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1. (a) Kepler’s Equation of Time (Secular Equation).

As well as stating his three laws, Kepler also gave an equation of time vs. position
in elliptical-orbit motion,

Ωt = φ − ε sinφ, (1)

where Ω = 2π/Torbit is the average angular velocity of the motion, ε = eccentricity,
and φ = eccentric anomaly = angle from the center of the ellipse, with respect to
the major axis of length 2a, to the point A on a circle of radius a such that its
projection, B, onto the ellipse is the position described by time t of eq. (1).

Angle θ = usual angle from the force center/focus = true anomaly.

For the ellipse,

1

r
=

1 + ε cos θ

a(1 − ε2)
, (2)

where θ = 0 at perihelion, first show that,

cos φ =
cos θ − ε

1 − ε cos θ
. (3)

Then, use L = mr2θ̇ to derive an expression for φ̇, which can be integrated to
give an equation of time.

Show also that,

L

mab
=

√
GM

a3
= Ω, (4)

where b = a
√

1 − ε2 is the semiminor axis, which permits the equation of time to
be written in the Keplerian form (1). Kepler was aware of the second equality in
eq. (4), but not the first (due to Newton).

(b) The Greek Eccentricity.

Let α be the angle to the orbiting mass from the empty focus of the elliptical
orbit, as shown in the right figure above. For small eccentricity ε � 1, show that,

α̇ =
L

ma
= constant. (5)

This result supports the Greek view that the Sun is in uniform motion about a
point at distance 2aε from the Earth. Hence, the Greek eccentricity is twice the
Keplerian.
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2. Spin-Orbit Coupling.

A prominent astronomical fact is that the Moon always shows the same face to the
Earth. This means that the Moon rotates once about its axis each Earth month. It
turns out that the “days” of Mercury and Venus are nearly equal to their respective
“years,”1 and that the periods of axial and orbital revolution are equal for most of
the moons of Jupiter, Saturn, Uranus and Neptune. In 1879, George Darwin (son of
Charles) proposed that this has come about due a coupling between the “day” and
month/year via tidal friction2 – resistance of the moon or planet to changes in shape
induced by the 1/r2 variation of gravity of the body at the focus of its orbit, and that
eventually the Earth day will equal one month.3,4

In this problem you should deduce a kind of existence proof that a spin-orbit coupling
mechanism leads to changes of the “day” and the “month/year” such that these can
eventually become equal.

For simplicity, consider a point satellite of mass m that revolves with orbital angular
velocity ω around a planet of mass M in a nearly circular orbit of radius R. The planet
rotates about its axis with “spin” angular velocity Ω, its moment of inertia about this
axis is I , and this axis is perpendicular to the plane of the satellite’s orbit.

Find expressions for the total angular momentum L of the system about its center
of mass, and for the total (kinetic + potential) energy E. Eliminate R from these
expressions to show that,

L = IΩ +
C

ω1/3
, E =

IΩ2

2
− Cω2/3

2
, (6)

and deduce the value of C .

1Mercury’s “day” is 2/3 of its “year.”
2G.H. Darwin, The Determination of the Secular Effects of Tidal Friction by a Graphical Method, Proc.

Roy. Soc. London 29, 168 (1879), http://kirkmcd.princeton.edu/examples/astro/darwin_prsl_29_168_79.pdf
On the Precession of a Viscous Spheroid, and on the remote History of the Earth, Phil. Trans. Roy. Soc.
London 170, 447 (1879), http://kirkmcd.princeton.edu/examples/astro/darwin_ptrsl_170_447_79.pdf
On the Secular Changes in the Elements of the Orbit of a Satellite revolving about a Tidally distorted Planet,
Phil. Trans. Roy. Soc. London 171, 713 (1880),
http://kirkmcd.princeton.edu/examples/astro/darwin_ptrsl_171_713_80.pdf
On the Analytical Expressions which give the History of a Fluid Planet of Small Viscosity, attended by a
Single Satellite, Proc. Roy. Soc. London 30, 255 (1880),
http://kirkmcd.princeton.edu/examples/astro/darwin_prsl_30_255_79.pdf

3This hypothesis was first postulated by Kant (1754), pp. 6-9 of Whether the Earth Has Undergone an
Alteration of Its Axial Rotation, Wöchentliche Frag- und Anzeigungs-Nachricten (Königsberg), Nos. 23-24
(1754); English translation in W. Hastie, Kant’s Cosmogony, (James Maclehose, Glasgow, 1900),
http://kirkmcd.princeton.edu/examples/astro/kant_cosmogony.pdf. Kant’s (verbal) argument was
that if the Earth’s day does not equal a month, then the tidal bulge caused by the Moon rotates with respect
to the Earth and experiences tidal friction, which slows down the Earth’s rotation until the day equals a
month. The present problem is a slight mathematical elaboration of Kant’s argument.

4That the length of a month is increasing seems to have been first noted by Halley (1695), p. 174 of
Some Account of the Ancient State of the City of Palmyra, Phil. Trans. Roy. Soc. London 19, 160 (1695),
http://kirkmcd.princeton.edu/examples/astro/halley_ptrsl_19_160_1695.pdf
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In general, the angular velocities ω and Ω are different. If ω �= Ω then tidal friction
reduces the (kinetic + potential) energy E while conserving angular momentum. Show
that there is a range of initial conditions such that eventually ω0 = Ω0.

5

For the Earth-Moon system, ΩE is decreasing with time. Give an expression for R as a
function of Ω (and not ω) to show that R increases as Ω decreases. Then, by Kepler’s
law for the system, ω must be decreasing also.

Darwin noted that extrapolation of the above scenario into the past suggests there
may have been a time when R = RE and the Earth and Moon were part of a single
protoplanet.6

5Hint: Consider the variable x = C/ω1/3 = orbital angular momentum.
6For a popular review, see P. Goldreich, Tides and the Earth-Moon system, Sci. Am. April, 42 (1972),

http://kirkmcd.princeton.edu/examples/astro/goldreich_sa_4_42_72.pdf,
and also C.L. Coughenour, A.W. Archer and K.J. Lacovara, Tides, tidalities, and secular changes in the
Earth-Moon system, Earth-Sci. Rev. 97, 59 (2009),
http://kirkmcd.princeton.edu/examples/astro/coughenour_esr_97_59_09.pdf.
Nowadays, the so-called impact-origin hypothesis enjoys greater favor, although the issue remains unsettled.
See, for example, M. Ćuk and S.T. Stewart, Making the Moon from a Fast-Spinning Earth: A Giant Impact
Followed by Resonant Despinning, Science 338, 1047 (2012),
http://kirkmcd.princeton.edu/examples/astro/cuk_science_338_1047_12.pdf,
I. Crawford, The Moon and the early Earth, A&G 54, 1.31 (2013),
http://kirkmcd.princeton.edu/examples/astro/crawford_ag_54_1.31_13.pdf.
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3. (a) Skyhook.

As part of the Equatorial-African Space Program, Idi Amin proposed to launch
a “skyhook” satellite. This consists of a long rope which is in orbit such that the
rope is along a radius through the center of the Earth, with the lower end just
above the Earth’s surface. The skyhook orbits the Earth once a day, so the lower
end appears suspended in space above a fixed point on the equator. “I just want
a place to hang my hat”: I. Amin

Derive a differential equation for the tension in the rope. Note that the tension
in the rope vanishes at its ends to show,

rmax =
rE

2

(√
1 +

8GmE

ω2
Er3

E

− 1

)
, (7)

if rmin = rE .

