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1. Coupled, Damped, Forced Oscillation.

A system of two equal masses connected by three collinear springs is subject to a
collinear, external driving force F0 cos ωt on mass 1 only.

In addition, there are damping forces on the two masses, F1 = −bẋ1 and F2 = −bẋ2,
which will prevent the amplitudes of the motion from diverging in case of resonance.

Demonstrate this by transformation the coupled equations of motion of x1 and x2

relative to the equilibrium positions of the masses into decoupled equations of motion
of the normal coordinates q1 and q2 (for motion in the absence of the external force).
Then, transform the solutions back to coordinates x1 and x2 to show that,

x1 =
F0

m

ω2
0 − ω2 + 2iβω

ω2
1 − ω2 + 2iβω

eiωt

ω2
2 − ω2 + 2iβω

, x2 =
F0

2m

ω2
2 − ω2

1

ω2
1 − ω2 + 2iβω

eiωt

ω2
2 − ω2 + 2iβω

, (1)

where
β = b

2m
, ω2

0 =
k1 + k2

m
, ω2

1 =
k1

m
, ω2

2 =
k1 + 2k2

m
. (2)

Hint: Guess the normal coordinates.
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2. A particle of mass m is connected to two fixed points by springs of constant k and rest
length l0. The fixed points are distance 2a apart.

Consider only transverse oscillations in the x-y plane.

(a) Show that if a < l0 there are three equilibrium points, and that the angular
frequency of small oscillations about the one stable equilibrium is,

ω =

√√√√2k

m

(
1 − a2

l20

)
. (3)

(b) Show that if a > l0 there is only one equilibrium point, and that the angular
frequency of small oscillations about this is,

ω =

√√√√2k

m

(
1 − l0

a

)
. (4)

(c) Show that if a = l0 the potential is V (y) ≈ ky4/4l20 .

Then, use a method of successive approximations to show that the period is, to a
first approximation,

T ≈ 4π
√

3

3

l0
A

√
m

k
, (5)

where A is the amplitude.

It turns out that if the potential very precisely quartic then T = 7.42(l0/A)
√

m/k.
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3. A spring of constant k is fixed at one end and attached to mass m at the other. The
mass is subject to friction such that the equation of (1-dimensional) motion is,

mẍ = −kx − μmg · (sign of ẋ) (6)

Let ω2
0 = k/m, and suppose that at t = 0, x = a0 and ẋ = 0, where a0 � μg/ω2

0.

(a) Consider the exact solution for half periods to calculate the loss of amplitude.

Show that the amplitude will drop to zero in time t ≈ πa0ω0/2μg.

(b) Use the method of averages1 to show that the motion is approximately
x ≈ (a0 − 2μgt/πω0) cos ω0t.

1Pp. 161-162 of http://kirkmcd.princeton.edu/examples/Ph205/ph205l15.pdf.
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4. Consider a 1-dimensional oscillator subject to a damping force such that the equation
of motion is,

ẍ + ω2
0 = −βẋ |ẋ| . (7)

Suppose that at t = 0, x = a0 and ẋ = 0.

(a) Show by a method of successive approximations that after one half period that
amplitude has been reduced to (approximately) a0(1 − 4βa0/3).

(b) Use the method of averages to show that the motion is approximately
x ≈ a(t) cosω0t where 1/a = 1/a0 + (4β/3π) cos ω0t, which agrees with the result
of part (a) after one half period.
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5. Consider a central force,2

F = − α

r2
− β

r4
. (8)

The “orbit equation” for a (small) mass m subject to this force is,3 with u = 1/r,

d2u

dθ2 + u = − m

L2u2
F (1/u) =

αm

L2
+

βmu2

L2
, (9)

where L is the angular momentum of mass m about the force center.

If β = 0, the solution is the standard Newtonian ellipse, u = (αm/L2)(1 + ε cos θ).

For β �= 0 consider a solution of the form,

u ≈ k[1 + ε(θ) cos φ(θ)]. (10)

Supposing that dε/dθ is small, d2ε/dθ2 is of second order, and dφ/dθ ≈ 1, show that,

u ≈ αm

L2

[
1 + ε cos

(
1 − 2αβm2

L2
θ

)]
. (11)

This is a slowly precessing ellipse, with angular velocity of precession,

ω =
2αβm2

L4
Ω, where Ω =

2π

T
, (12)

is the average angular velocity of the orbital motion (of period T ).

It is not necessary here, but the approximation scheme could be cast into the form of
a method of averages (that allows us to consider small oscillations about an elliptical
orbit, rather than about a circular orbit as in our previous analyses).

For what it’s worth,

dφ

dθ
= 1 − 2

επ

∫ 2π

0
f cos φdφ,

dε

dθ
= − 1

π

∫ 2π

0
f sinφdφ, (13)

with,

f = −αβεm2 cos φ

L4
, (14)

for the present example.

2Recall probs. 8 and 9 of http://kirkmcd.princeton.edu/examples/Ph205/ph205set8.pdf.
3See http://kirkmcd.princeton.edu/examples/Ph205/ph205l10.pdf.
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6. The Swing

If one “pumps” a swing, the amplitude of the oscillation can be increased.

(a) As a simple model of the pumping action, consider a simple pendulum whose
center of mass is (quickly) lowered by 2εl0 when the amplitude is maximum, and
raised by 2εl0 when the angle θ to the vertical is 0.

Use elementary methods to show that during one half period,

θ2
f = θ2

0

(
1 + ε

1 − ε

)3

, (15)

and that if ε is small this leads to θmax = θ0 e3εω0t/π, where ω0 =
√

g
l0

.

(b) In another model of pumping, suppose that the distance from the pivot to the
center of mass varies as l = l0(1 + ε sin 2ω0t).

Deduce the equation of motion for angle θ.

For small ε we suppose that solution will have the form θ(t) ≈ a(t) cosω0t. Use a
method of successive approximations, or a method of averages, to show that,

θmax ≈ θ0 e3εω0t/4, (16)

for this model.
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7. (a) Mass m is connected to one end of a spring of constant k and rest length l0. The
other end of the spring is force to move according to x1 = a cosωt in the inertial
lab frame.

Go to the accelerated frame with origin at x1 and solve for the steady-state motion
x(t) = x1 + x2 with zero velocity at time t = 0.

(b) A particle has velocity v on a smooth (frictionless) table.

