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Please do all work in the exam booklets provided.

You may use either Gaussian or SI units on this exam.

1. (10 pts.) A device for measuring the magnitude of AC current in a wire is based on
a helical coil (solenoid) wound with N turns each of area A. The length L of the coil
obeys L2 � A. The return lead passes back along the axis:

The coil is then bent so as to surround a wire that carries an alternating current
I(t) = I0 cos ωt.

What is the voltage V (t) induced at the leads of the bent solenoid coil? Show that this
voltage is independent of the exact shape of the coil, and independent of the position
of the current-carrying wire. Give a physics reason why the return wire should pass
down the center of the coil.

2. (20 pts.) Consider the Earth’s ionosphere to be a dilute plasma of uniform density (ı.e.,
the interactions between electrons, and between electrons and ions can be ignored) with
a static, uniform magnetic field BE (the Earth’s field) in the +z direction. Discuss the
propagation of circularly polarized plane radio waves parallel to BE , i.e.,

E± = E0(x̂ ± iŷ)ei(kz−ωt), (1)

where the + sign corresponds to left-handed circular polarization.

Deduce the time dependence r(t) of the position of an ionized electron of charge −e
and mass m, assuming the electron to be at rest on average (and the wave weak enough
that the motion is nonrelativistic; also E0 = cB0 � cBE). You may wish to express r
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in terms of the so-called Larmor (or cyclotron) frequency ωB = eBE/m (= eBE/mc in
Gaussian units).

Give the frequency-dependent dielectric “constant” ε± and the index of refraction n±
for both polarizations, supposing the electron density is N per unit volume, so the
plasma frequency is ω2

p = Ne2/ε0m (= 4πNe2/m in Gaussian units).

Deduce the phase velocity vp and the group velocity vg for waves of the two polarizations
and frequencies small compared to ωB and ωp.

It turns out that ωB ≈ ωp ≈ 107 Hz in the ionosphere. Estimate the difference in arrival
times for signals of 105 and 2×105 Hz originating simultaneously (in lightning flashes)
at the opposite side of the Earth. [The curvature of the Earth permits the ionosphere
to guide the waves in a circle of radius RE � λ.] This illustrates the “whistler” or
“chirp” effect well known to ham radio operators.

3. (20 pts.) A plane wave of frequency ω propagates in the +z direction in vacuum and is
incident on a free electron (charge e, mass m) whose average position is at the origin.
Deduce the differential scattering cross section dσ/dΩ, and the total cross section σ,
assuming that the motion of the electron is nonrelativistic. The wave is unpolarized,
which can be taken to mean that it consists of a wave linearly polarized in the x
direction plus a wave linearly polarized in the y direction, each with one half the total
wave intensity.

In particular, consider an observer in the x-z plane whose line of sight to the origin
makes angle θ to the +z axis. Give the differential scattering cross section separately
for the incident waves polarized in the x and y directions; the cross section for the
unpolarized wave is then the average of these two results.

Also, give the differential scattering cross section for left- and right-handed circular
polarization of the incident wave (as defined in problem 2).

Recall that the differential scattering cross section is defined to be ratio of the power
scattered into unit solid angle and the incident power per unit area:

dσ

dΩ
=

dPscattered/dΩ

Pincident
. (2)

[Not for credit: A medium with a dielectric constant and an index of refraction, as
in problem 2, consists of many scattering centers, one of which was considered in this
problem. Hence, the combined behavior of incident wave + scattered waves must
provide an alternative explanation of the index of refraction....]
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Solutions

1. The Amp Clamp.

The changing current in the “test” wire causes a changing magnetic field, which induces
an electric field, according to Faraday. The voltage V at the leads to the amp clamp
coil is (in Gaussian units)

V =
∮

E · dl = −1

c

dΦM

dt
, (3)

where the magnetic flux linked by the amp clamp is

ΦM =
∑

small loops

∫
B · dA ≈

∮
large loop

dN

dl
dl B · l̂A ≈ NA

L

∮
large loop

B · dl =
4π

c

NA

L
I(t).

