex of the two fixed wires, and angle θ to the vertical
of the center of mass of the moving rod as the single coordinate in Lagrange’s
method.

The kinetic energy is,

T =
ma2 θ̇

2

2
+

Icm θ̇
1

2
=

2ma2 θ̇
2

3
, (15)

and the potential energy can be written as,

V = −mga cos θ. (16)

The equation of motion follows from this as,

d

dt

∂T

∂θ̇
=

4ma2 θ̈

3
= −∂V

∂θ
= −mga sin θ. (17)

For small θ, this reduces to the springlike equation,

θ̈ = −3g

4a
θ, (18)

so the angular frequency of small oscillations is,

ω =

√
3g

4a
, (19)

which is the frequency of oscillation of a simple pendulum of length 4a/3.

(b) This problem is Ex. 450, p. 371 of E.J. Routh, The Advanced Part of a Treatise
on the Dynamics of a System of Rigid Bodies, 6th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_advanced_rigid_dynamics.pdf.
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The kinetic energy is that of eq. (15) plus the kinetic energy I Ω2/2 of rotation of
the rod about the vertical axis, where,

I =
m

2a

∫ 2a

0
dl (l sin θ)2 =

m(2a)2 sin2 θ

3
=

4ma2 sin2 θ

3
. (20)

Hence,

T =
2ma2 θ̇

2

3
+

2ma2 Ω2 sin2 θ

3
. (21)

The potential energy can again be written as,

V = −mga cos θ. (22)

The equation of motion follows from the Lagrangian L = T − V as,

d

dt

∂L
∂θ̇

=
4ma2 θ̈

3
=

∂L
∂θ

= −mga sin θ +
4ma2 Ω2 sin θ cos θ

3
. (23)

At equilibrium, θ̈ = 0, such that the equilibrium angles are,

θ0 = 0 and cos θ0 = 3g/4a Ω2. (24)

To describe the problem in terms of an effective potential, we note that the La-
grangian L = T − V is independent of time, so the Hamiltonian is constant
(although the mechanical energy of the system varies with time),

H = θ̇
∂L
∂θ̇

− L =
1

2

4ma2

3
θ̇

2 − 2ma2 Ω2 sin2 θ

3
− mga cos θ. (25)

The system can be described as having an effective mass meff = 4ma2/3 and an
effective potential,

Veff = −2ma2Ω2 sin2 θ

3
− mga cos θ , (26)

dVeff

dθ
= −4ma2 Ω2 sin θ cos θ

3
+ mga sin θ, (27)

d2Veff

dθ2 = −4ma2 Ω2 cos 2θ

3
+ mga cos θ. (28)

At equilibrium, dVeff/dθ = 0, which yields that same equilibrium angles as found
above (so we could have skipped finding the general equations of motion).

The equilibria are stable provided d2Veff(θ0)/dθ2 = keff > 0, in which case the

angular frequency of small oscillations is ω =
√

keff/meff .

For θ0 = 0,

keff =
d2Veff

dθ2 = mga − 4ma2 Ω2

3
, (29)

ω =

√√√√mga − 4ma2 Ω2/3

4ma/3
=

√
3g

4a
− Ω2 provided

3g

4a Ω2
> 1. (30)
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For cos θ0 = 3g/4a Ω2, cos 2θ0 = 2(3g/4a Ω2)2 − 1

keff =
d2Veff

dθ2 = mga
3g

4a Ω2
− 4ma2Ω2

3

[
2
(

3g

4a Ω2

)2

− 1

]

=
3mg2

4Ω2
− 3mg2

2Ω2
+

4ma2Ω2

3
=

4ma2Ω2

3
− 3mg2

4Ω2
,(31)

ω =

√
keff

4ma2/3
=

√
Ω2 − 9g2

16a2 Ω2
= Ω

√
1 −

(
3g

4a Ω2

)2

provided
3g

4a Ω2
< 1.(32)



Princeton University 1988 Ph205 Set 5, Solution 2 13

2. This problem is Ex. 9, p. 401 of E.J. Routh, The Advanced Part of a Treatise on the
Dynamics of a System of Rigid Bodies, 6th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_advanced_rigid_dynamics.pdf.

