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1. In a scattering experiment, the differential cross section is observed to be,

dσ

d cos θ
=

πB2

2
(1 + ε cos θ), σtotal = πB2, (1)

with ε � 1. Supposing the scattering is elastic off a hard object, what is its shape?

If ε = 0, the object would be a sphere, as in Prob. 6, Ph205 Problem Set 6. For
nonzero, but small ε, the object is almost a sphere, say a (prolate) spheroid,

x2

A2
+

y2

B2
+

z2

B2
= 1, (2)

where the beam of scattered particles is parallel to the x-axis.

Find the differential cross section for scattering off a “hard” spheroid with arbitrary
semiaxes A and B. What is A corresponding to eq. (1), for small ε?
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2. Rainbows, Haloes and Glories, by R. Greenler (U. Cambridge, 1980),
http://kirkmcd.princeton.edu/examples/optics/greenler_80.pdf

(a) Rainbows.

Consider the scattering of light by a (spherical) water drop. When light hits a
boundary between air and water, both reflection and transmission are possible,
so many scattered rays occur. The first 4 outgoing rays are shown in the sketch
below.

Ray 1 is mirror reflection off the surface of the drop, as in hard scattering off a
sphere, Prob. 6, Ph205 Set 6.

Ray 2 corresponds to Prob. 8, Ph205 Set 6.

This problem concerns rays 3 and 4, which can lead to primary and secondary
rainbows.

Noting that impact parameter b = a sinα, as shown in the figured, the scattering
cross section is related by,

dσ

dΩ
=

1

2π sin θ

db2

dθ
=

a2 sinα cos α

π sin θ

dα

dθ
. (3)

If dθ/dα = 0 for some b, then dσ/dΩ → ∞. That is, if many different α’s, and
hence different b’s, lead to the same scattering angle θ, the scattered light gets
very bright ⇒ a rainbow.

Let m be the number of internal reflections before the ray emerges. Calculate
θ = f(α, β, m) from the geometry. Use Snell’s law to relate angles α and β to
the index of refraction of water (taking the index of air to be 1), and show that
dθ/dα = 0 when,

sin2 α =
(m + 1)1 − n2

(m + 1)2 − 1
. (4)

For water, n ≈ 4/3. Evaluate α, β and θ for the first two rainbows, m = 1 and 2.
(Ans: 138◦, −129◦.)
The index n of refraction varies with wavelength; long λ ⇒ small n. What is the
order of colors in the first and second rainbows?
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If you are watching the rainbow, what is the angle φ between the light you see
from it and the Sun?

The explanation of the rainbow is attributed to Descartes.

(b) Glories (strictly cultural, no problem assigned.)

If you look at the shadow of an airplane on a cloud while flying, you see a
“halo”/“glory” immediately outside the shadow. That is, there is an enhance-
ment of the scattering by θ ≈ 180◦ off water drops.

The first recorded observation of this phenomenon by a Westerner was in 1735,
by a Spanish mountain climber in the Andes. But a good explanation was given
only in 1977, H.M. Nussenzveig, The Theory of the Rainbow, Sci. Am. 236(4),
116 (1977), http://kirkmcd.princeton.edu/examples/optics/nussenzveig_sa_236-4_116_77.pdf

Apparently, surface waves just inside the water drop can transport light for several
degrees around the drop before it emerges. For impact parameter b ≈ a, this is
sufficient to makes the scattering angle of ray 3 of the previous figure emerge at
θ ≈ 180◦. See also the extensive web site, http://www.philiplaven.com/index1.html,
from which the above photo and figure are taken.
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3. A car is driven at constant horizontal velocity along a horizontal, “washboard” road
such that the height of an axle above the average elevation of the road is y ≈ R +
A cosωt, where R is the radius of a wheel and A � R.

Mass m of the car is supported above the center of the wheel by a vertical shock
absorbed of rest length l and spring constant k. The damping of the shock absorber is
proportional to the rate of change of its length,

F = −b(Ẏ − ẏ), (5)

where Y is the height of the top of the shock absorber above the average elevation of
the road.

Formulate, and solve, the differential equation for the vertical motion of mass m to
show that the average height 〈Y 〉 is,

〈Y 〉 = R + l − g

ω2
0

, (6)

and that the amplitude of the oscillation of Y is,

√√√√ ω4
0 + 4β2ω2

(ω2
0 − ω2)2 + 4β2ω2

, (7)

where ω2
0 = k/m and β = b/2m.

Suppose the shock absorber is critically damped. At what angular frequency ω is the
amplitude of the oscillation in Y a maximum, and what is the maximum amplitude?
Ans: Amplimax = 2

√
3A/3.
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4. (a) Find the Fourier expansion of the sawtooth waveform,

F (t) =
F0t

T

(
−T

2
< t <

T

2

)
. (8)

Ans : F (t) =
F0

π

(
sinωt − 1

2
sin 2ωt +

1

3
sin 3ωt − · · ·

)
. (ω = 2π/T ) . (9)

(b) Find the Fourier expansion of the half-wave waveform,

F (t) =

⎧⎪⎨
⎪⎩

sinωt
(
0 < t < π

ω

)
,

0
(

π
ω

< t < 2π
ω

)
.