Show that the particle will move in a circle, and find the radius of the circle and
the angular velocity of the motion relative to the Earth.
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8. (a) A plumb line does not point to the center of the Earth, due to the effect of the
centrifugal force of the Earth’s rotation. Show that the angle φ of deflection of
the plumb line to the line from its support point to the center of the Earth is
related by,

tan φ =
sin θ cos θ

g/Ω2R − sin2 θ
, (17)

where θ is the polar angle to the support point, Ω is the angular velocity of
rotation of the Earth about its axis, and R is the distance of the plumb bob from
the center of the Earth. You may assume that the force of gravity at the Earth’s
surface points to the center of the Earth.

Note that g/Ω2R ≈ 290.

(b) Centrifugal Bulge.

We might expect the water surface of the Earth to be perpendicular to a plumb
line, which implies a bulge at the equator.

The (perpendicular) surface will be an equipotential of the effective potential of
gravity and the centrifugal force. Show that this leads to the equation of the
surface as,

R3 sin2 θ =
2GM

Ω2

(
R

RP
− 1

)
, (18)

where RP = radius at the pole and θ is as in part (a). You may assume that the
gravitational potential of the bulging Earth is the same as that for a spherical
Earth.

Write RE/RP = 1 + ε, where RE is the radius at the equator, to show that
ε ≈ 1/580. Experimentally, ε ≈ 1/297.
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9. Tidal Bulge.

The shape of the Earth is also distorted by the pull of the Moon (and of the Sun).
Roughly, the Moon pulls on the near side of the Earth more than on the center, and
still more than on the far side. This leads to a bulge on the side facing the Moon, and
another on the side opposite.

In this problem consider only the effect of the Moon, and suppose the Earth would be
spherical in the absence of the Moon’s pull.

Consider a frame with the center of the Earth at rest, and axes pointing to the “fixed
stars”. Construct the combined gravitational potential V for a particle at the surface
of the Earth.

This frame is accelerated, so there is a “fictitious” force needed to hold the Earth
center of mass fixed. In the approximation of a rigid Earth, this force is the same on
all particles (of mass m) throughout the Earth. Show that to order (r/R)2,

V

m
≈ −GM

r
− GM ′

R
+

3

2

GM ′r2

R3

(
1

3
− cos2 θ

)
, (19)

where r is the radius of the Earth of mass M , R is the Earth-Moon distance, and M ′

is the mass of the Moon, and θ is the angle between the radius to mass m and the line
of centers of the Earth and Moon).

Evaluate ε in the expression for the equipotential at the surface of the Earth,

r ≈ r0

[
1 + ε

(
cos2 θ − 1

3

)]
, (20)

where r0 is the mean radius of the Earth. This implies a tidal bulge of 1 foot.

Because the Earth turns around its axis, and the Moon orbits the Earth, the position
of the bulge changes with time.

Taking the z-axis of the coordinate system considered above to be the z-axis of the
Earth, let (r, λ, φ) be the spherical coordinates of a point on the Earth’s surface, and
(R, λ′, φ′) those of the Moon.
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Show that,

r

r0
= 1 + ε

[
3

2

(
cos2 λ − 1

3

)(
cos2 λ′ − 1

3

)
+

1

2
sin2 λ sin2 λ′ cos 2(φ − φ′)

+
1

2
sin 2λ sin 2λ′ cos(φ − φ′)

]
. (21)

Thus, while to total effect is given by eq. (20), an observer at a fixed location (λ, φ)
on the Earth’s surface can do a “Fourier analysis” of the bulge into 3 time-dependent
tides (with 3 different periods).

What is the period of each of these tides? Which one corresponds to the usual percep-
tion of “the” tide?
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10. You may assume that the Earth is spherical in this problem, and ignore gravity except
that due to the Earth.

(a) A particle falls from rest at height h � R above the Earth’s surface, at polar
angle θ. To first order in Ω, the angular velocity of the rotation of the Earth
about its axis, show that the (horizontal) deflection during the fall is,

d =
2

3

√
2h3

g
Ωsin θ, (22)

taking g to be constant during the fall. In what direction is the deflection? Is
this different in the southern hemisphere?

(b) Suppose you jump up to height h � R and then fall back. Show that the coriolis
force increases the deflection/displacement to,

d =
8

3

√
2h3

g
Ωsin θ. (23)

In what direction is this displacement?

(c) Use conservation of angular momentum and a non-accelerated point of view to
calculate the change in azimuthal angle φ during your jump. Show that this leads
to the same displacement as in part (b).
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11. You may assume that the Earth is spherical in this problem, and ignore gravity except
that due to the Earth.

A gun is located on the surface of the Earth at polar angle θ. In the absence of the
Coriolis force (and of the centrifugal force, and of air resistance), the shot would land
distance D away, having risen to height h � R (such that you may also ignore effects
of the curvature of the Earth, of radius R).

(a) If the gun fired North, show that the shot is deflected by,

d ≈ 2

√
2h

g
Ω

(
4h

3
sin θ − D cos θ

)
, (24)

to first order in Ω, the angular velocity of rotation of the Earth about its axis.

In what direction?

(b) If the gun fired East, show that the shot is deflected by,

d ≈ 2

√
2h

g
ΩD cos θ, (25)

to order Ω. In what direction?

Also show that it lands at distance,

D′
E ≈ D

(
1 +

ΩD sin θ√
2gh

)
, (26)

to the East (which is orthogonal to the deflection (25)).
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Solutions

1. Coupled, Damped, Forced Oscillation.

The equations of motion of the two masses m follow readily from F = ma,

mẍ1 = −k1x1 + k2(x2 − x1) − bẋ1 + F0 cos ωt, mẍ2 = k1(D − x2) − k2(x2 − x1) − bẋ2,(27)

where the fixed ends of the springs of constant k1 are at x = 0 and D, and the rest
lengths of the springs is small compared to D.

In this problem, we are mainly concerned with motion relative to the equilibrium
positions of the two masses, due the external force F0 cosωt on mass 1. Then, if we
define coordinates x1 and x2 relative to their equilibrium positions, the equations of
motion (27) take the form,4

mẍ1 = −k1x1 + k2(x2 − x1) − bẋ1 + F0 cos ωt, mẍ2 = −k1x2 − k2(x2 − x1) − bẋ2,(31)

It is now straightforward to assume motion of the form x1,2 = a1,2 eiωt and solve for
the complex constants a1,2.