In an oscillatory mode, the mass m on the circular table of radius a moves in a straight
line that passes through the center of the circle.5 We take this line to be the x-axis,
and the z-axis to be vertical.

The lengths of the strings on the table, from mass m to the n equally spaced points
on the circle, are,

dj =
√

a2 − 2ax cos θj + x2 ≈ a

(
1 − x

a
cos θj +

x2

2a2
− x2

2a2
cos2 θj

)

= a − x cos θj +
x2

2a
sin2 θj. (33)

ḋj = −ẋ cos θj +
xẋ sin2 θj

2a
, ḋ2

j ≈ ẋ2 cos2 θj =
ẋ2

2
(1 + cos 2θj), (34)

where θj is the angle to the x-axis of the string connected to hanging mass j, and in
the approximations we keep terms to second order in the small quantities x and ẋ in
an analysis of small oscillations.

Then, the z-coordinate of mass j is zj = −(l − dj), where l is the length of the string.

The potential energy can be written as,

V =
∑

i

(−mgzi) ≈ −nmgl + mg
∑

i

(
a − 2x cos θi +

x2 sin2 θi

2a

)
. (35)

Now, ∑
j

cos θj = Re
∑

j

eiθj = Re eiθ1
∑
j

e(j−1)2πi/n = Reeiθ1
∑
j

(e2πi/n)j−1

= Re eiθ1
1 − (e2πi/n)n

1 − e2πi/n
= 0, (36)

and,

∑
j

sin2 θj =
∑
j

1 − cos 2θj

2
=

n

2
−∑

j

cos 2θj

2
. (37)

5There also exists an oscillatory mode in which mass m moves in a small circle, which is equivalent to
the sum of two linear modes in directions 90◦ apart, and 90◦ out of phase. To find the angular frequency of
these oscillations, it is sufficient to consider a single linear mode.
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For n ≥ 3, the sum is zero, as in eq. (36), but for n = 2 it is nonzero. So, for n ≥ 3,
the potential reduces to,

V ≈ nmg(a − l) +
mgnx2

2a
, (38)

which is springlike with effective spring constant k = mgn/a.

The kinetic energy is,

T =
mẋ2

2
+
∑
j

mḋ2
j

2
≈ mẋ2

2
+

mẋ2

4

∑
j

(1 + cos 2θj) → mẋ2

2

(
1 +

n

2

)
for n ≥ 3. (39)

For n ≥ 3 and small oscillations, the system reduces to one of effective mass m(n+2)/2
and spring constant k = mgn/a, for which the angular frequency of the oscillations is.

ω =

√
ng

(n + 2)a
. (40)

We now return to the special case of n = 2.

For motion along the line between the two hanging masses, we have θ1 = 0, θ2 = π,∑
j sin2 θj = 0, and so the “oscillation” frequency is 0.

For motion transverse to the line between the two hanging masses, we have θ1 = π/2,
θ2 = −π/2,

∑
j sin2 θj = 2 and

∑
j cos 2θj = −2, so the effective spring constant is

mg/a, the effective mass is m/2, and the angular frequency of small oscillations is

ω =
√

2g/a.
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3. For a particle sliding inside a cone of half angle α,

the kinetic energy is,

T =
mṙ2

2
+

mr2 sin2 α φ̇
2

2
, (41)

the potential energy can be written as,

V = mgr cos α. (42)

and the (conserved) angular momentum about the vertical axis is,

L = mr2 sin2 α φ̇, φ̇ =
L

mr2 sin2 α
. (43)

The conserved energy of the system can then be written as,

E = T + V =
mṙ2

2
+

L2

2mr2 sin2 α
+ mgr cos α ≡ mṙ2

2
+ Veff . (44)