Is the skyhook stable against hanging a hat on it?

To get a sense of this issue, consider its potential energy and the kinetic energy
of its center-of-mass motion.

(b) Ringworld.

A 1970 science-fiction novel by Larry Niven with the above title considered a
band/ring about a Sunlike star at the radius of the Earth, which rotated with
(high) angular velocity such that the centrifugal force equaled Earth’s gravity.

Is this system stable against a radial perturbation of its center of mass away from
the center of the star?
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4. Some dimensional analysis:

(a) Modeling.

We wish to investigate some phenomenon by means of a scale model, in which all
lengths are scaled by l′ = αl (usually α < 1). However, we use the same material
to construct the model as in the original, so the density ρ is unchanged. In
general, we need to stretch or shrink the time scale, t′ = βt, which we accomplish
by scaling the velocities, v′ = αv/β.

How is the force F ′ in the scale model related to force F in the original (such that
their motions are similar).

If the force involves gravity, how is the scaling further constrained?

Example: A model of a ship with α = 1/n is observed to experience a drag force
F ′ when traveling through a tank of water with velocity v′. For what velocity v
of the original is the model result relevant?

(b) If we can write a drag force as F = Cdv
pAq where A is the area of the object

projected onto a plane perpendicular to v, and Cd, p and q are constants, then
what are p and q such that scaling holds?

(c) A particle starts from rest, subject to the force F = −Ar − Bv, where A and B
are constants. Show by dimensional analysis that the time to reach the origin is
independent of the initial position.

(d) A particle starts from rest subject to the force F = −A r̂/rn, where A > 0 and n
are constants. Show that the time for the particle to fall to the origin from initial

distance r0 scales as T ∝ r
n+1

2
0 .
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5. Biomechanics.

(a) How does the amount of time an animal can survive in a hot, dry desert depend
on is height/length L?

(b) Animals are heat engines – they must sweat to live. How does “horsepower” scale
with the size L of an animal?

(c) How does the maximum running speed of an animal scale with its size L if air
resistance is the limit, and if gravity is the limit (as in running uphill)?

(d) How does the height h that an animal can jump depend on its size L.
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6. (a) Calculate the differential cross section in the center-of-mass frame for elastic scat-
tering of spheres of radius b off a sphere of radius a (both with no initial rotation).

(b) In the lab frame, in which the sphere of radius a is at rest, show that the differential
cross section can be written as,

dσ

dTlost
=

πa2

Tlost,max
, (8)

where Tlost is the kinetic energy lost by the other sphere (and gained by the sphere
of radius a) during the scattering.

What are the extremes of the “lost” energy, Tlost,min and Tlost,max?
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7. (a) A parallel beam of projectiles is fired from space toward the Moon with initial
velocity v0. What is the collision cross section σ for the projectiles to hit the
Moon, neglecting its motion?

Express σ in terms of the radius R of the Moon, the escape velocity ve from the
Moon, and v0.

There is no need to integrate over Rutherford’s formula – go back to basics!

What would the cross section be if gravity were a repulsive force, F = +GMm/r2?

(b) The interaction between an atom and an ion is described by the potential energy
V (r) = −C/r4 for a constant C (and r such that the atom and ion are not in
contact).7

Make a sketch of the effective potential energy Veff(r). Note that if the total
energy of the ion exceeds the maximum value of the effective potential, then the
ion spirals inward to the atom.

Find the capture cross section for an ion to strike the atom if it has velocity v∞
when far from the atom, supposing mion � matom.

7C = P 2
a e2/2, where Pa is the electric polarizability of the atom and e is the electric charge of the ion.
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8. Calculate the differential cross section for scattering off the potential,

V (r) =

⎧⎪⎨
⎪⎩

0 r > a,

−V0 r < a.
(9)

A trick is to use the problem on p. 16 of L.D. Landau and E.M. Lifshitz, Mechanics,
3rd ed. (Pergamon, 1976), http://kirkmcd.princeton.edu/examples/mechanics/landau_mechanics.pdf,
to note that this problem is equivalent to light scattering off a sphere of index of

refraction n =
√

T/(T + V , such that n = 1 outside the sphere and n > 1 inside it.

To relate the impact parameter b to the scattering
angle θ, you might solve for distance d, shown in
the figure, in two ways to find,

b2 =
a2n2 sin2 θ/2

n1 + 1 − 2n cos θ/2
. (10)

What is θmax?

Then, for n > 1 inside the sphere you should find,

dσ

d cos θ
=

πa2n2

2 cos θ/2

(n cos θ/2 − 1)(n − cos θ/2)

(n1 + 1 − 2n cos θ/2)2
. (11)

The case of n < 1 is not possible for light scattering in air, but for scattering of light
off an air bubble under water, noutside/ninside > 1. Here, there would be no limit to the
scattering angle “at first glance”. However, as b → a, light won’t enter the bubble,
but rather just bounces off the surface by “total external reflection”. [Try looking at a
bubble in a swimming pool sometime.] The reflection scattering is isotropic over the
allowed range of angles (as in Prob. 6 above).
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9. Calculate the differential cross section for the scattering of point particles off the re-
pulsive central force whose potential is V = α/r2 where α is a positive constant. The
beam particles have energy E.

This problem is well suited to the formal method of sec. 18 of L.D. Landau and E.M. Lif-
shitz, Mechanics, 3rd ed. (Pergamon, 1976),
http://kirkmcd.princeton.edu/examples/mechanics/landau_mechanics.pdf.

You should find that the impact parameter b is related to the scattering angle θ by,

b2 =
α

E

(π − θ)2

θ(2π − θ)
, (12)

and hence, the differential cross section per unit solid angle is,

dσ

dΩ
=

π2α

E sin θ

π − θ

θ2(2π − θ)2
. (13)

Sketch this.

As for the Rutherford cross section, since the force extends to infinity, the total cross
section diverges.
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Solutions

1. (a) Kepler’s Equation of Time (Secular Equation).