However, we take a slightly different approach, noting that in the absence of the exter-
nal force there are two normal modes, one in which the two masses move with x1 = x2,
and the other in which they move oppositely, x1 = −x2. This leads us to consider the
normal (but not normalized) coordinates q1 and q2 related by,

q1 = x1 + x2, q2 = x1 − x2, x1 =
q1 + q2

2
, x2 =

q1 − q2

2
(32)

The equations of motion for the normal coordinates can by found by adding and
subtracting the equations of motion (27),

ẍ1 + ẍ2 +
b

m
(ẋ1 + ẋ2) +

k1

m
(x1 + x2) =

F0

m
eiωt, q̈1 + 2βq̇1 + ω2

1q1 =
F0

m
eiωt,(33)

ẍ1 − ẍ2 +
b

m
(ẋ1 − ẋ2) +

k1 + 2k2

m
(x1 − x2) =

F0

m
eiωt, q̈2 + 2βq̇2 + ω2

2q2 =
F0

m
eiωt,(34)

where β =
b

2m
, ω2

1 =
k1

m
, ω2

2 =
k1 + 2k2

m
, ω2

0 =
k1 + k2

m
=

ω2
1 + ω2

2

2
.(35)

4For what its worth, the equilibrium positions of the two masses can be found by setting ẍ1 = ẍ2 = ẋ1 =
ẋ2 = F0 = 0 in eq. (27) still regarding x1 and x2 as measured with respect to the left wall. Then,

0 = −k1x1,0 + k2(x2,0 − x1,0), x2,0 =
k1 + k2

k2
x1,0, (28)

0 = k1(D − x2,0) − k2(x2,0 − x1,0) = k1D + k2x1,0 − (k1 + k2)x2,0, (29)

k1D = −k2x1,0 +
(k1 + k2)2x1,0

k2
, x1,0 =

k2

k1 + 2k2
D, x2,0 =

k1k2

k1 + 2k2
D. (30)
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The decoupled equations of motion for q1 and q2 imply that,

q1,2 =
F0

m

eiωt

ω2
1,2 − ω2 + 2iβω

. (36)

We transform these back to coordinates x1 and x2,

x1,2 =
q1 ± q2

2
=

F0 eiωt

2m

(
1

ω2
1 − ω2 + 2iβω

± 1

ω2
2 − ω2 + 2iβω

)
, (37)

x1 =
F0 eiωt

m

ω2
1+ω2

2

2
− ω2 + 2iβω

(ω2
1 − ω2 + 2iβω) (ω2

2 − ω2 + 2iβω)

=
F0 eiωt

m

ω2
0 − ω2 + 2iβω

(ω2
1 − ω2 + 2iβω) (ω2

2 − ω2 + 2iβω)
, (38)

x2 =
F0 eiωt

2m

ω2
2 − ω2

1

(ω2
1 − ω2 + 2iβω) (ω2

2 − ω2 + 2iβω)
. (39)
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2. Adapted from prob. 6.5.2, p. 159 of W. Chester, Mechanics (Allen & Unwin, 1979),
http://kirkmcd.princeton.edu/examples/mechanics/chester_mechanics_79.pdf

A particle of mass m is connected to two fixed points by springs of constant k and rest
length l0. The fixed points are distance 2a apart.

We consider only transverse oscillations in the x-y plane, in which case the potential
is (ignoring gravity),

V (y) = 2
k(l − l0)

2

2
= k

(√
a2 + y2 − l0

)2

. (40)

dV

dy
= 2k

(√
a2 + y2 − l0

)
y√

a2 + y2
= 2ky

(
1 − l0√

a2 + y2

)
, (41)

d2V

dy2
= 2k

(
1 − l0√

a2 + y2

)
+

2ky2l0
(a2 + y2)3/2

, (42)

d3V

dy3
=

6kyl0
(a2 + y2)3/2

− 6ky2l0
(a2 + y2)5/2

, (43)

d4V (y = 0)

dy4
=

6kl0
a3

. (44)

Possible equilibrium points, where dV/dy = 0, and y = 0, and y = ±
√

l20 − a2 (where√
a2 + y2 = l0) if a < l0.

(a) If a < l0 there are three equilibrium points, y0 = 0, ±
√

l20 − a2.

As to their stability, we consider the second derivative of the potential,

d2V (0)

dy2
= 0, ⇒ unstable, (45)

d2V (±
√

l20 − a2)

dy2
=

2k(l20 − a2)

l20
≡ keff , ⇒ stable, (46)

The angular frequency of small oscillations about the stable equilibria is,

ω =

√
keff

m
=

√√√√2k

m

(
1 − a2

l20

)
. (47)

(b) If a > l0 there is only one equilibrium point, y0 = 0, for which

keff =
d2V (0)

dy2
= 2k

(
1 − l0

a

)
, ⇒ stable, (48)
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and the angular frequency of small oscillations is

ω =

√
keff

m
=

√√√√2k

m

(
1 − l0

a

)
. (49)

(c) If a = l0 the 0 = dV (0)/dy = d2V (0)/dy2 = d3V (0)/dy3, and the leading nonzero
term in the expansion of the potential is

V (y) ≈ 1

4!

d4V (0)

dy4
y4 =

1

24

6kl0
a3

y4 =
ky4

4l20
. (50)

For small oscillations, the equation of motion is,

mÿ = −dV

dy
= −ky3

l20
+ · · · . (51)

A solution that starts from rest with nonzero amplitude at t = 0 can be a Fourier

series of the form y
∑

n An cos nωt where ω =
√

k/m. Since cos 2ωt = 2cos2 ωt−1

while cos 3ωt = 4cos3 ωt − 3 cos ωt, we anticipate that A2 = 0, and the first two
terms of the series have the form,

y = A cosωt + B cos 3ωt. (52)

We first consider just the form y = A cos ωt,

ÿ = −ω2A cosωt = − ky3

ml20
= −kA3 cos3 ωt

ml20
= −kA3(3 cos ωt + cos3 ωt)

4ml20

≈ −3kA3 cosωt

4ml20
, (53)

ω2 ≈ 3kA2

4ml20
, T ≈ 4π

√
3

3

l0
A

√
m

k
= 7.26

l0
A

√
m

k
. (54)

If the potential (50) were precisely quartic, and mechanical energy is conserved,
then we have,

E =
mẏ2

2
+

ky4

4l20
. (55)

If the amplitude is A when ẏ = 0, we have that,

ẏ2 =
k(A4 − y4)

2ml20
, T = 4

∫ A

0

dy

ẏ
= 4

√
2ml20

k

∫ A

0

dy√
A4 − y4

. (56)

Then, with the substitution y/A = cos φ, the period of oscillation is,

T =
4l0
A

√
m

k

∫ π/2

0

dφ√
1 − 1

2
sin2 φ

=
4l0
A

√
m

k
K(1/

√
2) = 7.42

l0
A

√
m

k
, (57)

where K is the complete elliptic integral.