From the effective potential,

dVeff

dr
= − L2

mr3 sin2 α
+ mg cosα, keff =

d2Veff

dr2
=

3L2

mr4 sin2 α
(> 0). (45)

Given a value L0 of the angular momentum, the equilibrium radius r0 is for dVeff/dr =
0,

r0 =

(
L2

0

m2g sin2 α cos α

)1/3

, L0 = m sinα
√

r3
0g cosα. (46)

and the angular velocity of the particle in this equilibrium orbit is,

Ω = φ̇0 =
L0

mr2
0 sin2 α

=
1

sinα

√
g cos α

r0
. (47)

The angular frequency of small oscillations is,

ω =

√
keff

m
=

√√√√ 3L2
0

m2r4
0 sin2 α

=

√
3g cosα

r0
=

√
3 Ω sinα (48)

For sinα = 1/
√

3 we have that ω = Ω, and the oscillating orbit is a tilted plane. For
sinα = 1/2

√
3 we have that ω = Ω/2, and the oscillating orbit takes 2 revolutions to
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return to the same place, as shown in the figure below with the first revolution in blue,
and the second in red.

For sin α ≥ 1/
√

3, ω ≥ Ω, the oscillating orbit is described as a “wobble” in Prob. 18,
p. 399 of K.R. Symon, Mechanics (Addison-Wesley, 1971),
http://kirkmcd.princeton.edu/examples/mechanics/symon_71.pdf, while for sinα < 1/

√
3,

ω < Ω, the oscillating orbit is described as an “up-and-down spiraling motion”.

For a more exotic example of motion of a particle on a cone, see
http://kirkmcd.princeton.edu/examples/birkeland.pdf.
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4. In the problem of a central force, from a fixed point, acting on mass m, the motion lies
in a plane perpendicular to, say, the z-axis. The angular momentum L = mr2 θ̇, in a
cylindrical coordinate system (r, θ, z), about the z axis is conserved, so we can write
the (conserved) energy of the system as,

E =
m

2
(ṙ2 + r2 θ̇

2
) + V (r) =

mṙ2

2
+

L2

2mr2
+ V (r) ≡ mṙ2

2
+ Veff , (49)

where the introduction of the effective potential,

Veff =
L2

2mr2
+ V (r), (50)

renders the problem to be 1-dimensional.

For central potentials of the form,

V (r) = −C

rλ
, (51)

for constants C and λ, we have,

dVeff

dr
= − L2

mr3
+

λC

rλ+1
,

d2Veff

dr2
=

3L2

mr4
− λ(λ + 1)C

rλ+2
, (52)

Equilibrium circular orbits for given angular momentum L0 exist at radius r0 such that
dVeff(r0)/dr = 0,

r2−λ
0 =

L2
0

λCm
, Ω = θ̇(r0) =

L0

mr2
0

, (53)

where Ω is the (constant) angular velocity of the stable orbit.

The effective spring constant for small oscillations about the equilibrium circular orbit
is,

keff =
d2Veff(r0)

dr2
=

L2
0

mr4
0

(
3 − λ(λ + 1)Cmr2−λ

0

3L2
0

)
=

L2
0

mr4
0

(2 − λ). (54)

Stable orbits exists only if keff > 0, i.e.,

λ < 2 for stability. (55)

For small oscillations of a perturbed orbit, relative to a stable circular orbit, we write
the radial motion as,

r(t) ≈ r0(1 + ε cosωt), (56)

where ε � 1 is a constant, and the angular frequency of the oscillation is,

ω =

√
keff

m
=

L0

mr2
0

√
2 − λ = Ω

√
2 − λ. (57)
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The corresponding motion in θ is then related by,

θ̇ =
L0

mr2
≈ L0

mr2
0

(1 − 2ε cos ωt) = Ω(1 − 2ε cos ωt), (58)

θ(t) = Ω(
(
t− 2

ω
ε sinωt

)
= Ω t − 2ε√

2 − λ
sinωt. (59)

The oscillatory motion is simply periodic only if ω is an integer multiple Ω, i.e., for
λ = 1 (gravity), −2 (springs) or −7, as illustrated in the figures below, where φ = Ω t.