(10)

Ans : F (t) =
1

π
+

1

2
sinωt− 2

3π
cos 2ωt − 2

15π
cos 4ωt − · · · (11)

Which Fourier series of (a) or (b) converges faster?
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5. (a) A mass m oscillates with spring constant k and damping constant b after being
driven by the step function,

F (t) =

⎧⎪⎨
⎪⎩

0 (t < 0),

F0 (t > 0).
(12)

Use Green’s method to calculate the motion x(t).

Ans : x =
F0

mω2
0

(
1 − e−βt cosω1t − β

ω1
e−βt sin ω1t

)
. (13)

Sketch this for β = 0 and ω0/4.

Note that the damped oscillation makes a large overshoot of the equilibrium
position x = F0/mω2

0. What is the maximum x of this overshoot, and what is the
time t then?

(b) The same oscillator is subject to the impulse,

F (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 (t < 0),

F0 (0 < t < T ),

0 (t > T ).

(14)

Now what is x(t)?

Sketch the motion supposing the damping is strong enough that the initial oscil-
lations have largely died out before the impulse ends at time T .
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6. (a) A damped oscillator is subject to the driving force F (t) = F0 e−αt for a positive
constant α. Solve for the “steady” motion by making a suitable guess as to the
form of x(t).

(b) Now suppose that the driving force is,

F (t) =

⎧⎪⎨
⎪⎩

0 (t < 0),

F0 e−αt (t > 0).
(15)

Use Green’s method to solve for the transient response (which should also include
the “steady” motion of part (a) for t > 0).

Ans : x(t > 0) =
F0/m

ω2
0 + α2 − 2αβ

[
e−αt + e−βt

(
α − β

ω1
sinω1t − cos ω1t

)]
.(16)

Sketch this for the case α = β.
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7. A hoop of mass m and radius R is attached to a massless, rigid rod of length l to
for a compound pendulum. The hoop pivots freely about its connection to the end of
the rod. Find the angular frequencies of the normal modes of oscillation for motion
entirely in a vertical plane.

Hint: Make the small-angle approximation before deriving the equations of motion –
but remember that you must keep terms of 2nd order to describe oscillatory motion.

For R = l/2, show that ω =
√

(2 ± 2
√

2)g/l.
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8. A thin plate in the form of an equilateral triangle is suspended by three springs (of the
same spring constant and same rest length) from its corners, such that the equilibrium
position of the plate is horizontal with the springs vertical.

What are the angular frequencies of the normal modes of (small) oscillation in which
the center of mass of the plate moves only vertically?

It suffices to guess the forms of the normal modes and then derive an equation of
motion for each mode separately.

sl Ans: Two of the modes have the same frequency, which is twice that of a third mode.
A fourth mode has frequency independent of the mass and of the spring constant.
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9. A uniform disk of mass m and radius a rests on a frictionless, horizontal table. The
disk is connected via three springs of constant k and rest length l0 to three fixed points
120◦ apart. At equilibrium the springs have length l > l0.

What are the angular frequencies of the three normal modes (including rotation) of
small oscillations about equilibrium?

You might guess the modes and solve for them one by one, or use Lagrange’s method.
The problems on p. 60 of http://kirkmcd.princeton.edu/examples/mechanics/landau_mechanics.pdf

may help with the geometry.

Ans : ω1 = ω2 =

√
3k

2m

2l − l0
l

, ω3 =

√
6k

m

(l − l0)(a + l)

al
. (17)
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10. (a) Consider the linear triatomic molecule ABA of Prob. 1, p. 72 of
http://kirkmcd.princeton.edu/examples/mechanics/landau_mechanics.pdf,
where atoms A are tied to atom B by springs of constant k. They solve the
problem by guessing the modes, and using conservation of energy/momentum of
the center of mass to reduce the problem to two degrees of freedom (ignoring the
bending mode).

Work this problem via Lagrange’s method by deducing the three coupled equa-
tions of motion for along the (x) as xis of the molecule, using coordinates x1, x2

and x3. Assume oscillatory motion to derive the characteristic equation for ω2,
where ω is the angular frequency of small oscillations about equilibrium.

Ans : ω2 = 0,
k

mA
, k

2mA + mB

mAmB
. (18)

The case of ω = 0 means that there is a nonoscillatory motion possible for this
system, which is just translation of the entire system, without internal motion,
along the x-axis.

(b) Suppose the middle atom B is tied to the origin by a spring, also of constant k.
Now what are the frequencies of the normal modes of small oscillations?
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Solutions

1. In elastic scattering off a prolate spheroid,

x2

A2
+

y2

B2
+

z2

B2
= 1, (19)

the scattering angle θ is related by,

θ = π − 2α, sin α = sin

(
π

2
− θ

2

)
= cos

θ

2
. (20)

where α is the angle between the incoming particle and the normal to the spheroid at
the point of contact.