Princeton University 1988 Ph205 Set 8, Solution 3 17

3. The equation of motion of the damped oscillator is,

ẍ + ω2
0x = −μg · (sign of ẋ), (58)

where ω2
0 = k/m. We suppose that at t = 0, x = a0 and ẋ = 0, where A � μg/ω2

0.

(a) During odd-numbered half periods ẋ < 0 and the damping force is positive. At
the beginning of such a half period, at time tn, x(tn) > 0 and ẋ(tn) = 0. The
equation of motion is,

ẍ + ω2
0x = μg (odd half period). (59)

The motion during this half period is,

x =
μg

ω2
0

+ an cos ω0(t− tn), (60)

and the initial condition tells us that,

an = x(tn) − μg

ω2
0

. (61)

At the end of the nth half period, which is the beginning of half period n + 1, we
have,

x(tn+1) =
μg

ω2
0

−
(
x(tn) − μg

ω2
0

)
= −x(tn) +

2μg

ω2
0

. (62)

During the half period n+1, the damping force is negative, so eqs. (60)-(62) take
the forms,

x = −μg

ω2
0

+ an+1 cosω0(t − tn+1), (63)

and the initial condition tells us that,

an+1 = x(tn+1) +
μg

ω2
0

. (64)

At the end of the n + 1th half period, which is the beginning of half period n + 2,
we have,

x(tn+2) = −μg

ω2
0

−
(
x(tn+1) +

μg

ω2
0

)
= −x(tn+1) − 2μg

ω2
0

= x(tn) − 4μg

ω2
0

. (65)

Thus, during each full period, of duration 2π/ω0, the amplitude of the oscillation
decreases by 4μg/ω2

0. Hence, the oscillations damp to zero in time,

t =
a0

4μg/ω2
0

2π

ω0

=
πa0ω0

2μg
. (66)
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(b) According to the method of averages for a damped oscillator, ẍ + ω2x = εf(x, ẋ),

x ≈ a(t) cosφ(t), ȧ = − ε

2πω0

∫ 2π

0
f sinφdφ, φ̇ = ω0 − ε

2πω0

∫ 2π

0
f cos φdφ.(67)

In the present example, ε = −μg and f is +1 for the first half period and −1 for
the second half period. Hence,

ȧ = −−μg

2πω0
2
∫ π

0
(− sinφ) dφ = −2μg

πω0
, a = a0 − 2μgt

πω0
, (68)

φ̇ = ω0 − −μg

2πω0
2
∫ π

0
(− cos φ) dφ = ω0, φ = ω0t. (69)

The motion is approximately,

x ≈
(
a0 − 2μgt

πω0

)
cosω0t, (70)

and amplitude drops to zero in time,

t ≈ πa0ω0

2μg
, (71)

as found in part (a).
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4. We consider a 1-dimensional oscillator subject to a damping force such that the equa-
tion of motion is,

ẍ + ω2
0x = −βẋ |ẋ| . (72)

Suppose that at t = 0, x = a0 and ẋ = 0.

(a) During the first half period, during which ẋ < 0, the equation of motion is,

ẍ + ω2
0x = βẋ2. (73)

If we ignore the damping, the solution would be just,

x0 = a0 cos ω0t. (74)

As a next approximation, we consider the form,

x = a1 cos ω0t + βx1. (75)

With this in eq (73), and ignoring higher-order terms in β, we have,

βẍ1 + βω2
0x1 ≈ βa2

1ω
2
0 sin2 ω0t, ẍ1 + ω2

0x1 ≈ a2
1ω

2
0

2
(1 − cos 2ω0t) (76)

This is solved by,

x1 ≈ a2
1

2

(
1 +

cos 2ω0t

3

)
. (77)

At t = 0, x(0) = a0 = a1 + β2a2
1/3 ≈ a1 + 2βa2

0/3, such that a1 ≈ a0(1− 2βa0/3).

After one half period, the amplitude is,

|x| = |x0(π/ω0) + βx1(π/ω0)| =

∣∣∣∣∣−a1 + β
a2

1

2

4

3

∣∣∣∣∣ = a1

(
1 − 2βa1

3

)

≈ a0

(
1 − 2βa0

3

)2

≈ a0

(
1 − 4βa0

3

)
. (78)

(b) According to the method of averages for a damped oscillator, ẍ + ω2x = εf(x, ẋ),

x ≈ a(t) cosφ(t), ȧ = − ε

2πω0

∫ 2π

0
f sinφdφ, φ̇ = ω0 − ε

2πω0

∫ 2π

0
f cos φdφ,(79)

In the present example, ε = −β and f = ẋ |ẋ| ≈ −
〈
a2φ̇

2
〉

sinφ |sinφ|, where the

average
〈
a2φ̇

2
〉

is approximately the value of a2φ̇
2

at the beginning of the period

of oscillation of interest. Hence,

φ̇ = ω0 − −βa2φ̇
2

2πω0

∫ 2π

0
sinφ |sinφ| cos φdφ = ω0, φ = ω0t, (80)

ȧ = −−βa2ω2
0

2πω0

∫ 2π

0
sin2 φ |sinφ| dφ =

βa2ω0

π

∫ π

0
sin3 φdφ = −4βa2ω0

3π
. (81)
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We have an approximate differential equation for a,

da

a2
= −4βω0

3π
dt,

1

a0
− 1

a
= −4βω0t

3π
. (82)

The motion is approximately,

x ≈ a cosω0t,
1

a
=

1

a0
+

4βω0t

3π
. (83)

After one half period, t ≈ π/ω0, and,

1

a
=

1

a0
+

4β

3
, a =

a0

1 + 4βa0/3
≈ a0

(
1 − 4βa0

3

)
, (84)

as found in part (a).
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5. Adapted from prob. 13.15, p. 425 of W. Chester, Mechanics (Allen & Unwin, 1979),
http://kirkmcd.princeton.edu/examples/mechanics/chester_mechanics_79.pdf

We consider a central force,

F = − α

r2
− β

r4
. (85)

The “orbit equation” for a (small) mass m subject to this force is,5 with u = 1/r,

d2u

dθ2 + u = − m

L2u2
F (1/u) =

αm

L2
+

βmu2

L2
, (86)

where L is the angular momentum of mass m about the force center.