For λ = −2,

r − r0 = εr0 cos 2Ω t, r0(θ −Ω t) = −εr0 sin 2Ωt, (60)

which is uniform rotation with angular velocity −2Ω relative to the point r0, Ω t in
the rotating frame of the unperturbed orbit. That is, the motion can be described as
motion in a circle (epicycle) about a point that moves in a circle.

This description in terms of an epicycle can also be applied to the cases of λ = 1 and
−7, and gives the correct shape of the perturbed orbit. However, in these cases, the
epicycle model does not correctly predict where the oscillating mass is at time t.6 In
particular, for λ = 1 (gravity), we have,

r − r0 = εr0 cosΩ t, r0(θ − Ω t) = −2εr0 sinΩt, (61)

which corresponds to motion in an ellipse with major axis twice the minor axis, in the
rotating frame of the unperturbed mass. We could call this relative, elliptical motion
a “Newtonian epicycle”.

6To give a better description of gravitational orbits with large oscillations, Copernicus advocated use of
epicycles upon epicycles (which can provide any desired accuracy. Kepler was the first to note that the a
single ellipse suffices (for a single force center).
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5. (a) The angular velocity ω of the orbit of a small mass m just above the surface of a
spherical mass M = 4πρr3/3 of radius r and mass density ρ is related by,

F = ma = mω2r =
GmM

r2
, ω2 =

GM

r3
=

4πGρ

3
, (62)

so the period T = 2π/ω is independent of r.

(b) Satellite Paradox.

We use an energy method.

The energy of mass m in a (near) circular orbit of radius r with velociity v about
large mass M can be written as,

E =
mv2

2
− GMm

r
= −GMm

2r
= −mv2

2
, (63)

noting that v2 = ω2r2 = GM/r, as follows from eq. (62),

Due to the friction of the atmosphere, F = −αv, the satellite loses energy at rate,

F · v = −αv2 =
dE

dt
= −mvv̇, (64)

v̇

v
=

α

m
, v(t) = v0 eαt/m, (65)

assuming that α is constant.

The velocity v increases as the satellites falls down!

The loss of kinetic energy due to friction is compensated by the conversion of
gravitational potential energy into kinetic energy (at twice the rate of the loss of
energy).7

For an approximately circular orbit,

r(t) =
GM

v2
=

GM

v2
0

e−2αt/m = r0 e−2αt/m. (66)

A simple solution also follows from the assumption that F = −αv2 v̂, i.e., v(t) =
v0/(1 − αv0t/m).8 Again, the velocity increases as the satellite falls.

This problem was considered by Newton, as reviewed in D.G. King-Hele and
D.C.M. Walker, The Effect of Air Drag on Satellite Orbits: Advances in 1687 and
1987, Vistas Astron. 30, 269 (1967),
http://kirkmcd.princeton.edu/examples/mechanics/king-hele_va_30_269_87.pdf

7Among the relevant literature, see D.G. King-Hele, The Descent of an Earth-Satellite Through the
Upper Atmosphere, J. Brit. Interplanetary Soc. 15, 314 (1956),
http://kirkmcd.princeton.edu/examples/mechanics/king-hele_jbis_15_314_56.pdf,
L. Blitzer, Satellite Paradox, Am. J. Phys. 39, 882 (1971),
http://kirkmcd.princeton.edu/examples/mechanics/blitzer_ajp_39_882_71.pdf.

8M. Morduchow and G. Volpe, Exact Analytical Solutions for Orbits of Bodies with Atmospheric Drag
AIAA J. 11, 381 (1973),
http://kirkmcd.princeton.edu/examples/mechanics/morduchow_aiaaj_11_381_73.pdf
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6. This is probs. 6.27-28, p. 271 of G.R. Fowles and G.L. Cassiday, Analytical Mechanics,
7th ed. (Thomson Brooks/Cole, 2004),
http://kirkmcd.princeton.edu/examples/mechanics/fowles_chap6.pdf

A comet in a parabolic orbit about the Sun has its perihelion at distance p.