For the ellipse r = a(1 − ε2)/(1 + ε cos θ), we have that,

cos φ =
r cos θ + εa

a
=

(1 − ε2) cos θ

1 + ε cos θ
+ ε =

(1 − ε2) cos θ + ε + ε2 cos θ

1 + ε cos θ
=

cos θ + ε

1 + ε cos θ
,(14)

cos θ =
cosφ − ε

1 − ε cosφ
, 1 + ε cos θ =

1 − ε2

1 − ε cosφ
,(15)

sin θ =

√√√√1 −
(

cos φ − ε

1 − ε cos φ

)2

=

√
1 − 2ε cosφ + ε2 cos φ2 − cos2 φ + 2ε cosφ − ε2

1 − ε cos φ√
(1 − ε2)(1 − cos2 φ)

1 − ε cos φ
=

sin φ
√

1 − ε2

1 − ε cos φ
.(16)

Taking the time derivative of eq. (14), and recalling that L = mr2 θ̇ and b =
a
√

1 − ε2,

− sinφ φ̇ =
− sin θ θ̇

1 + ε cos θ
− (cos θ − ε)ε sin θ θ̇

(1 + ε cos θ)2
= −sin θ θ̇(1 − ε2)

(1 + ε cos θ)2
,

= − sinφ

1 − ε cosφ

L

mr2

1 − ε2

(1 + ε cos θ)2
= −sinφ

√
1 − ε2

1 − ε cosφ

L

ma2
√

1 − ε2
(17)

(1 − ε cosφ) φ̇ =
L

mab
, (18)

φ − ε sinφ =
Lt

mab
. (19)

We also note Kepler’s 3rd law, Ω2a3 = GM , where Ω = 2π/T is the average
angular velocity of mass m in orbit around mass M � m, and that from p. 105
of http://kirkmcd.princeton.edu/examples/Ph205/ph205l10.pdf,

L2 = GMm2a(1 − ε) = Ω2m2a4(1 − ε2) = (Ωmab)2. (20)

so Kepler’s equation of time (19) can also be written as,

φ − ε sin φ = Ωt. (21)
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(b) The Greek Eccentricity.

Let α be the angle to the orbiting mass from the empty focus of the elliptical
orbit, as shown in the figure below.

By the law of sines,

sinα

r
=

sinβ

2εa
=

sin(π − α − (π − θ))

2εa
=

sin(θ − α)

2εa
=

sin θ cosα − cos θ sinα

2εa
,(22)

tanα =
sin θ

cos θ + 2εa/r
. (23)

In the rest of the analysis, we consider small ε, and neglect terms of order ε2.

The time derivative of eq. (23) is,

(1 + tan2 α)α̇ =
cos θ θ̇

cos θ + 2εa/r
− sin θ

(cos θ + 2εa/r)2

(
− sin θ θ̇ − 2εaṙ

r2

)
. (24)

The equation of the ellipse is,

1

r
=

1 + ε cos θ

a(1 − ε2)
≈ 1 + ε cos θ

a
, r ≈ a

1 + ε cos θ
, (25)

ṙ ≈ aε sin θ θ̇

(1 + ε cos θ)2
≈ aε sin θ θ̇, (26)

cos θ +
2εa

r
≈ cos θ + 2εa

1 + ε cos θ

a
≈ cos θ + 2ε, (27)

1 + tan2 α =
(cos θ + 2εa/r)2 + sin2 θ

(cos θ + 2εa/r)2
≈ 1 + 4ε cos θ

(cos θ + 2εa/r)2
. (28)

Using these approximations in eq. (24), we have,

(1 + 4ε cos θ)α̇ ≈ (cos θ + 2ε) cos θ θ̇ + sin θ

(
sin θ θ̇ + 2εa(aε sin θ θ̇)

(1 + ε cos θ)2

a2

)

≈ θ̇(1 + 2ε cos θ), (29)

α̇ ≈ θ̇
1 + 2ε cos θ

1 + 4ε cos θ
≈ θ̇(1 − 2ε cos θ) =

L

mr2
(1 − 2ε cos θ),

≈ L

ma2
(1 + ε cos θ)2(1 − 2ε cos θ) ≈ L

ma2
= constant, (30)

where L = mr2θ̇ is the conserved angular momentum of mass m about the force
center.
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2. Spin-Orbit Coupling.

The center of mass of the planet-satellite system are at distances,

rM =
m

M + m
R, and rm =

M

M + m
R (31)

from the centers of these bodies, respectively, where R = rM + rm. The total angular
momentum of the system (ignoring possible angular momentum associated with rota-
tion of the satellite about its axis) in the rest frame of the center of mass of the system
is the constant,

L = IΩ + (Mr2
M + mr2

m)ω = IΩ + μR2ω, ω =
L − IΩ

μR2
, (32)

which provides a relation between the orbital angular velocity ω and the “spin” angular
velocity Ω, where,

μ =
mM

M + m
(33)

is the reduced mass of the system. The total kinetic + potential energy of the system
is,

E = KE + PE =
IΩ2

2
+

(Mr2
M + mr2

m)ω2

2
− GMm

R
=

IΩ2

2
+

μR2ω2

2
− GMm

R
, (34)

where G is Newton’s gravitational constant.

The equations of motion,

M r̈M = −mr̈m = −GMmR

R2
, R = rM − rm, (35)

lead readily for circular orbits to,

μR2ω2

2
=

GMm

2R
= −PE

2
, R3 =

GMm

μω2
. (36)

The first form of eq. (36) is true in general for a 1/r2 attractive force according to
the so-called virial theorem,8 while the second form is Kepler’s (3rd) law for the system
when the orbits are nearly circular, as assumed here.

If we accept Kant’s comment that the eventual effect of tidal friction is to make the
(final) “spin” angular velocity Ω0 “locked” to the final orbital angular velocity ω0, at
which time the bodies are distance R0 apart, then conservation of angular momentum
(32) and Kepler’s 3rd law (36) that R3

i ω
2
i = R3

0ω
2
0 suffice to determine ω0 and R0,

according to,

L = IΩi + μR2
i ωi = (I + μR2

0)ω0 ≈ μR2
0ω0 = μR2

i ωi
ω

1/3
0

ω
1/3
i

. (37)

8See, for example, sec. 10 of L.D. Landau and E.M. Lifshitz, Mechanics, 3rd ed. (Pergamon, 1976),
http://kirkmcd.princeton.edu/examples/mechanics/landau_mechanics.pdf.
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Thus,

ω0 = Ω0 ≈ ωi

(
1 +

IΩi

μR2
i ωi

)2

for (I � μR2
0). (38)

For the Earth-Moon system, this analysis predicts that the eventual day/month will be
48 present days,9 The only known example of a two-body system that has evolved to
a final state in which both “days” equal their common “month” is Pluto and Charon.

To establish analytically that a final state can exist with ω0 = Ω0, we use eq. (36) in
eq. (32) to write,10

L = IΩ +
(G2μM2m2)1/3

ω1/3
≡ IΩ +

C

ω1/3
≡ IΩ + x, ω =

C3

(L − IΩ)3
, (39)

where x is the orbital angular momentum (which can be taken as positive by suitable
choice of direction of the polar axis),

x = μR2ω =
C

ω1/3
> 0, C = (G2μM2m2)1/3, Ω =

L − x

I
. (40)

Since the angular momentum is constant we can write,

0 =
dL

dx
= I

dΩ

dx
+ 1,

dΩ

dx
= −3ω4/3

C

dΩ

dω
= −1

I
, (41)

which implies that if Ω decreases then so does ω.

The energy (34) can now be written as,

E =
IΩ2

2
− GMm

2R
=

IΩ2

2
− Cω2/3

2
=

IΩ2

2
− C3

2x2
=

(L − x)2

2I
− C3

2x2
. (42)

Note that E(x = 0) = −∞ and that E(x = ∞) = ∞, but that E(x) is not necessarily
a monotonic function. Taking the derivative of eq. (42), we have that,

dE

dx
= −L − x

I
+

C3

x3
= −Ω + ω =

x

I
+

C3

x3
− L

I
. (43)

Hence, if an equilibrium exists, where dE(x0)/dx = 0, we have that Ω0(x0) = ω0(x0),
and the equilibrium “spin” and orbital angular velocities are “locked”.