Also, at the point of contact where y = b = B
√

1 − x2
b/A

2 and xb = −A
√

1 − b2/B2,

tan φ =
dy

dx
= −B

d

dx

√
1 − x2

A2
=

B |xb|
A
√

A2 − x2
b

=
A
√

B2 − b2

A2b/B
=

B
√

B2 − b2

Ab

= cotα =

√
1 − sin2 α

sinα
, (21)

cos
θ

2
= sinα =

1√
1 + (dy/dx)2

=
Ab√

B4 + (A2 − B2)b2
, (22)

cos2 θ

2
(B4 + (A2 − B2)b2 = A2b2, (23)

b2 =
B4 cos2 θ/2

A2 − (A2 −B2) cos2 θ/2
=

B4(1 + cos θ)

2A2 − (A2 −B2)(1 + cos θ)
, (24)

The scattering differential cross section is,

dσ

d cos θ
= π

db2

d cos θ
= π

(
B4

2A2 − (A2 −B2)(1 + cos θ)
+

B4(A2 − B2)(1 + cos θ)

[2A2 − (A2 − B2)(1 + cos θ)]2

)

= π
B4[2A2 − (A2 − B2)(1 + cos θ)] + B4(A2 −B2)(1 + cos θ)

[2A2 + (A2 − B2)(1 + cos θ)]2

= πB2 2A2B2

[2A2 − (A2 − B2)(1 + cos θ)]2

≈ πB2 2(1 + 2δ)

[2 + 2δ − 2δ cos θ)]2
≈ πB2

2
(1 + 2δ)(1 − 2δ + 2δ cos θ) ≈ πB2

2
(1 + 2δ cos θ),(25)
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where the approximation holds for small δ in A = B(1 + δ).

If the differential cross section is observed to vary as 1 + ε cos θ, then δ = ε/2 and
A = B(1 + ε/2).

The total cross section is, of course, σ = πB2.

The figure below shows (1/σ)(dσ/d cos θ for A/B = 1, 2 and 10.
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2. Rainbows.

In the scattering of light by a (spherical) water drop, let m be the number of internal
reflections before the ray emerges.

Then, the emerging ray with m = 1 has scattering angle,

θ1 = (α − β) + (π − 2β) + (α − β) = 2(α − β) + (π − 2β), (26)

and the emerging ray with m = 2 has scattering angle,

θ2 = θ1 − (α − β) + (π − 2β) + (α − β) = 2(α − β) + 2(π − 2β), (27)

and in general,

θm = 2(α − β) + m(π − 2β). (28)

According to Snell’s law,

sin α = n sinβ, cos α = n cos β
dβ

dα
=
√

n2 − sin2 α
dβ

dα
, (29)

where n ≈ 4/3 is the index of refraction of water. Hence,

dθm

dα
= 2 − 2(m + 1)

dβ

dα
= 2

(
1 − (m + 1) cos α√

n2 − sin2 α

)
, (30)

for rainbow scattering with angle αm related by,

n2 − sin2 αm = (m + 1)2(1 − sin2 αm), sin2 αm =
(m + 1)1 − n2

(m + 1)2 − 1
. (31)

sin2 α1 =
4 − 16

9

3
= 0.952 , α1 = 59.4◦, sinβ1 =

3

4
sin α1 = 0.65, β1 = 40.2◦, (32)

θ1 = 180◦ + 2α1 − 4β1 = 138◦, (33)

sin2 α2 =
9 − 16

9

8
= 0.862 , α2 = 71.8◦, sinβ2 =

3

4
sin α1 = 0.71, β2 = 45.4◦, (34)

θ2 = (180◦+) 2α2 − 6β2 = −129◦. (35)
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The primary rainbow (m = 1) is due to light entering the upper part of water drops,
relative to the observer, while the secondary rainbow (m = 2) is due to light entering
the lower part of the drop.

The angles of the rainbows relative to the incident light rays are 42◦ and 51◦, as noted
by Descartes in the right figure above, from p. 253 of Discours de la Méthode (Leyden,
1637), http://kirkmcd.princeton.edu/examples/mechanics/descartes_37.pdf.

Since sinα = n sin β, a larger index n(λ) implies a small angle β, for a given angle
α. For the primary rainbow, rays associated with a larger index, i.e., for smaller
wavelength, emerge with a smaller angle. Hence the primary rainbow is blue at smaller
angles and red at larger.

For the secondary rainbow, with its inverted internal geometry, the story is reversed,
so red appear at larger angles and blue at smaller.
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3. This problem is adapted from Prob. 51, p. 69 of K.R. Symon, Mechanics (Addison-
Wesley, 1971), http://kirkmcd.princeton.edu/examples/mechanics/symon_71.pdf.

The differential equation for the vertical motion of mass m is,

mŸ = −b(Ẏ − ẏ) − k(Y − y − l) −mg, (36)

mŸ + bẎ + kY = −bẏ + k(y + l) −mg, (37)

Ÿ + βẎ + ω2
0Y = −βẏ + ω2

0(y + l) − g, (38)

where β = b/2m and ω2
0 = k/m.