(a) A parabolic orbit is the case between the bound elliptical orbits (with total energy
E < 0), and the unbound hyperbolic orbits (with total energy E > 0. That is,
the total energy of a mass in a parabolic orbit is zero.

We could also note that the energy is E = mv2/2 = GMm/r, so for large r,
E → mv2

∞/2. Also, angular momentum is conserved about the force center,
L = mr× v, so for large r, where v becomes parallel to the axis of the parabola,
we must have v∞ → 0, and hence E = 0.

This argument does not hold for a hyperbolic trajectory, for which r becomes
parallel to v, so v∞ can be/is > 0, and E > 0.

(b) Recalling the analysis of the orbit equation, p. 105 of
http://kirkmcd.princeton.edu/examples/Ph205/ph205l10.pdf,
we have that for energy E = 0, the equation of the parabola with respect to the
force center of mass M is,

1

r
=

GMm2

L2
(1 + cos θ), (67)

where L is the angular momentum of mass m with respect to the force center.

The perihelion p is then related by,

1

p
=

2GMm2

L2
, L = m

√
2GMmp. (68)

(c) The equation (67) of the parabolic orbit can be rewritten as,

1

r
=

1 + cos θ

2p
, cos θ =

2p

r
− 1. (69)

Hence the angle of the intersection of the comet’s and the Earth’s orbit (of radius
a) about the Sun is given by,

cos θ =
2p

a
− 1, (70)

which exists only if p < a.
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(d) We recall p. 106 of the above link, which showed that the time t for the mass to
move from the perihelion to radius r is related by, using eq. (68),

t =

√
m

2

∫ r

p

r′ dr′√
Er′2 + GMmr′ − L2/2m

. (71)

t =

√
1

2GM

∫ r

p

r′ dr′√
r′ − p

=

√
1

2GM

∫ r−p

0

(x + p)√
x

dx

=

√
1

2GM

(
2

3
(r − p)3/2 + 2p(r − p)1/2

)
=

1

3

√
2r3

GM

√
1 − p

r

(
1 +

2p

r

)
. (72)

Hence, the time spent by the comet inside the Earth’s orbit (of radius a) is ,

T =
2

3

√
2a3

GM

√
1 − p

a

(
1 +

2p

a

)
(for p < a). (73)

The maximum time is related by,

dT

dp
= 0 =

2

3

√
2a3

GM

⎡
⎣− 1

2a
√

1 − p
a

(
1 +

2p

a

)
+

2

a

√
1 − p

a

⎤
⎦ ,

p

a
=

1

2
, (74)

Tmax =
4

3

√
a3

GM
=

2

3π

⎛
⎝2π

√
a3

GM

⎞
⎠ = 0.21 yr ≈ 11weeks. (75)
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7. This is Prob. 50, p. 154 of K.R. Symon, Mechanics, 3rd ed. (Addison-Wesley, 1971),
http://kirkmcd.princeton.edu/examples/mechanics/symon_71.pdf.

The effective potential for a particle of mass m and angular momentum L about the
origin, subject to the attractive central force,

F = −C

r3
, V = − C

2r2
, (76)

with C > 0 is,
Veff =

L2

2mr2
+ V =

L2

2mr2
− C

2r2
=

L2 − 2mC

2mr2
, (77)

dVeff

dr
= −L2 − 2mC

mr3
, (78)

d2Veff

dr2
=

3(L2 − 2mC)

mr4
. (79)

Circular orbits (with dVeff(r0)/dr = 0) are possible with any radius r0, but only for
angular momentum L =

√
2mC. However, none of these circular orbits is stable, since

the effective spring constant keff = d2Veff(r0)/dr2 is 0.