If we suppose that M represents the Moon and m represents the Earth, the above
argument suggests that the period of rotation of the Moon about its axis should be
equal to its orbital period once a certain kind of equilibrium was established in the

9First computed in sec. 276 of W. Thomson and P.G. Tait, A Treatise on Natural Philosophy, (Cambridge
U. Press, 1879, 1896), http://kirkmcd.princeton.edu/examples/astro/thomson_tait_sec276.pdf.

10The remainder of this solution follows G.H. Darwin, The Determination of the Secular Effects of Tidal
Friction by a Graphical Method, Proc. Roy. Soc. London 29, 168 (1879),
http://kirkmcd.princeton.edu/examples/astro/darwin_prsl_29_168_79.pdf.
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past.11 However, we can also suppose that M represents the Earth and m represents
the Moon, in which case we anticipate that the Earth-Moon system can evolve until
the Earth day equals one month, and both the Earth and the Moon present the same
face to one another at all times.

The equilibrium, dE/dx = 0, exists in eq. (43) only if,

Min

(
x

I
+

C3

x3

)
= 4

(
C

3I

)3/4

<
L

I
, (44)

L = IΩi + xi > Lmin = 4I
(

C

3I

)3/4

=
4(3C3I)1/4

3
=

4x0,min

3
> 0, (45)

noting that the minimum occurs for x0,min = (3C3I)1/4. The requirement that L be
positive (in the sense of the orbital angular momentum) means that if the “spin”
angular momentum IΩ is opposite to the orbital angular momentum (μR2ω = x) and
large, no equilibrium will exist.12 Furthermore, if the evolution is to involve increasing
orbital angular momentum x, as in the Earth-Moon system, the initial “spin” angular
momentum IΩi must be a substantial fraction of the total for eventual equilibrium
with ω0 = Ω0 to exist.

In greater detail, the equilibrium value x0 of the orbital angular momentum is a root
of the quartic equation obtained by setting eq. (43) to zero,

x4 − Lx3 + C3I = 0. (46)

When the condition (45) is satisfied, the so-called discriminant Δ of the quartic equa-
tion (46) is negative, which implies that there are two real roots and two complex
roots.

11If the Moon consists of matter somehow ejected from the Earth, it is probable that the Moon was
created with the lunar day equal to a month (at that early time).

12In planetary systems where all objects have a common origin in an initial gas cloud, the sense of the
angular momenta of all objects is typically the same.
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The figure on the previous page, from Darwin (1879), shows (among others) the lines
labeled “curve of energy” which correspond to eq. (42); the curve on the left is for a
case where no equilibrium exists, while for the curve on the right the stable equilibrium
is at b, corresponding to the root x0 of eq. (46), and the unstable equilibrium is at a,
corresponding to the root x1.

When condition (45) is satisfied, the two real roots are,13

x0,1 =
L

4
− S ±

√
3L2

4
+

L3

8S
− 4S2 , (47)

where,

S =
1

2

√√√√L2

4
+

1

3

(
Q +

81L4
min

256Q

)
, Q =

(
729L4

min

256

)1/3
⎛
⎝L2 +

√
L4 − L4

min

2

⎞
⎠

1/3

. (48)

As tidal friction decreases the energy of the system, the equilibrium at x0 (where
ω0 = Ω0) can only be reached if the initial value of x is greater than x1; otherwise the
system evolves towards x = 0, which implies increasing ω, increasing Ω, and decreasing
R until the two masses merge.14 Hence, we deduce a condition on the initial orbital
angular velocity ωi for the existence of an equilibrium final state where ω0 = Ω0,

ωi <
C3

x3
1

. (49)

If ωi < C3/x3
0, then as the energy decreases with time x decreases, ω increases, and R

decreases; whereas if C3/x3
0 < ωi < C3/x3

1, then as the energy decreases x increases, ω
decreases, and R increases with time. The Earth-Moon system is of the latter type.

Lastly, we equate the expressions for ω in eqs. (32) and (39) to obtain,

R =
(L − IΩ)2

μ1/2C3/2
,

dR

dΩ
= −2I(L− IΩ)

μ1/2C3/2
= −2μ1/2IωR2

C3/2
, (50)

which implies that if Ω decreases then R increases. Taking the derivative of the first
form of eq. (42), we find,

dE

dΩ
= IΩ +

GMm

2R2

dR

dΩ
= I(Ω − ω), dΩ =

dE

I(Ω− ω)
. (51)

13We use the notation of https://en.wikipedia.org/wiki/Quartic_function
14This behavior has come to be called the satellite paradox, that the effect of an energy-dissipation mecha-

nism in a (gravitational) two-body system can be to increase the kinetic energies of the bodies. For example,
the effect of atmospheric drag on a satellite in a low orbit about the Earth is to increase the speed of the
satellite as it slowly spirals inwards towards the Earth’s surface, Prob. 5 of
http://kirkmcd.princeton.edu/examples/ph205set5.pdf.
Thus, the intuitive argument of Kant, as seconded by Thomson and Tait, that tidal friction lengthens the
“day” and the “month/year” is not true in general.
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Hence, as tidal friction reduces the kinetic + potential energy E, the “spin” angular
velocity Ω decreases if Ω > ω, as holds for the Earth-Moon system. At the same time,
the Earth-Moon distance R increases according to eq. (50), and the orbital angular
frequency ω decreases according to eq. (41).

Additional discussion of spin-orbit coupling and “locking” is given in, for example,
P. Goldreich and S.J. Pearle, Resonant Spin States in the Solar System, Nature
209, 1078 (1966), http://kirkmcd.princeton.edu/examples/astro/goldreich_nature_209_

1078_66.pdf

The Dynamics of Planetary Rotations, Ann. Rev. Astro. Astrophys. 6, 287 (1968),
http://kirkmcd.princeton.edu/examples/astro/goldreich_araa_6_287_68.pdf

P. Goldreich, History of the Lunar Orbit, Rev. Geophys. 4, 411 (1966),
http://kirkmcd.princeton.edu/examples/astro/goldreich_rg_4_411_66.pdf,
(which also considered effects of tilts of the axes of the spinning bodies with respect to
the orbital plane).
C. Clouse, A. Ferroglia and M.C.N. Fiolhais, Spin-orbit gravitational locking—an ef-
fective potential approach, Eur. J. Phys. 43, 035602 (2022),
http://kirkmcd.princeton.edu/examples/mechanics/clouse_ejp_43_035602_22.pdf

This simplified model leaves open the question of the very early history of the Earth-
Moon system, when the Earth day was much shorter than at present, and the Earth-
Moon distance was comparable to the Earth’s radius. The contemporary view that
the Moon was ejected from the Earth during a collision with a large asteroid first
gained prominence in W.A. Hartmann and D.R. Davis, Satellite-Sized Planetesimals
and Lunar Origin, Icarus 24, 504 (1975),
http://kirkmcd.princeton.edu/examples/astro/hartmann_icarus_24_504_75.pdf
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3. (a) Skyhook.