The “washboard” road forces the axle to oscillate vertically above the average elevation
of the road according to,

y = R + A cosωt, (39)

where R is the radius of a wheel and A � R. Hence,

Ÿ + 2βẎ + ω2
0Y = 2Aβω sinωt + ω2

0(R + A cos ωt) + ω2
0l − g. (40)

The time-average, steady-state value of Y is,

〈Y 〉 = R + l − g

ω2
. (41)

We seek an oscillatory solution for forced motion of Y at angular frequency ω of the
form Y = 〈Y 〉 + Re(Y0 eiωt), for which (40) implies,

Re(−ω2Y0 eiωt − 2iβωY0 eiωt + ω2
0Y0 eiωt) = Re(−2iAβω eiωt + Aω2

0 eiωt), (42)

Y0 =
−2iAβω + Aω2

0

ω2
0 − ω2 − 2iβω

, |Y0| = A

√√√√ ω4
0 + 4β2ω2

(ω2
0 − ω2)2 + 4β2ω2

. (43)

In the particular case of critical damping, β = ω0, and the amplitude of the oscillation
in Y is,

|Y0| = A

√√√√ ω4
0 + 4ω2

0ω
2

(ω2
0 − ω2)2 + 4ω2

0ω
2

=
Aω0

ω2
0 + ω2

√
ω2

0 + 4ω2. (44)

This is maximal for,

d |Y0|
dω

= 0 = − 2Aω0ω

(ω2
0 + ω2)2

√
ω2

0 + 4ω2 +
Aω0

ω2
0 + ω2

4ω√
ω2

0 + 4ω2
, (45)

0 = −2(ω2
0 + 4ω2) + 4(ω2

0 + ω2), ω2 =
ω2

0

2
, |Y0|max =

2
√

3 A

2
. (46)

A version of this problem with an accelerating car is at
http://kirkmcd.princeton.edu/examples/washboard.pdf.
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4. (a) The sawtooth is antisymmetric,

F (t) =
F0t

T
= −F (−t)

(
−T

2
< t <

T

2

)
. (47)

so its Fourier expansion will only contain sine terms, F (t) =
∑∞

n=1 Bn sinnωt with
ω = 2π/T ,

Bn =
2

T

∫ T/2

−T/2
F (t) sinnωt dt =

2F0

T 2

∫ T/2

−T/2
t sin

2nπt

T
dt =

2F0

T 2

T 2

4π2n2

∫ nπ

−nπ
x sinx dx

=
F0

2n2π2
[sinx − x cos x]nπ

−nπ =
F0

2n2π2
(−1)n+12nπ =

(−1)n+1F0

nπ
, (48)

F (t) =
F0

π

(
sinωt − 1

2
sin 2ωt +

1

3
sin 3ωt − · · ·

)
. (ω = 2π/T ) . (49)

(b) The half-wave function is neither symmetric nor antisymmetric, so its Fourier
series will contain both cosine and sine terms,

F (t) =

⎧⎪⎨
⎪⎩

sinωt
(
0 < t < π

ω

)
0

(
π
ω

< t < 2π
ω

)
⎫⎪⎬
⎪⎭ =

A0

2
+

∞∑
n=1

An cos nωt + Bn sinnωt, (50)

An =
2

T

∫ T/2

−T/2
F (t) cosnωt dt =

2

2π/ω

∫ π/ω

0
sinωt cos nωt dt, (51)

A0 =
ω

π

∫ π/ω

0
sinωt dt =

ω

π

[
− 1

ω
cos ωt

]π/ω

0
=

2

π
, (52)

A1 =
ω

π

∫ π/ω

0
sinωt cosωt dt =

ω

2π

∫ π/ω

0
sin 2ωt dt =

ω

2π

[−1

2ω
cos 2ωt

]π/ω

0
= 0, (53)

A2m =
ω

π

∫ π/ω

0
sinωt cos 2mωt dt =

ω

π

∫ π/ω

0

1

2
[sin(2m + 1)ωt− sin(2m − 1)ωt] dt

=
ω

2π

[ −1

(2m + 1)ω
cos(2m + 1)ωt +

1

(2m − 1)ω
cos(2m − 1)ωt

]π/ω

0

=
1

2π

(
2

2m + 1
− 2

2m − 1

)
= − 2

(2m + 1)(2m − 1)π
, (54)

A2m+1 =
ω

π

∫ π/ω

0
sinωt cos(2m + 1)ωt dt =

ω

π

∫ π/ω

0

1

2
[sin(2m + 2)ωt − sin 2mωt] dt

=
ω

2π

[ −1

(2m + 2)ω
cos(2m + 2)ωt +

1

2mω
cos 2mωt

]π/ω

0

= 0, (55)

B1 =
ω

π

∫ π/ω

0
sinωt sinωt dt =

ω

π

1

2

π

ω
=

1

2
, (56)

Bn>1 =
ω

π

∫ π/ω

0
sin ωt sinnωt dt =

ω

π

∫ π/ω

0

1

2
[cos(1 − n)ωt − cos(n + 1)ωt] dt

=
ω

2π

[
sin(1 − n)ωt

1 − n
− sin(n + 1)ωt

n + 1

]π/ω

0

= 0, (57)