(4)
We have used Ampere’s law in the last step of eq. (4), assuming it to hold in its static
form for low-frequency currents as well. For current I = I0 cosωt in the wire, the
voltage in the amp clamp is therefore

V (t) =
4πNAωI0 sinωt

c2L

(
=

μ0NAωI0 sinωt

L
in SI units

)
. (5)

Note that we do not have to include a term in ΦM due to flux linked by the large
loop – because of the return wire down the center of the small loops the amp clamp
does not link any flux due to magnetic field lines perpendicular to the plane of the
clamp. Rather, the use of Ampere’s law in eq. (4) shows that the clamp links flux
only for wires that pass through the clamp, and that the amount of this flux linkage is
independent of the position of the wire relative to the clamp. Further, the amount of
flux linked is independent of any possible tilt of the wire with respect to the plane of
the clamp.

Another way to think about this problem recalls the concept of mutual inductance.
Labelling the amp clamp as loop 1 and the test wire (which we presume is part of a
loop rather than an antenna) as loop 2, then

V1 = −M12İ2, (6)
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where M12 = Φ1/cI2 is the mutual inductance between loops 1 and 2. But M12 =
M21 = Φ2/cI1. Clearly the flux Φ2 in loop 2, the loop that contains the test wire, due
to a current I1 in the amp clamp is independent of the exact position of the test wire –
since the flux is entirely inside the winding of the amp clamp. Hence, M12, and also V1

in the amp clamp, is independent of the position of the test wire, so long as it passes
through the loop of the amp clamp.

Note that the voltage found above arises between the terminals of the amp clamp even
if the coil is open circuit. In practice, a high-impedance voltmeter would be connected
across the terminals to measure the voltage. In this case, only a neglible current flows
in the amp clamp, and we need not worry about any effect due to the magnetic field
of this tiny current.

Mathematical footnote: It may be instructive to make an explicit calculation of the
flux linked by the amp clamp due to a wire perpendicular to the plane of the clamp at
distance a from its center. The clamp has radius R. We first consider a small loop of
area A such that the radius vector R to this loop makes angle θ to the vector a that
points from the center of the loop to the wire.

The flux dΦ through this loop due to current I in the wire is

dΦ = B · A =
2IA

cr
r̂ · R̂, (7)

where the distance from the wire to the loop is

r =
√

R2 − 2aR cos θ + a2. (8)

Since r = R − a, we have

r̂ · R̂ =
R− a

r
· R̂ =

R − a cos θ

r
, (9)

And the flux linked by the small loop is

dΦ =
2IA

c

R − a cos θ

R2 − 2aR cos θ + a2
. (10)
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The total flux linked by the amp clamp is obtained by integration over θ, noting that
the number of turns in interval dθ is Ndθ/2π:

Φ =
∫

dΦ =
NIA

πc

∫ 2π

0
dθ

R − a cos θ

R2 − 2aR cos θ + a2

=
NIA

πcR

∫ 2π

0
dθ

1 − a
R

cos θ

1 − 2 a
R

cos θ + a2

R2

=
NIA

πca

∫ 2π

0
dθ

R
a
− cos θ

1 − 2R
a

cos θ + R2

a2

. (11)

According to Gradshteyn and Ryzhik 3.792,

∫ 2π

0
dθ

1

1 − 2a cos θ + a2
=

2π

1 − a2
(a2 < 1). (12)

Hence, the identity

2π =
∫ 2π

0
dθ

1 − 2a cos θ + a2

1 − 2a cos θ + a2

= (1 + a2)
∫ 2π

0
dθ

1

1 − 2a cos θ + a2
− 2a

∫ 2π

0
dθ

cos θ

1 − 2a cos θ + a2
(13)

tells us that ∫ 2π

0
dθ

cos θ

1 − 2a cos θ + a2
=

2πa

1 − a2
(a2 < 1). (14)

Using the integrals (12) and (14), we find that when a < R the next to last form of
eq. (11) yields

Φ =
NIA

πcR

∫ 2π

0
dθ

1 − a
R

cos θ

1 − 2 a
R

cos θ + a2

R2

=
NIA

πcR

⎛
⎝ 2π

1 − a2

R2

− 2π a2

R2

1 − a2

R2

⎞
⎠ =

2NIA

cR
=

4πNIA

cL
,

(15)
which is independent of a (so long as a < R). Likewise, the last form of eq. (11) yields

Φ =
NIA

πca

∫ 2π

0
dθ

R
a
− cos θ

1 − 2R
a

cos θ + R2

a2

=
NIA

πca

(
2π R

a

1 − R2

a2

− 2π R
a

1 − R2

a2

)
= 0, (16)

for any a > R.