The concept of the skyhook became well known following the publication of
J.D. Isaacs et al., Satellite Elongation into a True “Sky-Hook”, Science 151, 682
(1966), http://kirkmcd.princeton.edu/examples/mechanics/isaacs_science_151_682_66.pdf. This prob-
lem follows J. Gersten, H. Soodak and M. Tiersten, Jack and the skyhook: The
beanstalk revisited, Am. J. Phys. 49, 118 (1981),
http://kirkmcd.princeton.edu/examples/mechanics/gersten_ajp_49_118_81.pdf

For a review, see Y. Chen et al., History of the Tether Concept and Tether Mis-
sions: A Review, IRSN A.A. 2013, 502973,
http://kirkmcd.princeton.edu/examples/mechanics/chen_irsnaa_2013_502973.pdf

For a length dr of the rope of density ρ to be in a geosynchronous orbit with
angular velocity ω at distance r we must have,

Finwards = T (r + dr) − T (r) +
GMEρ dr

r2
= ma = ρ dr ω2

Er, (52)

dT

dr
= ρω2

Er − GMEρ

r2
, T = T0 +

ρ ω2
Er2

2
+

GMEρ

r
. (53)

where T (r) is the tension in the rope which vanishes at its ends, rmin = rE and
rmax = R,

0 =
ρ ω2

E

2
(R2 − r2

E) + GMEρ
(

1

R
− 1

rE

)
, (54)

ω2
E

2
R3 −

(
ω3

Er2
E

2
+

GME

rE

)
R + GME = 0. (55)

Since R − re must be a solution, we can factorize the cubic equation,

(R − rE)

(
ω2

E

2
R2 +

rE ω2
E

2
R − GME

rE

)
= 0. (56)

the positive root of the quadratic equation gives the nontrivial solution for R,

R =
−rE ω2

E/2 +
√

(rE ω2
E/2)2 + 4(ω2

E/2)(GMe/rE)

ω2
E

=
rE

2

(√
1 +

8GmE

ω2
Er3

E

− 1

)
(57)

Numerically,

rE ≈ 6 × 106 m, ωE =
2π

24 hr
=

2π

8.6 × 104
= 7.3 × 10−5,

GME

r2
E

= g ≈ 10, (58)

R ≈ rE

ωE

√
2g

rE
≈ 6 × 106

7.3 × 10−5

√
20

6 × 106
≈ 1.5 × 108 m ≈ 25rE .(59)
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The skyhook extends almost half the way to the Moon!

To assess the stability of the skyhook, we note that for a point mass to be in
a bound orbit about the Earth, its energy other than that of rotation about its
center of mass (i.e., kinetic energy of its c.m. motion plus potential energy) must
be negative.

KEcm =
1

2
ρ(R − rE)ω2

E

(
R + re

2

)2

≈ ρ ω2
ER3

8
≈ ρ(7.3 × 10−5)2(1.5 × 108)3

8
≈ 2.2 × 1015ρ, (60)

PE = −
∫ R

rE

GMEρ dr

r
= −GMeρ

r2
E

r2
e ln

R

rE
≈ 10ρ(6 × 106)2 ln 25 ≈ −1.2 × 1015ρ. (61)

The energy KEcm + PE is positive, which suggests that the orbit is not bound
(although in principle it could be stabilized by a very large mass at its upper end,
in geosynchronous orbit).

For a more detailed analysis, we can note that although angular momentum of
the skyhook about the Earth is not conserved, there is a conserved generalized
momentum, which permits an effective potential to be constructed. This is more
straightforward for a dumbell satellite than for the skyhook, and shows that a long
dumbell is unstable in orbit, http://kirkmcd.princeton.edu/examples/dumbell.pdf

(b) Ringworld.

We consider the force on the center of mass of the
ring, of mass m and radius a when it is displaced
by small distance R � a from the center of the
star of mass M .

To deduce the force, we compute the gravitational potential energy of the ring,

V (R) = −GM
∫ 2π

0

m

2π

dθ

r
= −GMm

2π

∫ 2π

0

dθ√
a2 − 2aR cos θ + R2

≈ −GMm

2πa

∫ 2π

0
dθ

(
1 +

2R cos θ

R
− R2

a2
+

3R2 cos2 θ

2a2

)
= −GMm

a

(
1 +

R2

2a2

)
, (62)

then, F = −dV

dR
=

GMmR

a3
> 0. (63)

So the perturbation grows until a point on the ring collides with the star.

This result was first established by Laplace, who noted thereby that the rings of
Saturn cannot be solid; Chap. 6, Book 2 of
http://kirkmcd.princeton.edu/examples/mechanics/laplace_mc_v2.pdf

http://kirkmcd.princeton.edu/examples/mechanics/laplace_mc_v2_english.pdf.
That an annular ring of particles can be stable was established by Maxwell (1858)
in his second major work,
http://kirkmcd.princeton.edu/examples/mechanics/maxwell_saturn_59.pdf.
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4. (a) Modeling.

This problem is from Art. 369, p. 296 of E.J. Routh, The Elementary Part of a
Treatise on the Dynamics of a System of Rigid Bodies, 7th ed. (Macmillan, 1905),
http://kirkmcd.princeton.edu/examples/mechanics/routh_elementary_rigid_dynamics.pdf

In our models, we scale lengths according to,

l′ = αl, (64)

while keeping the density ρ unchanged. Then, masses scale as,

m′ ∝ ρl′3 = α3ρl3, m′ = α3m. (65)

We scale time according to,

t′ = βt, (66)

such that velocities and accelerations scale as,

v′ ∝ l′

t′
∝ αl

βt
, v′ =

α

β
v, a′ ∝ l′

t′2
∝ αl

β2t2
, a′ =

α

β2 a. (67)

Then, forces scale as,

F ′ = m′a′ = α3m · αβ2a =
α4

β2 F. (68)

However, we can’t scale the acceleration g due to gravity. Hence,

F = mg → F ′ = m′g = α3mg = α3F. (69)

So, if gravity is among the relevant forces, we must have that,

α3 =
α4

β2 , β = α1/2, (70)

and

v′ = α1/2v. (71)

Example: A model of a ship with α = 1/n is observed to experience a drag
force F ′ when traveling through a tank of water with velocity v′. The drag force
depends on gravity, which determines how much of the ship is below to water line
and subject to drag. Then, according to eq. (71),

v = α−1/2v′ =
√

n v′. (72)

(b) If we can write a drag force as F = Cdv
pAq where A ∝ l2 is the area of the object

projected onto a plane perpendicular to v, and Cd, p and q are constants, then
the force scales as,

α4

β2 F = F ′ = Cdv
′pA′q = Cd

αp

βp vpα2qAq =
αp+2q

βp F, (73)

using eqs. (66)-(68) since F does not necessarily depend on g, and noting that
A′ = α2A. Hence, we must have p = 2 and q = 1, i.e., F = Cdv

2A,
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(c) A particle of mass m starts from rest, subject to the force F = −Ar−Bv, where
A and B are constants. Then, the dimensions of A and B are,

[A] =
[F ]

[r]
=

[m]

[t]2
, [B] =

[F ]

[v]
=

[m]

[t]
. (74)

The time T for the particle to reach the origin is a function of m, r0, A and B,
say T = kmαrβ

0 AγBδ for some dimensionless constant k. Then, by dimensional
analysis,

[T ] = [t] = [m]α · [l]β · [m]γ

[t]2γ
· [m]δ

[t]δ
= [l]β[m]α+γ+δ[t]−2γ−δ, (75)

and we must have,

β = 0, α + γ + δ = 0, −2γ − δ = 1, γ = α − 1, δ = 1 − 2α, (76)

T = kmαA1−αB1−2α, (77)

so the time to reach the origin is independent of the initial distance r0.