F (t) =
1

π
+

1

2
sinωt − 2

3π
cos 2ωt − 2

15π
cos 4ωt − · · · (58)
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The Fourier series of the sawtooth function converges somewhat more quickly than
that of the half-wave, as shown in the figures below, from
http://kirkmcd.princeton.edu/examples/mechanics/TT_FourierSeries.pdf.
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5. (a) The equation of motion of the oscillator is,

mẍ = −kx − bẋ + F (t), ẍ + 2βẋ + ω2
0x =

F

m
, β =

b

2m
, ω2

0 =
k

m
,(59)

and the driving force is the step function,

F (t) =

⎧⎪⎨
⎪⎩

0 (t < 0),

F0 (t > 0).
(60)

According to Green’s method (p. 145 of
http://kirkmcd.princeton.edu/examples/Ph205/ph205l13.pdf), the motion is (for t >
0),

x(t > 0) =
∫ t

−∞
F (t′)
mω1

e−β(t−t′) sin ω1(t − t′) dt′
(
ω1 =

√
ω2

0 − β2
)

=
F0

mω1

∫ t

0
e−β(t−t′) sinω1(t − t′) dt′ =

F0

mω1

∫ t

0
e−βy sinω1y dy

=
F0

mω1

[
e−βy−β sinω1y − ω1 cosω1y

β2 + ω2
1

]t

0

=
F0

mω2
0

(
1 − e−βt cosω1t − β

ω1
e−βt sinω1t

)
, (61)

using 577.1 of http://kirkmcd.princeton.edu/examples/EM/dwight_57.pdf.

The first maximum occurs for ẋ = 0,

0 = β e−βt cos ω1t + (β2/ω1) e−βt sinω1t + ω1 e−βt sinω1t − β e−βt cosω1t, (62)

i.e., for ω1t = π, with xmax = (F0/mω2
0)(1 + e−βπ/ω1).

(b) The same oscillator is subject to the impulse,

F (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 (t < 0),

F0 (0 < t < T ),

0 (t > T ).

(63)
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For t < T , the motion is again given by eq. (61), called x(a)(t) below,while for t > T
we have,

x(t > T ) =
F0

mω1

∫ T

0
e−β(t−t′) sinω1(t− t′) dt′ =

F0

mω1

∫ t−T

0
e−βy sinω1y dy

=
F0

mω1

[
e−βy−β sinω1y − ω1 cos ω1y

β2 + ω2
1

]t

t−T

=
F0

mω2
0

(
e−β(t−T ) cos ω1(t− T ) − β

ω1
e−β(t−T ) sinω1(t− T ) − e−βt cos ω1t − β

ω1
e−βt sinω1t

)

=
F0

mω2
0

[
1 − e−βt cosω1t − β

ω1
e−βt sinω1t

−
(

1 − e−β(t−T ) cos ω1(t− T )− β

ω1
e−β(t−T ) sin ω1(t − T )

)]
= x(a)(t) − x(a)(t − T ). (64)
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6. (a) The “steady” response of an oscillator to a driving force F (t) may have the same
form as the driving force.

Then, for the driving force F (t) = F0 e−αt we “guess” that the “steady” motion
has the form x(t) = x0 e−αt.

mẍ = −kx − bẋ + F (t), ẍ + 2βẋ + ω2
0x = (α2 − 2αβ + ω2

0)x0 e−αt =
F0

m
e−αt,(65)

x0 =
F0/m

ω2
0 + α2 − 2αβ

e−αt, β =
b

2m
, ω2

0 =
k

m
. (66)

(b) If the driving force is,

F (t) =

⎧⎪⎨
⎪⎩

0 (t < 0),

F0 e−αt (t > 0),
(67)

we can use Green’s method to solve for the transient response,

x(t > 0) =
∫ t

−∞
F (t′)
mω1

e−β(t−t′) sin ω1(t − t′) dt′
(
ω1 =

√
ω2

0 − β2
)

=
F0

mω1

∫ t

0
e−αt′ e−β(t−t′) sinω1(t− t′) dt′ =

F0

mω1

∫ t

0
e−α(t−y) e−βy sinω1y dy

=
F0 e−αt

mω1

[
e(α−β)y (α − β) sinω1y − ω1 cosω1y

(α − β)2 + ω2
1

]t

0

=
F0/m

ω2
0 + α2 − 2αβ

[
e−αt + e−βt

(
α − β

ω1
sinω1t− cos ω1t

)]
. (68)

The motion for α = β = ω0/4 is sketched below.
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7. This problem is Ex. 1, p. 380 of Routh, Elementary Rigid Dynamics.

We seek the angular frequencies of small oscillations of the compound pendulum
sketched below.