If β = 0, the solution is the standard Newtonian ellipse, u = (αm/L2)(1 + ε cos θ).

For β �= 0 we consider a solution of the form,

u ≈ k[1 + ε(θ) cos φ(θ)], (87)

where φ differs only slightly from θ, and dε/dθ is small. Then (somewhat delicately),

du

dθ
≈ k

dε

dθ
cos φ − kε

dφ

dθ
sinφ ≈ k

dε

dθ
cos φ − kε sinφ, (88)

d2u

dθ2 ≈ k
d2ε

dθ2 cos φ− k
dε

dθ

dφ

dθ
sinφ − k

dε

dθ
sinφ − kε

dφ

dθ
cos φ

≈ −2k
dε

dθ
sinφ − kε

dφ

dθ
cos φ, (89)

supposing that d2ε/dθ2 is of second order of smallness. Together with eqs. (86)-(87)
we have,

− 2k
dε

dθ
sinφ − kε

dφ

dθ
cos φ + k(1 + ε cos φ) ≈ αm

L2
+

βmu2

L2
≈ αm

L2
+

k2βm

L2
(1 + 2ε cos φ),(90)

k ≈ αm

L2
+

k2βm

L2
, k ≈ 1 ±

√
1 − 4αβm2/L4

2βm/L2
≈ 1 ± (1 − 2αβm2/L4)

2βm/L2
≈ αm

L2
, (91)

dε

dθ
sin φ +

ε

2

(
dφ

dθ
− 1

)
cosφ ≈ −βεkm cos φ

L2
≈ −αβεm2 cos φ

L4
, (92)

dε

dθ
≈ 0, ε ≈ constant, (93)

dφ

dθ
≈ 1 − 2αβm2

L4
, φ ≈

(
1 − 2αβm2

L4

)
θ, (94)

u ≈ αm

L2

[
1 + ε cos

(
1 − 2αβm2

L4

)
θ

]
. (95)

This is a slowly precessing ellipse, with angular velocity of precession,

ω =
2αβm2

L4
Ω, where Ω =

2π

T
, (96)

5See http://kirkmcd.princeton.edu/examples/Ph205/ph205l10.pdf.
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is the average angular velocity of the orbital motion (of period T ).

We were able to find solutions for ε and φ directly from eq. (92), but if we had written
this as,

dε

dθ
sinφ +

ε

2

(
dφ

dθ
− 1

)
cos φ ≈ f, (97)

f = −αβεm2 cos φ

L4
, (98)

we could develop a method of averages, as recommended in the book by Chester.

For this, we multiply eq. (97) by sinφ or cos φ and integrate over one period in φ,
supposing that the prefactors of sinφ and cosφ on the lefthand side are essentially
constant, leading to,

dε

dθ

∫ 2π

0
sin2 φdφ +

ε

2

(
dφ

dθ
− 1

)∫ 2π

0
cos φ sinφdφ ≈ π

dε

dθ
≈
∫ 2π

0
f sinφdθ, (99)

dε

dθ

∫ 2π

0
sinφ cosφ dφ +

ε

2

(
dφ

dθ
− 1

) ∫ 2π

0
cos2 φ dφ ≈ πε

2

(
dφ

dθ
− 1

)
≈
∫ 2π

0
f cosφ dφ,(100)

dε

dθ
≈ 1

π

∫ 2π

0
f sinφ dφ,

dφ

dθ
≈ 1 − 2

επ

∫ 2π

0
f cos φdφ. (101)

With f as in eq. (98), we find from eq. (101),

dε

dθ
≈ 0, ε ≈ constant, (102)

dφ

dθ
≈ 1 − 2

επ

∫ 2π

0
f cosφdφ ≈ 1 − 2αβm2

L4
, φ ≈

(
1 − 2αβm2

L4

)
θ. (103)

u ≈ αm

L2

[
1 + ε cos

(
1 − 2αβm2

L4

)
θ

]
, (104)

as before.
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6. The Swing

(a) As a simple model of the pumping action, we consider a simple pendulum whose
center of mass is (quickly) lowered by 2εl0 when the amplitude is maximum, and
raised by 2εl0 when the angle θ to the vertical is 0.

If the force required to raise of lower the center of mass always points to the pivot
of the swing, angular momentum is conserved about the pivot.

We consider a half period of the motion, beginning with the center of mass at rest
at angle θ0 to the vertical an in the raised position. Then, the center of mass is
quickly lowered, to be as rest while the angle is still θ0. At this time the mass is
at distance l0(1 + ε) from the pivot, and its potential energy is,

V = −gml0(1 + ε) cos θ0. (105)

When the center of mass reaches θ = 0 its potential energy is −gml0(1 + ε) and,
by conservation of mechanical energy during this phase of the motion, its velocity
v is related by

mv2

2
= ΔV = gml0(1 + ε)(1 − cos θ0) ≈ gml0(1 + ε)

θ2
0

2
, (106)

for small θ0.

Next, the center of mass is quickly raised by 2εl0 (while the angle remains θ = 0.
Angular momentum is conserved during the raising, such that at the end of this
action, the velocity is,

v′ = v
(

1 + ε

1 − ε

)
. (107)

And, at the end of the raising, the mechanical energy is,

E ′ =
mv′2

2
− gml0(1 − ε) =

mv2

2

(
1 + ε

1 − ε

)2

− gml0(1 − ε)

≈ gml0(1 + ε)
θ2

0

2

(
1 + ε

1 − ε

)2

− gml0(1 − ε). (108)

This is larger than before the raising, so (of course) work had to be done to lift
the center of mass.

Then, the mass swings upwards, coming to rest at angle θf , where its mechanical
energy is only −gml0(1 − ε) cos θf . Mechanical energy is conserved during the
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upward swing, such that,

− gml0(1 − ε) cos θf = E ′ ≈ gml0(1 + ε)
θ2

0

2

(
1 + ε

1 − ε

)2

− gml0(1 − ε). (109)

gml0(1 − ε)(1 − cos θf ) ≈ gml0(1 − ε)
θ2

f

2
≈ gml0(1 + ε)

θ2
0

2

(
1 + ε

1 − ε

)2

(110)

θ2
f ≈ θ2

0

(
1 + ε

1 − ε

)3

, θf ≈ θ0

(
1 + ε

1 − ε

)3/2

≈ θ0
1 + 3ε/2

1 − 3ε/2
≈ θ0

(
1 +

3ε

2

)
. (111)

The increase from θ0 to θf occurs during one half period, Δt = π/ω0 where

ω0 =
√

g/l0. Hence, the amplitude of the swinging motion is related by,

Δθ

Δt
=

θf − θ0

π/ω0

≈ 3εω0

π
θ0,

dθ

dt
≈ 3εω0

π
θ, θmax ≈ θ0 e3εω0t/π. (112)

(b) In another model of pumping, we suppose that the distance from the pivot to the

center of mass varies as l = l0(1 + ε sin 2ω0t) where ω0 =
√

g/l.