2. Whistlers. We solve this problem by relating the index of refraction to the dielectric
constant, which is related to the polarization of the medium, which is due to the
generation of dipole moments of the individual electrons by the incident wave. So, we
start the analysis by considering the motion of a single electron, as acted on by the
wave and by the static magnetic field, neglecting the force between electrons, and that
between electrons and ions, as the plasma is dilute.

Before adding up the dipole moments of the individual electrons, we pause to reflect on
the relation between the radiation of an individual oscillating electron and the incident
wave, which gives us a clue that only one of the two polarizations of the incident
wave can propagate through the ionosphere. The usual analysis of this problem (see
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sec. 7.6 of the textbook of Jackson) makes no such pause, which is not strictly necessary
although it may give a more physical reason for the behavior that the equations reveal.

The equation of motion of an ionized electron in a circularly polarized plane wave is
(in Gaussian units)

mr̈ − (−e)
ṙ

c
× BEẑ = −eE0(x̂ ± iŷ)ei(kz−ωt) ≈ −eE0(x̂± iŷ)ei(kzave−ωt), (17)

where for motion of small amplitude the phase factor eikz can be approximated by the
constant value eikzave . Since the magnetic field of the wave is much smaller than that
of the Earth, we ignore the magnetic part of the Lorentz force due to the wave. In the
steady state, we expect that the oscillatory motion of the charge follows that of the
driving wave (with a possible phase shift), so we try the form:

r± = rave + r0(x̂± iŷ)ei(kzave−ωt). (18)

Inserting eq. (18) into (17) we find

−mω2r0(x̂ ± iŷ) − i
eωBE

c
r0(−ŷ ± ix̂) = −eE0(x̂± iŷ), (19)

r0

(
−mω2 ± eωBE

c

)
(x̂ ± iŷ) = −eE0(x̂ ± iŷ), (20)

and hence,

r0 =
eE0

mω(ω ∓ ωB)
, (21)

where

ωB =
eBE

mc

(
=

eBE

m
in SI units

)
. (22)

[Interlude: Recalling the comment at the end of problem 3, we pause to consider the
radiation of the oscillating charge, which depends on its acceleration. From eqs. (18)
and (21), the acceleration can be written

r̈± = − eω

m(ω ∓ ωB)
E0(x̂ ± iŷ)e−iωt ≈ ± eω

mωB
E0(x̂± iŷ)e−iωt, (23)

where the approximation holds for the case of interest that ω � ωB . The radiation
electric field varies as −(−e)r̈±, which is in phase with the incident wave for the + case
= left-handed circular polarization, and 180◦ out of phase for the − case = right-handed
polarization. When the response of the medium is out of phase with the incident wave,
we have a situation much like a metal in which the radiation of the medium cancels
out the incident wave. So we may expect that the result of continuing our analysis to
calculate the polarization, the dielectric constant, and the index of refraction is that
the right-handed wave won’t propagate.]



Princeton University Ph304 Final Exam May 22, 2002 7

Since r± − rave measures the separation of an electron from its average position, the
resulting polarization density is

P± = N(−e)(r± − rave) = − Ne2

mω(ω ∓ ωB)
E ≡ χ±E, (24)

and the (relative) dielectric “constant” is

ε± = 1 + 4πχ± = 1 − 4πNe2

mω(ω ∓ ωB)
= 1 − ω2

p

ω(ω ∓ ωB)
, (25)

where the square of the plasma frequency is given by

ω2
p =

4πNe2

m

(
=

Ne2

ε0m
in SI units

)
. (26)

For radio waves with ω � ωB ≈ ωp,

ε± ≈ ± ω2
p

ωωB
. (27)

The phase velocity of the plane waves is related by

vphase =
ω

k
=

c

n
=

c√
ε
. (28)

Comparing eqs. (27) and (28) we see that the phase velocity is imaginary for right-
handed waves (ε−), which means that these waves are attenuated rapidly. Only the
left-handed radio waves (ε+) propagate in the ionosphere, and their phase velocity is

vphase = c

√
ωωB

ωp
. (29)

For these waves, the wave vector is related to frequency by

k =
ω

c

√
ε+ =

ωp

c

√
ω

ωB
, (30)

and so the group velocity is given by

vgroup =
dω

dk
=

1

dk/dω
= 2c

√
ωωB

ωp

= 2vphase . (31)

Higher frequencies travel faster.