The equilibrium angles are θ0 = 0 = φ0, and it suffices to consider the kinetic and
potential energy of the system to second order in small θ and φ. Taking the origin at
the upper end of the rod of length l, the x-axis to be horizontal and the y-axis to be
vertical, the coordinates of the center of mass of the hoop are,

x = l sin θ + R sinφ ≈ lθ + Rφ, ẋ ≈ lθ̇ + Rφ̇, (69)

y = l cos θ + R cos φ ≈ l + R − lθ2

2
− Rφ2

2
, ẏ ≈ −lθθ̇ −Rφφ̇, (70)

v2 = ẋ2 + ẏ2 ≈ ẋ2 ≈ l2θ̇
2
+ R2φ̇

2
+ 2lRθ̇φ̇. (71)

The approximate equations of motion follow from the Lagrangian,

L = T − V =
mv2

2
+

mR2φ̇
2

2
+ mgy

≈ m

2
(l2θ̇

2
+ 2R2φ̇

2
+ 2lRθ̇φ̇) + mg

(
l + R − lθ2

2
− Rφ2

2

)
, (72)

d

dt

∂L
∂θ̇

≈ ml2θ̈ + mlRφ̈ =
∂L
∂θ

≈ −mglθ, (73)

d

dt

∂L
∂φ̇

≈ 2mR2φ̈ + mlRθ̈ =
∂L
∂φ

≈ −mgRφ. (74)

We seek oscillatory solutions of the form θ = α eiωt, φ = β eiωt for complex constants
α and β, such that the equations of motion (73)-(74) reduce to,

− l2ω2α − lRω2β = −glα, (lω2 − g)α + Rω2β = 0, (75)

−2R2ω2β − lRω2α = −gRβ, lω2α + (2Rω2 − g)β = 0. (76)⎛
⎜⎝ lω2 − g Rω2

lω2 2Rω2 − g

⎞
⎟⎠
⎛
⎜⎝ α

β

⎞
⎟⎠ =

⎛
⎜⎝ 0

0

⎞
⎟⎠ . (77)

The matrix equations (77) have a solution only if the determinant of the coefficient
matrix vanishes,

0 = (lω2 − g)(2Rω2 − g) − (lω2)(Rω2) = lRω4 − g(l + 2R)ω2 + g2 (78)

ω2 =
g(l + 2R) ±

√
g2(l + 2R)2 − 4g2lR

2lR
=

g

2lR

(
l + 2R ±

√
l2 + 4R2

)
. (79)
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For R = l/2, we have ω2 = (g/l)(2 ±√
2).

We now consider the form of the normal modes of small oscillation for R = l/2, in
which case eq. (77) becomes,

⎛
⎜⎝ ω2 − g/l ω2/2

ω2 ω2 − g/l

⎞
⎟⎠
⎛
⎜⎝ α

β

⎞
⎟⎠ =

⎛
⎜⎝ 0

0

⎞
⎟⎠ . (80)

The higher frequency mode has ω2 = (g/l)(2 +
√

2), and eq. (80) becomes,

⎛
⎜⎝ 1 +

√
2 1 +

√
2/2

2 +
√

2 1 +
√

2

⎞
⎟⎠
⎛
⎜⎝ α

β

⎞
⎟⎠ =

⎛
⎜⎝ 0

0

⎞
⎟⎠ . (81)

(1 +
√

2)α + (1 +
√

2/2)β = 0, (82)

β

α
= −2

1 +
√

2

2 +
√

2
= −2

1 +
√

2

2 +
√

2

2 −√
2

2 −√
2

= −√
2. (83)

In the higher frequency mode, the oscillations in θ and φ have opposite signs.

The lower frequency mode has ω2 = (g/l)(2 −√
2), and eq. (80) becomes,

⎛
⎜⎝ 1 −√

2 1 −√
2/2

2 −√
2 1 −√

2

⎞
⎟⎠
⎛
⎜⎝ α

β

⎞
⎟⎠ =

⎛
⎜⎝ 0

0

⎞
⎟⎠ . (84)

(1 −√
2)α + (1 −√

2/2)β = 0, (85)

β

α
= −2

1 −√
2

2 −√
2

= −2
1 −√

2

2 −√
2

2 +
√

2

2 +
√

2
=

√
2. (86)

In the lower-frequency mode, the oscillations in θ and φ have the same signs.
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8. This problem is Ex. 5, p. 381 of Routh, Elementary Rigid Dynamics.

An equilateral thin plate suspended by three springs has 4 modes of oscillation in which
the center of mass moves only vertically (or not at all).

(1) In mode 1, the plate remains horizontal, while its center of mass oscillates in the
vertical coordinate y. With three equal springs, each of constant k, the equation
of motion is mÿ = −3ky, and the angular frequency of oscillation is,

ω1 =

√
3k

m
, (87)

where m is the mass of the triangular plate.

(2) In mode 2, a bisector/altitude of the triangle remains fixed (and horizontal) while
one corner moves up and the other moves down.

There are 3 variants of this mode, for the 3 such bisectors.