(d) A particle of mass m starts from rest subject to the force F = −A r̂/rn, where
A > 0 and n are constants. Here, the dimensions of A are,

[A] = [F ] · [r]n =
[m][l]n+1

[t]2
. (78)

The time T for the particle to reach the origin is a function of m, r0, and A, say
T = kmαrβ

0Aγ for some dimensionless constant k. Then, by dimensional analysis,

[T ] = [t] = [m]α · [l]β · [m]γ[l]γ(n+1)

[t]2γ
= [l]α+β+nβ [m]β[t]−2β, (79)

and we must have,

β + γ(n + 1) = 0, α + γ = 0, γ = −1

2
, α =

1

2
, β =

n + 1

2
, (80)

T = k

√
m

A
r

n+1
2

0 . (81)

The time for the particle to fall to the origin from initial distance r0 scales as

T ∝ r
n+1

2
0 .



Princeton University 1988 Ph205 Set 6, Solution 5 22

5. Biomechanics.

(a) An animal can store an water proportional to its volume, i.e., Vwater ∝ L3 where L
is the characteristic size of the animal. The rate of loss of water is proportional to
its surface area, dVwater/dt ∝ L2. Hence, the survival time of the animal against
dehydration scales as Vwater/V̇water ∝ L.

(b) The mechanical power output P of an animal is limited by the rate it can exhaust
heat energy – by sweating, which process scales as the surface area of the animal.
Hence, P ∝ L2.

Horses have size ≈ twice that of humans, whose sustained power output is about
1/4 horsepower.

(c) If air resistance limits the running speed of an animal, then the limiting force is
F ∝ vmaxA ∝ vmaxL

2, recalling Prob. 3(b) of this Set. The power required is
Pmax = Fvmax ∝ v2

maxL
2, and according to part (b) above, the maximum power

that an animal can exert steadily scales as L2.

Hence, the maximum running speed of an animal is largely independent of L (on
level ground).

However, when running uphill, the power required is Fvmax ∝ mgvmax ∝ L3gvmax,
whose limit scales as L2 according to part (b). In this case, vmax ∝ 1/L.

Smaller animals can run faster uphill.

(d) Animals can jump to height h = v2
0/2g, where v0 is the peak vertical velocity an

animal can give itself before losing contact with the ground.

This velocity is related by mv2
0/2 = Fd where F is the peak force the animal

can exert for a short time, and d is a relevant vertical scale of the animal, ∝ L.
The peak force F is exerted by some relevant muscle and is limited by the cross
sectional area of the muscle, which scales as L2. That is, h ∝ v2

0 ∝ Fd/m ∝
L2 · L/L3 = L0.

The height an animal can jump is largely independent of its size!

A more fanciful application of dimensional analysis to animals is at
http://kirkmcd.princeton.edu/examples/pigs_can_fly.pdf
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6. (a) The elastic scattering of two spheres takes place in the plane containing their
line of centers and the relative velocity. The two final-state velocities have four
components to be determined, but conservation of energy and momentum provide
only three relations among the four components.

In the center-of-mass frame, the magnitudes of the velocities are unchanged by the
elastic collision. The usual premise is that in the center-of-mass frame, the velocity
components along the line of centers at the moment of contact are reversed.

Then, a sphere with center-of-mass velocity v∗ that collides with the sphere of
radius a with impact parameter b = a sinα, scatters by angle θ∗ = π − 2α,

b = a sin α = a sin

(
π − θ∗

2

)
= a cos

θ

2
, db = −a

2
sin

θ∗

2
dθ∗. (82)

If there are N such spheres per area A perpendicular to the direction of v∗, then
the number in an annulus of thickness db about radius b are,

dN =
N

A
2πb db =

N

A
πa2 cos

θ∗

2
sin

θ∗

2
dθ∗ =

N

A

πa2

2
sin θ∗ dθ∗ =

N

A

πa2

2
d cos θ∗.(83)

The (center-of-mass-frame) scattering differential cross section is,

dσ =
dN

N/A
=

πa2

2
sin θ∗ dθ∗ =

πa2

2
|d cos θ∗| . (84)

The total scattering cross section is σ = πa2, the geometric cross section of the
sphere of radius a, which result holds in any frame. Also, the scattering is isotropic
in the center-of-mass frame, dσ/dΩ = (1/2π)dσ/d cos θ = πa2/4π.

(b) In the lab frame, the sphere of radius a and mass M has velocity V = 0, while
the other sphere has velocity v and mass m.

The velocity of the center of mass (in the lab frame) is,

vcm =
mv + MV

m + M
=

mv

m + M
. (85)

The velocities of the spheres in their center-of-mass frame are,

v∗ = v − vcm =
Mv

m + M
, V � = V − vcm = −vcm = − mv

m + M
. (86)
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In a scatter of mass m by angle θ∗ in the center-of-mass frame, the final velocity
components are,

v′∗
‖ = v∗ cos θ∗, v′∗

⊥ = v∗ sin θ∗, V ′∗
‖ = V ∗ cos θ∗, V ′∗

⊥ = V ∗ sin θ∗. (87)

In the lab frame, the final velocity components are,

v′
‖ = v′∗

‖ + vcm v′⊥ = v′∗
⊥, V ′

‖ = V ′∗
‖vcm, V ′⊥ = V ′∗

⊥. (88)

The final velocities in the lab frame are given by,

v′2 = v∗2 + 2v∗vcm cos θ∗ + v2
cm (89)

V ′2 = V ∗2 + 2V ∗vcm cos θ∗ + v2
cm = 2v2

cm(1 − cos θ�) (90)

The kinetic energy gained in the lab frame by the sphere of radius a is the same
as that lost by the other sphere, such that,

Tlost =
m(v2 − v′2)

2
=

MV ′2

2
= Mv2

cm(1 − cos θ�), (91)

Tlost,min = 0, Tlost,max = 2Mv2
cm. (92)

Further, since the scattering is isotropic in the center-of-mass frame, the distri-
bution of Tlost is uniform between 0 and Tlost,max, so the differential cross section
can be written as,

dσ

dTlost
=

dσ

d cos θ∗
d cos θ∗

dTlost
=

πa2

Tlost,max
=

σ

Tlost,max
. (93)
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7. (a) We consider a projectile with impact parameter b and velocity v0 when far from
the Moon (and ignore the gravity of the Earth, Sun, etc.), and compute the
distance rmin of closest approach to the moon. The collision cross section is then
σ = πb2

0, where b0 is the impact parameter corresponding to rmin = R, the radius
of the Moon.