To discuss the form of the orbits, we consider the orbit equation,

d2u

dθ2 = −u− m

L2u2
F (1/u) = u

(
Cm

L2
− 1

)
≡ βu, (80)

where L is the nonzero angular momentum about the force center. Hence, for orbits
with initial conditions u0 and du/dθ|0 = −u2 dr/dθ|0 = u′

0,

u = u0 cosh βθ +
u′

0

β
sinh βθ = a eβθ + b e−βθ, (β > 0), (81)

u = u0 + u′
0θ, (β = 0), (82)

u = u0 cos βθ − u′
0

β
sinβθ = u0 cos(|β| θ) +

u′
0

|β| sin(|β| θ). (β < 0). (83)

Circular orbits correspond to the form (82) with u′
0 = 0 (and L2 = 2mC). However,

for any nonzero value of u′
0, these orbits are spirals, either in to the origin or out to

infinity.

Orbits of the form (81) are inward spirals for increasing θ if a = 0, but in general spiral
outwards after possible inward behavior for small (positive) θ.

Orbits of the form (83) have u = 0 (r = ∞) for some value of θ in the interval
−π/ |β| < θ < π/ |β|. For example, orbits with u′

0 = 0 have the form r = r0/ cos βθ; a
few of these are sketched below.
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8. The orbit equation for the force law,

F = −Am

r2
− Bm

r3
, (84)

is,

d2u

dθ2 = −u − m

L2u2
F (1/u) =

Am2

L2
− u

(
1 − Bm2

L2

)
≡ α − β2u, (85)

where α = Am/L2, β =
√

1 − Bm2/L2 and L is the nonzero angular momentum of
mass m about the force center.

Consequently, the orbit has the form,

u =
1

r
=

α

β2 + C cosβθ. (86)

We are concerned with a possible, small correction, −B/r2, to the Newtonian gravi-

tational force, −a/r2, so β =
√

1 − Bm2/L2 differs only slightly from unity, and the
orbits are very similar to the elliptical orbits of Kepler and Newton. So, we infer that
the form (86) can be written as,

u =
1

r
=

1 + ε cos βθ

a(1 − ε2)
, (87)

where a is the semimajor axis of the orbital ellipse, ε is the eccentricity, and the
departure from the Newtonian form is in the factor cosβθ, which implies that the
ellipse precesses slowly. The sense of the precession is in the direction of the orbital
motion, since β < 1, such that θ must increase by greater than 2π from one perihelion
to the next.

Writing β = 1 − δ, we have that δ = Bm2/2L2, and the perihelion advances by,

Δθ =
2π

β
− 2π ≈ 2πδ =

πBm2

L2
, (88)

per orbital revolution.

From p. 96 of http://kirkmcd.princeton.edu/examples/Ph205/ph205l9.pdf,
we have that,

L =
2πma2

√
1 − ε2

T
, (89)

while from Kepler’s 3rd law,

T 2 =
4π2a3

A
. (90)

Then,

L2 = 4π2m2a4(1 − ε2)
A

4π2a3
= Am2a(1 − ε2), (91)
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and,

Δθ =
πBm2

L2
=

B

2Aa(1 − ε2)
=

πη

1 − ε2
, (92)

where η = B/Aa � 1.

The orbital period of Mercury is 0.24 Earth years, so in 100 Earth years, Mercury has
100/0.24 = 416.7 orbital periods. During this time, the perihelion of Mercury advances
by 40′′ = 40/60 · 60 · (180/π) = 1.9 × 10−4 rad, which is also 416.7Δθ = 1360η, for
εMercury = 0.206.