If the plane of the triangle has rotated by small angle θ from the horizontal
equilibrium position, the torque about the fixed bisector is τ = −2ka2θ, where
the edge of the equilateral triangle has length 2a. The bisector has length

√
3 a,

and the area of the triangle is A =
√

3a2. The moment of inertia of the triangle
about a bisector is,

I2 =
∫ a

−a

m√
3 a2

x2 dx
√

3(a − x) =
m

a2

(
2a4

3
− 2a4

4

)
=

ma2

6
. (88)

The equation of motion of mode 2 is I2 θ̈ = −2a2kθ, and hence,

ω2 = 2

√
3k

m
= 2ω1. (89)

(3) In mode 3, the line (of length 4a/3) through the center of mass of the triangle
and parallel to one of its sides remains fixed, while one vertex moves up and the
other two move down (or vice versa).

As for mode 2, there are 3 variants of mode 3.

If the plane of the triangle has rotated by small angle θ from the horizontal
equilibrium position, the torque about the fixed line is,

τ = − 2a√
3
k

2a√
3
θ − 2

a√
3
k

a√
3
θ = −2akθ. (90)

The moment of inertia I3 of the triangle about the fixed line through the center
of mass is,
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I3 =
∫ 2a/

√
3

−a/
√

3

m√
3 a2

x2 dx
4a

3

(
1 − x

√
3

2a

)

=
4m

3
√

3 a

⎡
⎣1

3

(
2a√

3

)3

+
1

3

(
a√
3

)3

−
√

3

8a

(
2a√

3

)4

+

√
3

8a

(
a√
3

)4
⎤
⎦ =

ma2

6
. (91)

The equation of motion of mode 3 is I3 θ̈ = −2a2kθ, and hence,

ω3 = 2

√
3k

m
= ω2 = 2ω1. (92)

(4) In mode 4, the triangle rotates about the vertical axis through the center of mass,
which remains fixed to a first approximation.

We suppose that the equilibrium stretch, mg/3k, of each spring is small compared
to the rest length l of the springs. Then, for a small angle of rotation is θ, of
the (horizontal) triangle about the vertical axis through the center of mass, the
horizontal force of each spring on the triangle is (mg/3)(2aθ/

√
3 l), and the torque

is,

τ = −3
mg

3

2aθ√
3 l

2a√
3

= −4mga2

3l
θ. (93)

The moment of inertia I4 of the equilateral triangle about the axis through the
center of mass and perpendicular to the plane of the triangle is related by the
perpendicular axis theorem to the sum of the moments of inertial about two
perpendicular axes in the plane of the triangle. In particular,

I4 = I2 + I3 =
ma2

3
. (94)

The equation of motion of mode 4 is I4 θ̈ = −4mga2θ/3l, and hence,

ω4 = 2

√
g

l
, (95)

independent of the spring constant k and the mass m.
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9. This problem is Ex. 10, p. 382 of Routh, Elementary Rigid Dynamics.

A uniform disk of mass m and radius a connected by stretched springs to three fixed
vertices of an equilateral triangle has three mode of motion in the plane of the trian-
gle.rests on a frictionless, horizontal table.

(1) In mode 1, the center of the disk moves along a bisector of the triangle, called
the x-direction the left figure above. For displacement x � l, where l is the
equilibrium stretched length of the springs, whose rest length is l0 < l, the length
of the other two springs is l + x cos 60◦ = l + x/2 to a first approximation. Each
of these springs makes angle α to the x-axis, which is related by,

cosα = cos(π − β − (π − 60◦)) = cos(60◦ − β) ≈ cos 60◦ + sin 60◦ sinβ

≈ 1

2
+

√
3

2

√
3x

2l
=

1

2
+

3x

4l
. (96)

Then, the equation of motion of the oscillating disk is, to the first approximation,

mẍ = k(l − x − l0) − 2k(l + x/2 − l0) cos α (97)

= k(l − x − l0) − k(l + x/2 − l0)
(
1 +

3x

2l

)
= −3kx

2
− 3kx

l − l0
2l

= −3kx
2l − l0

2l
.

Hence, the angular frequency of the small oscillations of mode 1 is,

ω1 =

√
3k

2m

2l − l0
l

. (98)

(2) In mode 2, the center of the disk moves along a line perpendicular to a bisector
of the triangle, called the y-direction the middle figure above. For displacement
x � l, the length of the left springs remains l to a first approximation, while
the other two springs take on lengths l ± y

√
3/2. The y-component of the force
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of the left spring on the disk is −k(l − l0)(y/l) to the first approximation. The
y-component of the force of the second spring on the disk is −k(l + y

√
3/3) cos γ

where,

cos γ = cos(π − δ − (π − 30◦)) = cos(30◦ − δ) ≈ cos 30◦ + sin 60◦ sin δ

≈
√

3

2
+

1

2

y

2l
, (99)

F2,y = −k

(
l +

y
√

3

2
− l0

)(√
3

2
+

y

4

)
. (100)

The y-component of the force of the third spring on the disk is k(l′y
√

3/3) cos γ′

where,

cos γ′ = − cos(π − δ′ − 30◦) = cos(30◦ + δ) ≈ cos 30◦ − sin 60◦ sin δ,

≈
√

3

2
− 1

2

y

2l
, (101)

F3,y = k

(
l − y

√
3

2
− l0

)(√
3

2
− y

4

)
. (102)

Then, the equation of motion of the oscillating disk is, to the first approximation,

mÿ = −k(l − l0)
y

l

−k

(
l +

y
√

3

2
− l0

)(√
3

2

y

4

)
+ k

(
l − y

√
3

2
− l0

)(√
3

2
− y

4

)
(103)

= −k(l − l0)
y

l
− ky

(
3

4
+

l − l0
4l

)
− ky

(
3

4
+

l − l0
4l

)
= −3ky

2

(
1 +

l − l0
l

)
.