Conservation of energy tells us that,

mv2
0

2
=

mv2
min

2
− GMm

rmin

, (94)

where vmin is the velocity of the projectile when at rmin, and M is the mass of the
Moon. Conservation of angular momentum about the center of the Moon tells us
that,

mv0b = mvminrmin, vmin = v0
b

rmin
. (95)

Combining eqs. (94) and (95),

v2
0 = v2

min −
2GM

rmin
= v2

0

b2

r2
min

− 2GM

rmin
, (96)

r2
min +

2GM

v2
0

rmin − b2 = 0, (97)

rmin = −GM

v2
0

+

√√√√(GM

v2
0

)2

+ b2. (98)

b2 = r2
min +

2GM

v2
0

rmin. (99)

For rmin = R, the radius of the Moon, we have that,

b2
0 = R2 +

2GM

v2
0

R = R2

(
1 +

v2
e

v2
0

)
. (100)

noting that the escape velocity from the Moon is related by v2
e = 2GM/R. Hence,

the collision cross section is,

σ = πb2
0 = πR2

(
1 +

v2
e

v2
0

)
. (101)

If the force of gravity were repulsive, F = GMm/r2, the sign of the gravitational
potential energy would be reversed, and the above formalism applies with the
change G → −G. In this case the collision cross section would be,

σ = πR2

(
1 − v2

e

v2
0

)
(repulsive gravity, v0 > ve). (102)

For v0 < ve =
√

2GM/R, even a projectile with impact parameter b ≈ 0 would
not strike the Moon.
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(b) The effective potential associated with the potential V (r) = −C/r4 for a constant
C , for the interaction of a point mass/ion m with angular momentum L about
the fixed force center/atom (with mass M � m), is,

Veff(r) =
L2

2mr2
+ V (r) =

L2

2mr2
− C

r4
, (103)

dVeff

dr
= − L2

mr3
+

4C

r5
, (104)

d2Veff

dr2
=

3L2

mr4
− 20C

r6
. (105)

An equilibrium circular orbit exists at radius r0, with equilibrium angular velocity
Ω = L/mr2

0, related by ,

r2
0 =

4mC

L2
, Ω =

L

4m2C
, E0 =

mr2
0Ω

2

2
− C

r4
0

=
L4

8m2C
− L4

16m2C
=

L4

16m2C
.(106)

but this equilibrium is unstable as,

keff =
d2Veff(r0)

dr2
=

3L6

16m2C2
− 20L6

64m2C2
= − L6

8m2C2
< 0. (107)

Ions with energy E = mv2
∞/2 when at large distances from the force center/atom

can reach the origin, and be captured by the atom, if E > E0 = L4/16m2C .

The angular momentum of an ion with impact parameter b with respect to the
atom is L = mv∞b, so the ion is captured if,

E =
mv2

∞
2

> E0 =
L4

16m2C
=

m2v4
∞b4

capture

16C
, b4

capture <
8C

mv2∞
. (108)

The capture cross section is,

σcapture = πb2
capture,max =

1

v∞

√
8C

m
. (109)
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8. This is Prob. 2, p. 54 of L.D. Landau and E.M. Lifshitz, Mechanics, 3rd ed. (Pergamon,
1976), http://kirkmcd.princeton.edu/examples/mechanics/landau_mechanics.pdf

The differential cross section for scattering can be written as,

dσ = 2πb db = πdb2, (110)

where b is the impact parameter of the particle that is scattered. Then,

dσ

d cos θ
= π

∣∣∣∣∣ db2

d cos θ

∣∣∣∣∣ , (111)

and the computation of the cross section becomes that of relating the impact parameter
b to the scattering angle θ.

For scattering by a force center associated with the potential,

V (r) =

⎧⎪⎨
⎪⎩

0 r > a,

−V0 r < a,
(112)

the force is radial, and nonzero only at r = a. Hence, the motion of a (point) particle
in this potential consists of straight line segments, that are deflected if the particle
crosses the surface r = a. The tangential force is zero everywhere, so in particular, the
tangential momentum is conserved when a particle crosses the surface.

When a particle of mass m and momentum pout crosses into the sphere at angle of
incidence α as in the figure, its angle changes to β related by,

pout sinα = pin sinβ, (113)

which has the form of Snell’s law in optics, with the indices of refraction inside and
outside of the sphere proportional to the particle’s momenta there. If we define the
index of refraction to be 1 outside the sphere, then the index inside is n = pin/pout.

Also, mechanical energy E = T + V = p2/2m + V is conserved so that,

Eout = Tout =
p2

out

2m
= Ein = Tin − V0 =

p2
in

2m
− V0, (114)

n =

√√√√ p2
in/2m

p2
out/2m

=

√
Tin

Tout

=

√
Tin

Tin − V0

=

√
T

T + V
, (115)
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where the last form describes the index n both inside and outside the sphere.

We now relate the impact parameter b to the index n and the scattering angle θ.

First, we note that,

θ = π − 2ε = π − 2
(

π

2
− γ

)
= 2γ = 2(α − β), ε =

π

2
− θ

2
. (116)

Next, we find two expressions for the distance d, as well as expressions for distances
b = a sinα, x and z,

x = a cos β = a

√
1 − sin2 α

n2
=

√
a2 − b2

n2
, z = a sinβ =

a sinα

n
=

b

n
, (117)

d = x tan γ = x tan
θ

2
=

√
a2 − b2

n2
tan

θ

2
, (118)

and also via the sin rule,

d + z

sin α
=

a

sin ε
, d =

a sinα

cos θ/2
− b

n
= b

(
1

cos θ/2
− 1

n

)
= b

n − cos θ/2

n cos θ/2
. (119)

From eqs. (118) and (119) we have,

b

(
n − cos

θ

2

)
= n

√
a2 − b2

n2
sin

θ

2
, (120)

b2

(
n2 − 2n cos2 θ

2
+ cos2 θ

2

)
= n2

(
a2 − b2

n2

)
sin2 θ

2
, (121)

b2 =
a2n2 sin2 θ/2

n2 + 1 − 2n cos θ/2
=

a2n2(1 − cos θ)

2
(
n2 + 1 − 2n

√
(1 + cos θ)/2

) . (122)

We digress slightly to note that θmax occurs when b = a,

n2 + 1 − 2n cos θmax/2 = n2(1 − cos2 θmax/2), (123)

n2 cos2 θmax

2
− 2n cos

θmax

2
+ 1 = 0, cos

θmax

2
=

1

n
. (124)

Finally, the differential cross section is,

dσ

d cos θ
= π

∣∣∣∣∣ db2

d cos θ

∣∣∣∣∣ =
∣∣∣∣∣− πa2n2

2 (n2 + 1 − 2n cos θ/2)
+

πa2n2 sin2 θ/2

(n2 + 1 − 2n cos θ/2)2

n

2 cos θ/2

∣∣∣∣∣
=

∣∣∣∣∣πa2n3 sin2 θ/2 − a2n2 cos θ/2(n2 + 1 − 2n cos θ/2)

2 cos θ/2(n2 + 1 − 2n cos θ/2)2

∣∣∣∣∣
=

∣∣∣∣∣πa2n3 − a2n2 cos θ/2(n2 + 1 − n cos θ/2)

2 cos θ/2(n2 + 1 − 2n cos θ/2)2

∣∣∣∣∣
=

∣∣∣∣∣ πa2n2

2 cos θ/2

n − n2 cos θ/2 − cos θ/2 + n cos2 θ/2

(n2 + 1 − 2n cos θ/2)2

∣∣∣∣∣
=

πa2n2

2 cos θ/2

(n cos θ/2 − 1)(n − cos θ/2)

(n2 + 1 − 2n cos θ/2)2
. (125)
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For n = 2, cos(θmax/2) = 0.5, θmax = 120◦. The cross sections (1/σtot)dσ/d cos θ and
(1/σtot)dσ/dθ are shown in the figures below.