For waves with ω ≈ 105 Hz and ωB ≈ ωp ≈ 107 Hz, vphase ≈ c/10.

The difference in arrival times for pulses centered on frequencies ω1 = 105 and ω2 =
2 × 105 Hz from the opposite side of the Earth (d = 2 × 109 cm, which used to be the
definition of a centimeter) is

Δt =
d

vg,1
− d

vg,2
=

d

2c

ωp√
ω2ωB

(√
ω2

ω1
− 1

)

=
2 × 109

2 · 3 × 1010

107

√
2 × 105 · 107

(√
2 − 1

)
≈ 0.1 s. (32)
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3. Thomson Scattering. The incident plane wave E0e
i(kz−ωt) shakes the electron, which

emits primarily electric dipole radiation if the motion in nonrelativistic. The emitted
radiation is at the same frequency ω as the incident wave, and is often interpreted as
due to scattering of the incident wave.

The total radiated power follows quickly from the Larmor formula:

〈Pradiated〉 =
1

4πε0

2e2 〈a2〉
3c3

=
1

4πε0

e2(eE0/m)2

3c3
= 4πε0c

r2
eE

2
0

3
, (33)

since Fmax = mamax = eE0, 〈a2〉 = a2
max/2, and the classical electron radius is defined

by re = e2/4πε0mc2. The incident power per unit area is given by the Poynting vector:

〈Pincident〉 = 〈S〉 =
1

2μ0
E0B0 =

1

2μ0c
E2

0 =
εcc

2
E2

0 , (34)

since E0 = cB0 for a plane wave in vacuum, and ε0μ0 = c2. Hence, the total cross
section is given by

σtotal =
〈Pscattered〉
〈Pincident〉 =

8π

3
r2
e

(
=

μ2
0e

4

6πm2
=

e4

6πε2
0m

2c2

)
. (35)

which is known as the Thomson scattering cross section. The cross section has dimen-
sion (length)2 = an area.

To obtain the angular distribution, we recall that dipole radiation varies as sin2 α,
where α is the angle between the direction of the acceleration and the direction to the
observer. That is,

d 〈Pradiated〉
dΩ

= A sin2 α, (36)

so that

〈Pradiated〉 =
∫ d 〈Pradiated〉

dΩ
dΩ = 2πA

∫
sin2 α d cos α = 2πA

∫ 1

−1
(1 − cos2 α) d cos α

= 2πA
(
2 − 2

3

)
=

8π

3
A. (37)

Comparing with eq. (33) we see that

A =
ε0cr

2
eE

2
0

2
, (38)

so that
d 〈Pradiated〉

dΩ
=

ε0cr
2
eE

2
0

2
sin2 α. (39)

If the incident wave is polarized in the x direction, then the acceleration is along the
x axis, and the angle between the acceleration and the observer is α = 90◦ − θ. Thus,

d 〈Px pol〉
dΩ

=
ε0cr

2
eE

2
0

2
cos2 θ, (40)



Princeton University Ph304 Final Exam May 22, 2002 9

and
dσx pol

dΩ
=

d 〈Px pol〉 /dΩ

〈Pincident〉 = r2
e cos2 θ. (41)

However, if the incident wave is polarized in the y direction, then the angle between
the acceleration and the observer is always 90◦, so we have

dσy pol

dΩ
=

d 〈Py pol〉 /dΩ

〈Pincident〉 = r2
e . (42)

The differential cross section for unpolarized light is the average of eqs. (41) and (42):

dσunpol

dΩ
= r2

e

1 + cos2 θ

2
. (43)