We can use Lagrange’s method to find the equation of motion for coordinate θ
(on which l does not depend),

L = T − V =
m

2
(l̇2 + l2θ̇

2
) + mgl cos θ, (113)

d

dt

∂L
∂θ̇

=
d

dt
ml2θ̇ = ml2θ̈ + 2mll̇θ̇ =

∂L
∂θ

= −mgl sin θ (114)

θ̈ = − g sin θ

l0(1 + ε sin 2ω0t)
− 4εω0l0θ̇ cos 2ω0t

l0(1 + ε sin 2ω0t)
(115)

θ̈ + ω2
0θ ≈ εω2

0θ sin 2ω0t − 4εω0θ̇ cos 2ω0t ≡ εf. (116)

For small ε we suppose that solution will have the form θ(t) ≈ a(t) cosφ(t) where
φ ≈ ω0t, such that θ̇ ≈ −ω0a sinφ. Using the method of averages with,

f ≈ ω2
0θ sin 2ω0t − 4ω0θ̇ cos 2ω0t ≈ ω2

0a cos φ sin 2φ + 4ω0a sinφ cos 2φ

=
ω2

0a

2
sin φ +

ω2
0a

2
sin 3φ − 2ω0a sinφ + 2ω2

0a sin 3φ, (117)

we have that,

φ̇ ≈ ω0 − ε

2πω0

∫ 2π

0
f cos φdφ = ω0, φ ≈ ω0t, (118)

ȧ ≈ − ε

2πω0

∫ 2π

0
f sinφdφ =

3εω0a

4π

∫ 2π

0
sin2 φdφ =

3εω0a

4
, a ≈ a0 e3εω0t/4.(119)

That is, θmax ≈ θ0 e3εω0t/4 for this model.
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7. (a) Mass m is connected to one end of a spring of constant k and rest length l0. The
other end of the spring is force to move according to x1 = a cosωt in the inertial
lab frame.

We go to the accelerated frame with origin at x1, where F = ma becomes,

mẍ2 = F = −k(x2 − l0) − mẍ1 = −k(x2 − l0) + maω2 cos ωt, (120)

ẍ2 + ω2
0x2 = ω2

0l0 + aω2 cosωt, ω2
0 =

k

m
, (121)

where we have included the “fictitious” (coordinate) force −mẍ1.

The steady-state solution with zero velocity at time t = 0 is,

x2 = l0 +
aω2 cos ωt

ω2
0 − ω2

, (122)

x = x1 + x2 = l0 + a cos ωt

(
1 +

ω2

ω2
0 − ω2

)
= l0 +

ω2
0

ω2
0 − ω2

a cos ωt. (123)

(b) A particle of mass m has velocity v on a smooth horizontal table.

In the rotating frame of the Earth, whose angular velocity about its axis is Ω, the
force is,

F = mg + N − mΩ× (Ω× r) − 2mΩ × v, (124)

where N is the normal force, r is the position of the mass with respect to the
center of the Earth, and we include the centrifugal and Coriolis forces but neglect
the coordinate force associated with the acceleration of the Earth with respect to
the Sun, etc.

The first and third terms on the righthand side of eq. (124) define the “horizontal”
(see also prob. 8(a) of this Set), in which plane the velocity v lies. That is, the only
force with a component in the horizontal plane is the fourth term of eq. (124),
which force is always perpendicular to the velocity v, and also is constant in
magnitude.

Hence, mass m executes uniform circular motion with radius R and angular ve-
locity ω related by,

Fhoriz = 2mΩv cos θ =
mv2

R
, R =

v

2Ω cos θ
, ω =

v

R
= 2Ωcos θ, (125)

where θ is angle between the normal to the planet and the axis of the Earth
(which is approximately the polar angle (colatitude) of the mass with respect to
the axis).

The radius R in kilometers is of order 10 v for velocity in m/s. This behavior is
an ingredient in the winds of hurricanes/cyclones.
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8. (a) Assuming that the force of gravity at the Earth’s surface points to the center
of the Earth, the force on a plumb bob of mass m, at position R = (R, θ, 0) in
spherical coordinates with z along the Earth’s axis, is,

F = mg − mΩ× (Ω× R) = −mg r̂ + mΩ2R sin θ x̂. (126)

The components of F parallel and perpendicular to g are, referring to the right
figure above,

F‖ = mg − mΩ2R sin θ, F⊥ = mΩ2R sin θ cos θ (127)

Then,

tan φ =
F⊥
F‖

=
sin θ cos θ

g/Ω2R − sin2 θ
, (128)

We note that g/Ω2R ≈ 290.

(b) Centrifugal Bulge.

We can also write the force (126) as,

F = −GMm

R2
r̂ + mΩ2x x̂, (129)

where M is the mass of the Earth. This force can be related to an effective
potential V as F = −∇V where,

V = −GMm

R
− mΩ2x2

2
= −GMm

R
− mΩ2R2 sin2 θ

2
. (130)

The liquid surface of the Earth will be an equipotential of V . Thus, with RP

being the radius of the Earth along its axis, the equation of the surface is,

− GMm

RP
= −GMm

R
− mΩ2R2 sin2 θ

2
, R3 sin2 θ =

2GM

Ω2

(
R

RP
− 1

)
, (131)

Writing the equatorial radius as RE/RP = 1 + ε, we have (for θ = π/2),

2GMε

Ω2
= R3

E = R3
P (1 + ε)3 ≈ R3

P (1 + 3ε), (132)

2GMε

Ω2R3
P

=
2gε

Ω2RP
≈ 1 + 3ε, ε ≈ 1

2g
Ω2RP

− 3
≈ 1

2g
Ω2RP

≈ 1

2 · 290 =
1

580
, (133)
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recalling that g/Ω2R ≈ 290.