If V0 < 0 then angle β is larger than α, the angle of incidence, as shown in the figure
below. Since sin β cannot exceed 1,

Since sinβ = (sinα)/n cannot exceed 1, the figure is only relevant for sinα < n, i.e.,
for,

b = a sin α < an ≡ bmax. (126)

At the limiting case, sinαmax = n, the scattering angle is,

θmax = π − 2αmax, cos θmax = − cos(2αmax) = 2 sin2 αmax − 1 = 2n2 − 1, (127)

and the scattering is the same as mirror reflection off the surface of the sphere. Indeed,
for sinα > n, the particle does not enter the sphere and just reflects off its surface.
The total cross section for this mirror scattering is,

σmirror = π(a2 − b2
max) = πa2(1 − n2), (128)

and this occurs for cos θ in the interval between cos θ = −1 (backscattering) and
cos θmax, which interval has width 2n2. Hence, the differential cross section for mirror
scattering can be written as,

dσmirror

d cos θ
=

σmirror

2n2
= πa2 1 − n2

2n2
. (129)

For b < bmax we relate b to θ in a manner similar to the analysis above when n < 1.

θ = π − 2ε = π − 2
(

π

2
− γ

)
= 2γ = 2(β − α), ε =

π

2
− θ

2
. (130)
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Next, we find two expressions for the distance d, as well as expressions for distances
b = a sinα, x and z,

x = a cos β = a

√
1 − sin2 α

n2
=

√
a2 − b2

n2
, z = a sinβ =

a sinα

n
=

b

n
, (131)

d = x tan γ = x tan
θ

2
=

√
a2 − b2

n2
tan

θ

2
, (132)

and also via the sin rule,

z − d

sinα
=

a

sin(ε + θ)
=

a

sin(π/2 + θ/2)
=

a

cos θ/2
, (133)

d =
b

n
− a sinα

cos θ/2
= b

(
1

n
− 1

cos θ/2

)
= b

cos θ/2 − n

n cos θ/2
. (134)

From eqs. (132) and (134) we have,

b

(
cos

θ

2
− n

)
= n

√
a2 − b2

n2
sin

θ

2
, (135)

b2

(
n2 − 2n cos2 θ

2
+ cos2 θ

2

)
= n2

(
a2 − b2

n2

)
sin2 θ

2
, (136)

b2 =
a2n2 sin2 θ/2

n2 + 1 − 2n cos θ/2
=

a2n2(1 − cos θ)

2
(
n2 + 1 − 2n

√
(1 + cos θ)/2

) , (137)

which is the same form as eq. (124). Hence, for b < na and cos θ > cos θmax = 2n2 − 1,
the differential cross section is given by eq. (125).

We illustrate this for n = 1/2, cos θmax = −1/2, θmax = 120◦. Then, the mirror
scattering cross section is,

1

σ

dσmirror

d cos θ
=

1 − n2

2n2
= 1.5,

1

σ

dσmirror

dθ
= 1.5 sin θ, (138)

The cross sections are illustrated in the figures below.
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9. This is Prob. 1, p. 54 of L.D. Landau and E.M. Lifshitz, Mechanics, 3rd ed. (Pergamon,
1976), http://kirkmcd.princeton.edu/examples/mechanics/landau_mechanics.pdf.

As before, the differential cross section for scattering by a fixed center of a central force
can be computed from the relation between the impact parameter b and the scattering
angle θ,

dσ

d cos θ
= π

∣∣∣∣∣ db2

d cos θ

∣∣∣∣∣ = 2π
dσ

dΩ
, (139)

where dΩ = 2π d cos θ is the differential of solid angle.

The motion is in a plane, which we describe with coordinates r and φ where the line
φ = 0 is parallel to the velocity v∞ of the scattered particle (of mass m) when at large
distances from the force center. The conserved angular momentum about the force
center is,

L = mr2 φ̇ = mbv∞ (140)

The conserved energy E of the scattered particle can be written as,

E =
m(ṙ2 + r2φ̇

2
)

2
+ mV (r) =

mṙ2

2
+

m

2

b2v2
∞

r2
+ V =

mv2
∞

2
(141)

where V (r) is the potential energy of the mass in the central force, assuming that the
latter is negligible at large distances. Then,

ṙ =
dr

dφ
φ̇ =

L

mr2

dr

dφ
, (142)

dφ

dr
=

bv∞
r2ṙ

=
bv∞

r2
√

v2∞(1 − b2/r2) − 2V/m
=

b

r2
√

1 − b2/r2 − 2V/mv2∞

=
b

r2
√

1 − b2/r2 − 2V/E
. (143)

For the point of closest approach to the force center we define r = rmin and φ = φ0,
and note that φ0 is related to the scattering angle θ by,

θ − π − 2φ0. (144)
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And, we can relate φ0 to the impact parameter b by integrating eq. (143),

φ0 = b
∫ ∞

rmin

dr

r2
√

1 − b2/r2 − V (r)/E
, (145)

For the central force with potential energy V = α/r2 for positive constant α, we note
that the energy (141) at rmin, where ṙ = 0 is,

E =
b2E

r2
min

+
α

rmin2

, r2
min = b2 +

α

E
. (146)

Then,

φ0 = b
∫ ∞

rmin

dr

r2
√

1 − b2/r2 − α/r2E
= b

∫ ∞

rmin

dr

r
√

r2 − r2
min

=
b

rmin
cos−1

√
1 − r2

min

r2

∣∣∣∣∣∣
∞

rmin

=
πb

2rmin
, (147)

using 281.01 of H.B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed.
(Macmillan, 1961), http://kirkmcd.princeton.edu/examples/EM/dwight_57.pdf. Hence,
the scattering angle is related by,

θ − π − 2φ0 = π

(
1 − b

rmin

)
, b = rmin

π − θ

π
, b2 =

(
b2 +

α

E

)
(π − θ)2

π2
, (148)

b2

(
1 − (π − θ)2

π2

)
=

α

E

(π − θ)2

π2
, b2 =

α

E

(π − θ)2

θ(2π − θ)
. (149)

Finally, the differential cross section is,

dσ

dΩ
=

1

2

∣∣∣∣∣ db2

d cos θ

∣∣∣∣∣ = 1

2 sin θ

∣∣∣∣∣db2

dθ

∣∣∣∣∣ = α

2E sin θ

∣∣∣∣∣−2(π − θ)

θ(2π − θ)
− (π − θ)2

θ2(2π − θ)
+

(π − θ)2

θ(2π − θ)2

∣∣∣∣∣
=

α

2E sin θ

∣∣∣∣∣(π − θ)[(π − θ)2(θ − π) − 2θ(2π − θ)]

θ(2π − θ)2

∣∣∣∣∣ = π2α

E sin θ

π − θ

θ2(2π − θ)2
. (150)

The figure below shows (E/α)dσ/dθ.