Hence, the angular frequency of the small oscillations of mode 2 is,

ω2 =

√
3k

2m

2l − l0
l

= ω1. (104)

(1) In mode 3, the center of the disk remains fixed while the disk oscillates by angle
θ about this point, as shown in the right figure on the previous page. For small
rotations, the length of the springs remains l to a first approximation.
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The torque exerted by each spring is −ak(l − l0) sin ε where,

sin ε ≈ ε = θ + φ ≈ θ +
aθ

l
. (105)

The moment of inertia of the disk is I = ma2/2, so the equation of motion of the
oscillating disk is, to the first approximation,

Iθ̈ =
ma2

2
θ̈ = τ = −3akθ(l − l0)

a + l

l
, (106)

and the angular frequency of the small oscillations of mode 3 is,

ω3 =

√
6k

m

(l − l0)(a + l)

al
. (107)

For a solution via Lagrange’s method, see
http://kirkmcd.princeton.edu/examples/Ph205/ph205sol7.pdf.
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10. (a) Considering motion only along the axis of a linear triatomic molecule ABA with
equilibrium spacing L between atoms A and B, the kinetic and potential energies
are,

T =
mA(ẋ2

1 + ẋ2
3)

2
+

mBẋ2
2

2
, V =

k

2

[
(x2 − x1 − L)2 + (x3 − x2 − L)2

]
.(108)

Lagrange’s equation of motion for this system, with L = T − V , are,

d

dt

∂L
∂ẋ1

= mAẍ1 =
∂L
∂x1

= k(x2 − x1 − L), (109)

d

dt

∂L
∂ẋ2

= mBẍ2 =
∂L
∂x2

= k(−2x2 + x1 + x3), (110)

d

dt

∂L
∂ẋ3

= mAẍ3 =
∂L
∂x3

= −k(x3 − x2 − L). (111)

Taking the origin at the equilibrium position of atom B, small oscillations of the
atoms about equilibrium have the forms,

x1 = a1 eiωt − L, x2 = a2 eeiωt, x3 = a3 eiωt + L, (112)

for complex constants aj. Using these forms in the equations of motion (109)-
(111), we find,

− mAω2a1 = k(a2 − a1), (k − mAω2)a1 − ka2 + 0a3 = 0, (113)

−mBω2a2 = k(2a2 − a1 − a3), ka1 + (2k − mBω2)a2 + ka3 = 0, (114)

−mAω2a3 = −k(a3 − a2), 0a1 − ka2 + (k − mAω2)a3 = 0. (115)

For there to be a solution, the determinant of the coefficient matrix must vanish,

(k − mAω2)2(2k − mBω2) − 2k2(k − mAω2) = 0. (116)

The existence of the common factor k − mAω2 implies that,

ω2 =
k

mA
, (117)

is one solution.

After dividing out this common factor in eq. (116), we have

mAmBω4 − k(2mA + mB)ω2 + 2k2 − 2k2 = 0, (118)

such that two other solutions are,

ω2 = 0, and ω2 = k
2mA + mb

maM − B
. (119)

The case of ω = 0 means that there is a nonoscillatory motion possible for this
system, which is just translation of the entire system, without internal motion,
along the x-axis.
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(b) If the middle atom B is tied to the origin by a spring, also of constant k, then the
potential energy is that in eq. (108) plus an additional term kx2

2/2. The equations
of motion associated with coordinates x1 and x2 are again given be eqs. (109) and
(111), while the equation of motion associated with coordinate x2 is now,

d

dt

∂L
∂ẋ2

= mBẍ2 =
∂L
∂x2

= k(−3x2 + x1 + x3), (120)

For small oscillations about equilibrium as in eq. (112), this implies,

− mBω1a2 = k(−3a2 + a1 + a3). (121)

The determinant of the coefficient matrix must again vanish, which leads to
eq. (116) with the 2 replaced by 3,

(k − mAω2)2(3k − mBω2) − 2k2(k − mAω2) = 0. (122)

Again, the existence of the common factor k − mAω2 implies that,

ω2 =
k

mA
, (123)

is one solution.

After dividing out the common factor in eq. (122), we have,

mAmBω4 − k(3mA + mB)ω2 + k2 = 0, (124)

ω2 =
k(3mA + mB) ±

√
k2(3mA + mB)2 − 4k2mAmB

2mAmB

= k
3mA + mB ±

√
9m2

A + 2mAmB + m2
B

2mAmB
. (125)