The above analysis made the oversimplified assumption that the gravitational
potential of the bulging Earth is that of a uniform sphere. A better approximation
is to consider the potential due to an oblate spheroid of uniform density. This
improves the estimate of ε to 5Ω2RP/4g ≈ 1/230, which is about 20% less than
the observed value, ε ≈ 1/297. See,
http://farside.ph.utexas.edu/teaching/336k/Newton/node109.html
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9. Tidal Bulge.

In this problem we only consider the tides on the Earth due to the pull of the Moon.

In an inertial frame, the center of mass of the Earth experiences the acceleration
GM ′ R̂/R2, where M is the mass of the Earth, M ′ is the mass of the Moon, and R is
the Earth-Moon distance.

In a nonrotating frame with the center of the Earth at rest, the force on a particle of
mass m on the surface of the Earth as position r is,

F = −GMm

r2
r̂ − GM ′m

r′2
r̂′ − GM ′m

R2
R̂ , (134)

where the third term is the “fictitious” force associated (in the accelerated frame) with
the acceleration of the center of the Earth in an inertial frame.

The potential of this force is

V

m
= −GM

r
− GM ′

r′
+

GM ′

R2
z = −GM

r
− GM ′

r′
+

GM ′

R2
r cos θ, (135)

Where z = r cos θ is the coordinate of mass m along the z-axis (= R-axis). Now,

1

r′
=

1

(R2 − 2Rr cos θ + r2)1/2
=

1

R

(
1 − 2

r

R
cos θ +

r2

R2

)−1/2

≈ 1

R

(
1 +

r

R
cos θ − r2

2R2
+

1

2

3

2

(
2

r

R
cos θ

)2
)

, (136)

top order r2/R2, so,

V

m
≈ −GM

r
− GM ′

R
− GM ′r cos θ

R2
+

GM ′r2

2R3
− 3GM ′r2 cos2 θ

R3
+

GM ′

R2
r cos θ

= −GM

r
− GM ′

R
+

3

2

GM ′r2

R3

(
1

3
− cos2 θ

)
. (137)

We suppose that the (liquid) surface of the Earth is an equipotential of eq. (137),

k = −GM

r
+

3

2

GM ′r2

R3

(
1

3
− cos2 θ

)
= −GM

r0
, (138)

where r0 is the radius for cos2 θ = 1/3, which is a kind of mean radius. Then,

r = r0 − 3

2

M ′r0r
3

MR3

(
1

3
− cos2 θ

)
≈ r0

[
1 − 3

2

M ′r3
0

MR3

(
1

3
− cos2 θ

)]
. (139)



Princeton University 1988 Ph205 Set 8, Solution 9 29

On the near side, θ = 0,

Δr = r − r0 ≈ r0
M ′

M

r3
0

R3
≈ 6 × 106 1

80

(
1

60

)3

= 0.33 m ≈ 1 foot. (140)

For the Sun alone, the effect would be about 3 mm.

Because the Earth turns around its axis, and the Moon orbits the Earth, the position
of the bulge changes with time.

We now take the z-axis of the (accelerated, but not rotating) coordinate system to
be that of the Earth, and let (r, λ, φ) be the spherical coordinates of a point on the
Earth’s surface, and (R, λ′, φ′) those of the Moon.

Then,

cos θ = r̂ · R̂ = cosλ cos λ′ + sinλ sinλ′ cos(φ − φ′), (141)

cos2 θ = cos2 λ cos2 λ′ + sin2 λ sin2 λ′ cos2(φ − φ′) + 2 cos λ cosλ′ sinλ sinλ′ cos(φ− φ′)

= cos2 λ cos2 λ′ + sin2 λ sin2 λ′1 + cos 2(φ − φ′)
2

+
sin 2λ sin 2λ′

2
cos(φ − φ′),

= cos2 λ cos2 λ′ +
1 − cos2 λ − cos2 λ′ + cos2 λ cos2 λ′

2

+
sin2 λ sin2 λ′

2
cos 2(φ − φ′) +

sin 2λ sin 2λ′

2
cos(φ− φ′)

=
1

3
+

3

2

(
cos2 λ − 1

3

)(
cos2 λ′ − 1

3

)

+
sin2 λ sin2 λ′

2
cos 2(φ − φ′) +

sin 2λ sin 2λ′

2
cos(φ − φ′). (142)

In eq. (139). we define ε = 3M ′r2
0/2MR3, and rewrite it as,

r

r0

= 1 + ε
(
cos2 θ − 1

3

)
= 1 + ε

[
3

2

(
cos2 λ − 1

3

)(
cos2 λ′ − 1

3

)

+
1

2
sin2 λ sin2 λ′ cos 2(φ − φ′) +

1

2
sin 2λ sin 2λ′ cos(φ − φ′)

]
. (143)

Thus, while to total effect is given by eq. (139), an observer at a fixed location (λ, φ)
on the Earth’s surface can do a “Fourier analysis” of the bulge. In the accelerated
coordinates system where eq. (143) holds, φ = ΩEt where ΩE is the angular velocity
of the rotation of the Earth about its axis, φ′ = ω′t where ω′ is the angular velocity
of the Moon in its orbit about the Earth, and λ′ = λ′

0 cosω′t as the polar angle of the
Moon with respect to the Earth’s axis varies during a month. Then, sinλ′ ∝ cosω′t
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while cos2 λ′, sin2 λ′ and sin 2λ have terms proportional to cos 2ω′t (as well as constant
terms).

Hence, the first term in eq. (143) has a component whose period is 1/2 month. When
this term is maximal, one speaks of a “spring” tide (which is NOT related to the Spring
season).

The second term in eq. (143) has components that vary as cos(2ΩEt − 2ω′t) and as
cos 2ω′t cos(2ΩEt − 2ω′t), which latter varies as cos 2ΩEt and cos(2ΩEt − 4ω′t). Since
ω′ � ΩE , all of these have periods of roughly 12 hours, and correspond to the nominal
twice-daily tides.

The third term in eq. (143) has components that vary as cos(ΩEt − ω′t) and as
cos 2ω′t cos(ΩEt − ω′t), which latter varies as cos(ΩEt + ω′t) and cos(ΩEt − 3ω′t).
All of these have periods of roughly 1 day, which implies that the two daily tides (of
the second term) have somewhat different amplitudes.
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10. In this problem, we assume the Earth is spherical, and ignore gravity except that due
to the Earth.

(a) In the rotating frame of the (spherical) Earth, the force on a falling particle of
mass m at position r with velocity v is,

F = −mg r̂ − 2mΩ × v − mΩ× (Ω× r), (144)

where Ω is the angular velocity of rotation of the Earth about its axis, and
we take the acceleration g due gravity to be constant during the fall (in which
r = R + h ≈ R, the radius of the Earth).