As a check, we recalculate the total cross section:

σunpol =
∫

dσunpol

dΩ
dΩ = 2πr2

e

∫ 1

−1

1 + cos2 θ

2
d cos θ = πr2

e

(
2 +

2

3

)
=

8π

3
r2
e . (44)

To discuss scattering of a circularly polarized wave, we need a bit more detail. But
it suffices to recall that the scattered intensity depends on the square of the electric
(or magnetic) field, and that the radiation electric field varies as the perpendicular
component of the acceleration. For E± = E0(x̂ ± iŷ)ei(kz−ωt), we again have that the
acceleration is a± ∝ (x̂ ± iŷ). According to the observer in the x-z plane, a±,⊥ ∝
(cos θx̂ ± iŷ). Hence,

dσ±
dΩ

∝ |Erad|2 ∝ |a±,⊥|2 ∝ cos2 θ + 1, (45)

which is the same for both left- and right-handed polarization. Again, the total cross
section must be given by eq. (35), so the normalization follows from eqs. (43) and (44):

dσ±
dΩ

= r2
e

1 + cos2 θ

2
. (46)

[Differences between the scattering of unpolarized, left- and right-handed circularly
polarized waves arise only when we keep track of the polarization of the scattered wave
as well.]

Supplement 1: The Origin of the Index of Refraction.

[Adapted from Vol I, secs. 30-7, 31-1,2 of the Feynman Lectures on Physics.]

We combine the results of probs. 2 and 3 to show how the sum of the incident wave
plus the forward scattered wave in a medium gives a wave that has phase velocity c/n,
where n is the index of refraction.

First, we note that while the usual interpretation of the index of refraction is that
it changes the phase velocity of a wave, we can equivalently think of it as causing
a (spatially varying) phase shift in the wave. To see this, consider a plane wave
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E0e
i(kz−ωt) that is incident on a dielectric medium that occupies the space z > 0.

Inside the medium, the wave vector k′ is relative by k′ = nω/c = nk, so for z > 0 the
wave propagation is described by

E0e
i(k′z−ωt) = E0e

i(kz−ωt+(k′−k)z) = E0e
i(kz−ωt+(n−1)ωz/c). (47)

Thus, we can say that the effect of the index n is to induce the phase shift (n−1)ωz/c
after the wave has propagated distance z.

We now wish to show that this phase shift is due to the effect of the radiation of the
electrons in the medium, which are accelerated by the incident wave. Following the
suggestion of Feynman, we restrict our calculation to the case of a thin slab of medium
that extend from z = 0 to Δz, and we consider an observer at (0, 0, z � Δz).

For a slab of thickness Δz, the total phase shift impressed on a passing wave is ]
(n − 1)ωΔz/c, so the observer detects the waveform

E0e
i(kz−ωt+(n−1)ωΔz/c) ≈ E0e

i(kz−ωt) + i(n − 1)
ω

c
ΔzE0e

i(kz−ωt). (48)

This is the superposition of the incident wave, plus a term proportional to Δz that we
wish to interpret as due to the scattered wave.

Therefore, we now add up the scattered wave amplitudes due to the many electrons in
the thin slab, as seen been the observer. We recall that the radiation electric field can
be written

Erad =
1

4πε0c2

((∫ [J̇]

R
dVol × n̂

)
× n̂

)
= − 1

4πε0c2

∫ [J̇⊥]

R
dVol, (49)

where R is the distance from the observer to an electron. The current J is due to the
acceleration of the electrons of the medium, whose density is N per unit volume. Thus,

J̇ = N(−e)a (50)

We will consider the specific example of problem 2, in which the medium consists of
ionized electrons immersed in a constant magnetic field B = BE ẑ. The incident wave
has either left- (+) or right-handed (−) circular polarization, as given by eq. (1). [This
example is perhaps not ideal, in that the methods used below hold only when the index
is near unity, which is not the case for radio wave propagation in the ionosphere.]

From eqs. (18) and (21), we find the acceleration of an electron to be

a± = −ω2 e

mω(ω ∓ ωB)
E0(x̂± iŷ)ei(kzave−ωt) ≈ −ω2 e

mω(ω ∓ ωB)
E0e

−iωt, (51)

where we ignore the acceleration of an electron due to the radiated fields of other
electrons, where ωB = eB0/m, and we suppose that Δz � λ so that eikzave ≈ 1.