Altogether, the model of gravity with a 1/r3 correction could explain the advance of
the perihelion of Mercury if,

η =
B

Aa
=

1.9 × 10−4

1360
= 1.4 × 10−7. (93)
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9. (a) For the gravitational potential,

V = −GMm

r
− GMmηR2(1 − 3 cos2 θ)

5r3
, (94)

for interaction in with mass m at distance r from the Sun, of mass M , the effective
potential is,

Veff = V +
L2

2mr2
= −GMm

r
− GMmηR2

5r3
+

L2

2mr2
, (95)

dVeff

dr
=

GMm

r2
+

3GMmηR2

5r4
− L2

mr3
, (96)

d2Veff

dr2
= −2GMm

r3
− 12GMmηR2

5r5
+

3L2

mr4
. (97)

where M is the mass of the Sun, and the motion is in the plane θ = 90◦.
For the equilibrium circular orbit of radius r0, the angular momentum is L =
mr2

0Ω, where Ω is the equilibrium angular velocity, and the condition that eq. (96)
be zero at equilibrium tells us that,

0 =
GMm

r2
0

+
3GMmηR2

5r4
0

− mΩ2r0,
1

r3
0

=
Ω2

GM
− 3ηR2

5r5
0

, (98)

which is a perturbed version of Kepler’s 3rd law.

The effective spring constant for small oscillations about the equilibrium orbit is,

keff(r0) =
d2Veff

dr2
= −2GMm

r3
0

− 12GMmηR2

5r5
0

+ 3mΩ2 = mΩ2 − 6GMmηR2

5r5
0

,(99)

and the angular frequency of the small oscillations is,

ω =

√
keff

m
= Ω

√
1 − 6GMηR2

5Ω2r5
0

≈ Ω

(
1 − 3GMηR2

5Ω2r5
0

)
≡ Ω(1 − δ). (100)

The period of a perturbed orbit is 2π/ω, which is slightly larger than that of a
circular orbit. As such, the perihelion of a perturbed orbit advances, with angular
velocity

ωprecess ≈ Ωδ =
3GMηR2

5Ωr5
0

. (101)

The observed precession of the perihelion of Mercury, 40′′ per century, corresponds
to an angular velocity of the precession,

ωprecess =
40

60 · 60 · 180/π · 100π × 107
= 6.2 × 10−14 rad/s. (102)
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For this to be explained by eq. (101), due to oblateness of the Sun, we need,

η =
5Ωr5

0ωprecess

3GMR2
=

10πr5
0ωprecess

3GMR2TMercury

=
10π · (6 × 1010)5 · 6.2 × 10−14

3 · 6.7 × 10−11 · 2 × 1030 · (7 × 108)2 · 0.24π × 107
≈ 10−3, (103)

for M = 2× 1030 kg, R = 7× 108 m, r0 = 6× 1010, TMercury = 0.24 Earth year (of
≈ π × 107 s).

(b) The force law of an oblate Sun, follows from eq. (94) as,

Foblate = −GMm

r2

(
1 − 3ηR2

5r2

)
, (104)

for motion in the equatorial plane of the Sun, which is formally similar to the
force law of general relativity,

FEinstein = −GMm

r2

(
1 − 3L2

(mrc)2

)
, (105)

Hence, the results of part (a) apply for general relativity with the replacement,

ηR2

5
→ L2

(mc)2
=

r4
0Ω

2

c2
. (106)

Then, eq. (101) for the predicated angular velocity of the precession of the peri-
helion becomes,

ωprecess =
3GMηR2

5Ωr5
0

→ 3GMΩ

r0c2
=

6πGM

r0c2T
, (107)

The advance of the perihelion per revolution is,

δφ = ωprecessT =
6πGM

r0c2
=

24π3r2
0

T 2c2
, (108)

where we used Kepler’s 3rd law, GM/r3
0 = Ω2 = 4π2/T 2 in the last step.

Strictly, r0 is the semimajor axis a of the orbit, as noted by Einstein in eq. (14)
of his calculation of the precession,
http://kirkmcd.princeton.edu/examples/GR/einstein_skpaw_831_15_english.pdf

δφ =
24π3a2

T 2c2(1 − ε2)
, (109)

to order v2/c2, where ε is the eccentricity of the orbit.