During a fall, which begins at time t = 0, v ≈ −gt r̂, so the horizontal force
component is,

F⊥ = −2mΩ× v ≈ −2mΩv sin θ ê ≈ 2mΩgt sin θ ê, (145)

where ê points East in the both the Northern and Southern hemispheres.

For a fall from height h � r, the fall time is T ≈
√

2h/g, and the horizontal
displacement during the fall is related by,

ẍ⊥ =
F⊥
m

≈ 2Ωgt sin θ, ẋ⊥ ≈ Ωgt2 sin θ, x⊥ ≈ Ωgt3 sin θ

3
. (146)

Hence, the displacement d during the fall (to the East in both the Northern and
Southern hemispheres) is,

d ≈ ΩgT 3 sin θ

3
=

2

3

√
2h3

g
Ωsin θ. (147)

(b) In case of a jump at t = 0 to maximum height h � R, the initial vertical velocity

is v0 ≈
√

2gh, v ≈ v0 − gt, and the total time of the jump is T ≈ 2
√

2h/g. Then,

eq. (146) becomes,

ẍ⊥ ≈ −2Ωv0 sin θ + 2ωgt sin θ, ẋ⊥ ≈ −2Ωv0t sin θ + Ωgt2 sin θ, (148)

x⊥ ≈ −Ωv0t
2 sin θ +

Ωgt3 sin θ

3
. (149)

Hence, the displacement d during the jump is,

d ≈ −Ω
√

2gh
8h

g
sin θ +

Ωg sin θ

3

16h

g

√
2h

g
= −8

3

√
2h3

g
Ωsin θ. (150)

The − sign implies that the displacement is to the West (in both hemispheres).
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(c) We now consider the jump of part (b) in an inertial frame in which the center of
the Earth is at rest.

In this frame, the only force on the jumping mass m is the central force of gravity.
Hence, the angular momentum L = r × mv = r × mv⊥ of mass m about the
center of the Earth is conserved.

At the beginning of the jump, when the mass is at position R = (r, θ, 0), the
velocity in the inertial frame is v = v0 r̂ + Ω × R = v0 r̂ + ΩR sin θ φ̂ in a spher-
ical coordinate system with the z-axis along Ω. Hence, the conserved angular
momentum is

L = mr2φ̇ sin θ ẑ = ΩR2 sin θ ẑ, (151)

supposing that the polar angle remains θ at all times during the jump. Hence,

φ̇ =
ΩR2

r2
=

ΩR2

(R + v0t − gt2/2)2
≈ Ω0

(
1 − 2

v0t

R
+

gt2

R

)
, (152)

φ = Ω0

(
t− v0t

2

R
+

gt3

3R

)
, (153)

d = R sin θ(φ(T )− ΩT ) ≈ −
√

2gh
2h

g
Ωsin θ + g

2h

g

√
2h

g

Ωsin θ

3

= −8

√
2h3

g
Ωsin θ +

16

3

√
2h3

g
Ωsin θ = −8

3

√
2h3

g
Ωsin θ, (154)

as found in part (b).
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11. We assume that the Earth is spherical in this problem, and ignore gravity except that
due to the Earth. We also neglect the centrifugal force and air resistance on the shot
fired from a gun (located on the surface of the Earth at polar angle θ)

If the shot rises to h � R, its initial radial velocity is vr0 =
√

2gh. Subsequently, it

radial velocity is vr(t) = vr0 − gt, and its flight time is T = 2
√

2h/g.

If the shot travels horizontal distance D in the absence of the Coriolis for (and of air

resistance), its horizontal velocity is vH = D/T = (D/4)
√

2g/h.

The Coriolis force on a shot of mass m with velocity v = vE Ê + vN N̂ + vr r̂ is,

FC = −2mΩ× v = −2mΩ[(vr sin θ − vN cos θ) Ê + vE cos θ N̂ − vE sin θ r̂, (155)

noting that Ω = Ω(sin θ N̂ + cos θ r̂), where Ê points East and N̂ points North.

(a) If the gun fired North, the Coriolis force, −2mΩ × v causes an initial Westward
deflection.

We ignore the effect of the Coriolis force on the resulting Westward velocity,
as this effect is second order in the small quantity Ω. In this approximation, the
Northward velocity remains at its initial value, vN = D/T , where the flight time is

still T = 2
√

2h/g (as we ignore the second-order radial component of the Coriolis

force).

Then, the Westward acceleration and deflection are,

aW = −FC,E

m
= 2Ω[vr(t) sin θ − vN cos θ] = 2Ω

[(√
2gh − gt

)
sin θ − vN cos θ

]
,(156)

dW (T ) = 2Ω

[(√
2gh

T 2

2
− g

T 3

6

)
sin θ − vN

T 2

2
cos θ

]

= 2Ω

[(√
2gh

2h

g
− g

2

3

2h

g

√
2h

g

)
sin θ − D

√
2h

g
cos θ

]

= 2Ω

√
2h

g

(
4h

3
sin θ − D cos θ

)
. (157)

If the gun had pointed South, the sign of D in eq. (157) would be +.

(b) If the gun fired East, the initial Coriolis force has an inward radial component and
(in the Northern hemisphere) a Northward component. As in part (a), we ignore
the (second-order) Coriolis force on the change in the velocity from its initial
value. In this approximation the Eastward velocity component, vE, is constant,

with value (D/4)
√

2g/h.

The radial force on the shot is,

Fr = −mg + 2mΩvE sin θ ≡ −mgeff, geff = g − 2ΩvE sin θ = g

(
1 − ΩD sin θ√

2gh

)
.(158)

The decreased effective gravity increases the time of flight of the shot to T =
2vr0/geff = 2

√
2gh/geff .
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The Northward acceleration and deflection are,

aN =
FC,N

m
= 2ΩvE cos θ, (159)

dN = ΩvET 2 cos θ = Ω
D

4

√
2g

h

8gh

g2
eff

cos θ = 2D

√
2h

g

Ωcos θ

(1 − ΩD sin θ/
√

2gh)2

≈ 2D

√
2h

g
Ωcos θ, (160)

Meanwhile, the distance traveled East by the shot is not D, but approximately,

D′
E = VET =

D

4

√
2g

h

2
√

2gh

geff
=

D

1 −ΩD sin θ/
√

2gh
≈ D

(
1 +

ΩD sin θ√
2gh

)
. (161)