We will evaluate the integral (49) in cylindrical coordinates, where the position of an
electron is (r, φ, z) ≈ (r, φ, 0), so that R2 = r2 + z2 with (0, 0, z) being the coordinate
of the observer. The retarded time is t′ = t − R/c. Thus,

[J̇] = ω2 Ne2

mω(ω ∓ ωB)
E0e

−iωteiωR/c (52)
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To calculate the radiation field, we need [J̇⊥], which we then integrate over all electrons
in the thin slab. The z component of [J̇⊥] thereby integrates to zero, so what matters
is the projection of [J̇⊥] onto the x-y plane. Now, the magnitude of [J̇⊥] is z/R times
the magnitude of [J̇], and the magnitude of the projection of [J̇⊥] onto the x-y plane
is also z/R times the magnitude of [J̇⊥]. That is, the relevant factor is [J̇]z2/R2. The
volume element is 2πrdrΔz, so eq. (49) becomes

Erad = − 2π

4πε0c2
ω2Δz

Ne2

mω(ω ∓ ωB)
E0e

−iωt
∫ ∞

0
r dr

eiωR/c

R

z2

R2

= − ω2

2c2
Δz

ω2
p

ω(ω ∓ ωB)
E0e

−iωt
∫ ∞

z
dR eiωR/c z2

R2

≈ − ω2

2c2
Δz

ω2
p

ω(ω ∓ ωB)
E0e

−iωt
∫ ∞

z
dR eiωR/c

= i
ω

2c
Δz

ω2
p

ω(ω ∓ ωB)
E0e

−iωt[eiω∞/c − eiωz/c]

= −i
ω

2c
Δz

ω2
p

ω(ω ∓ ωB)
E0e

i(kz−ωt), (53)

where the plasma frequency is ω2
p = Ne2/ε0m, and in the 3rd and 4rth lines above

we have recognized that the main contribution to the integral comes from the region
r <∼ z where we approximate z2/R2 by unity.

Comparing with eq. (48), we identify

n± − 1 ≈ −1

2

ω2
p

ω(ω ∓ ωB)
. (54)

Thus, so long as n − 1 is small, we can write

n2
± ≈

(
1 − 1

2

ω2
p

ω(ω ∓ ωB)

)2

≈ 1 − ω2
p

ω(ω ∓ ωB)
, (55)

which is the same as we found in prob. 2 via n2
± = εr,±.

Note that if the observer had been at (0, 0,−z) the reflected would be detected. Since
the acceleration is in the x-y plane, the strength of the radiation is the same in the +z
and −z directions. The electric field radiated by a thin (dielectric) slab is 90◦ out of
phase with the incident wave. Thus we can summarize:

Etransmitted = E0(1 + iα), (56)

Ereflected = E0(iα), (57)

For a thin slab where α is small, the transmitted and reflected waves are very close to
90◦ out of phase.
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Supplement 2: Compton Scattering

For incident radiation of very short wavelengths, Thomson scattering is modified by
quantum effects, and the resulting behavior is called Compton scattering. The most
notable feature is that the frequency of the scattered radiation is lower than that of
the incident wave, according the the famous Compton formula:

ωscat =
ω

1 + h̄ω
mc2

(1 − cos θ)
. (58)

This follows from the hypothesis that electromagnetic waves consist of quanta (pho-
tons) with energy U = h̄ω, momentum P = h̄k, and that energy and momentum are
conserved in the scattering process symbolized by ω + e → ωscat + e′.

It turns out that the classical Thomson scatterng formula is modified by the quantum
effects only in that the “phase space” for a scattered photon of frequency ωscat is less
than that for frequency ω by the square of the ratio ωscat/ω, as readily inferred from
the Rayleigh-Jeans law. Thus, the quantum version of eq. (46) is

dσCompton,±
dΩ

= r2
e

ω2
scat

ω2

1 + cos2 θ

2
. (59)

This result was first deduced by Klein and Nishina (1929) via a lengthy calculation
involving the Dirac equation.


