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Please do all work in the exam booklets provided.

You may use either Gaussian or SI units on this exam.

1. (20 pts.) All electrostatic fields E (i.e., ones with no time dependence) can be derived
from a scalar potential V (E = −∇V ) and hence obey ∇× E = −∇× ∇V = 0. The
latter condition is sometimes considered to be a requirement for electrostatic fields.
However, as you are to show in this problem, it is possible to have time-dependent
electric fields (waves) that obey ∇ × E = 0. Such fields have been given the name
“electrostatic waves”.

(a) Show, using Maxwell’s equations, that if an electric field E has no time depen-
dence, then ∇× E = 0.

(b) Show that a plane wave with electric field E parallel to the wave vector k = kẑ (a
longitudinal wave) can exist in a medium with no time-dependent magnetic field
if the (time dependent part of the) electric displacement D is zero. This cannot
occur in an ordinary dielectric medium, but can happen in a plasma. (Time-
independent electric and magnetic fields could, of course, be superimposed on the
wave field.)

(c) Write potentials for the “electrostatic wave” of part (b) in both the Coulomb and
Lorentz gauges.

(d) Discuss energy density and flow for such a wave, accounting for both the energy of
the electric field and the kinetic energy of the electrons in the plasma in response
to that field. You may assume that the positive ions remain at rest.

2. (20 pts.) The “quality factor” Q of a resonant cavity can be defined as 2π times the
ratio of the time-averaged stored energy to the energy lost per cycle. What is the
maximum Q that can be attained with a cubical cavity of edge a whose walls are made
of a “good” conductor of conductivity σ (and relative dielectric constant εr = 1 and
relative permeability μr = 1), when the cavity is operated at angular frequency ω?
The cavity itself is under vacuum.

This problem is “straightforward, but lengthy”. It may be convenient to break it up
into several steps. In the first part, deduce relations for the electromagnetic fields, for
the frequency as a function of wave number, and for the time-averaged stored energy
assuming perfectly conducting walls. In the second part, suppose the walls have large
but finite conductivity σ to deduce relations between the fields inside the material of
the walls and those in the cavity, and from this the power transmitted into the walls.
Finally, calculate the cavity Q.
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3. (20 pts.) A turnstile antenna consists of a pair of half-wave, center-fed linear dipole
antennas oriented at 90◦ to each other, and driven 90◦ out of phase, as shown below.

For simplicity, you may approximate the turnstile radiator as made of a pair of point
dipoles of peak strength p0, oscillating with angular frequency ω, centered on the origin,
one oriented along the x and the other along the y axis, with the second dipole driven
90◦ out of phase with respect to the first.

(a) Deduce the electric and magnetic fields in the far-zone, and the (time-averaged)
angular distribution 〈dP/dΩ〉 of the radiated power. What is the polarization of
radiation in the plane z = 0 and along the z axis?

(b) Suppose a second, identical turnstile antenna is mounted with its center at z =
λ/4, and driven in phase with the first antenna. What is the angular distribution
of the radiation now?
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Solutions

1. (a) ∇× E = 0 if E Has No Time Dependence

We first verify that Maxwell’s equations imply that when an electric field E has
no time dependence, then ∇× E = 0.

If ∂E/∂t = 0, then the magnetic field B obeys ∂2B/∂t2 = 0, as follows on taking
the time derivative of Faraday’s law, c∇ × E = −∂B/∂t in Gaussian units. In
principle, this is consistent with a magnetic field that varies linearly with time,
B(r, t) = B0(r) + B1(r)t. However, this leads to arbitrarily large magnetic fields
at early and late times, and is excluded on physical grounds. Hence, ∂E/∂t = 0
implies that ∂B/∂t = 0 also, and ∇× E = 0 according to Faraday’s law.

(b) Electrostatic Plane Waves Must have D = 0

We next consider some general properties of a longitudinal plane electric wave,
taken to have the form

E = Ezẑe
i(kz−ωt). (1)

This obeys ∇× E = 0, and so can be derived from an electric potential, namely

E = −∇V where V = i
Ez

k
ei(kz−ωt). (2)

The electric wave (1) has no associated magnetic wave, since Faraday’s law tells
us that

0 = ∇× E = −1

c

∂B

∂t
, (3)

and any magnetic field in the problem must be static.

It is well known that electromagnetic waves in vacuum are transverse. A lon-
gitudinal electric wave can only exist in a medium that can support a nonzero
polarization density P (volume density of electric dipole moments). The polar-
ization density implies an effective charge density ρ given by

ρ = −∇ · P (4)

which is consistent with the first Maxwell equation,

∇ · E = 4πρ, (5)

only if

P = − E

4π
, (6)

in which case the electric displacement D of the longitudinal wave vanishes,

D = E + 4πP = 0. (7)

Hence, the (relative) dielectric constant ε also vanishes
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Strictly speaking, eq. (6) could read P = −E/4π+P′, for any field P′ that obeys
∇ ·P′ = 0. However, since any magnetic field in the problem is static, the fourth
Maxwell equation tells us that

∇× B =
4π

c

(
J +

1

4π

∂E

∂t

)
(8)

has no time dependence. Recalling that the polarization current is related by

J =
∂P

∂t
, (9)

we again find relation (6) with the possible addition of a static field P′ that is
associated with a truly electrostatic field E′. In sum, a longitudinal electric wave
described by eqs. (1), (6) and (7) can coexist with background electrostatic and
magnetostatic fields of the usual type.

Maxwell’s equations alone provide no relation between the wave number k and
the wave frequency ω of the longitudinal wave, and hence the wave phase velocity
ω/k is arbitrary. This suggests that purely longitudinal electric waves are best
considered as limiting cases of more general waves, for which additional physical
relations provide additional information as to the character of the waves.

When ∇ × E = 0, the magnetic field B has no time dependence. It is therefore
tempting to conclude that the magnetic field H and the magnetization M also
have no time dependence, since B = H + 4πM. Then the Maxwell equation
∇× H = (4π/c)Jfree + ∂D/∂t would imply that the displacement D has no time
dependence. However, there exist interesting phenomena called spin waves in
which B = 0, but H = −4πM have nontrivial behavior. See,
http://physics.princeton.edu/˜mcdonald/examples/spinwave.pdf

(c) Gauge Invariance

Since the electric wave (1) has no associated magnetic field, we can define its
vector potential A to be zero, which is certainly consistent with the Coulomb
gauge condition ∇ · A = 0. Using eq. (2) for the scalar potential, the potentials
in the Coulomb can be written

V = i
Ez

k
ei(kz−ωt), A = 0 (Coulomb gauge). (10)

Suppose, however, we prefer to work in the Lorentz gauge, for which

∇ · A = −1

c

∂V

∂t
. (11)

Then, the vector potential will be nonzero, and the electric field is related by

E = −∇V − 1

c

∂A

∂t
= Exẑe

i(kz−ωt). (12)

Clearly the potentials have the forms

A = Azẑe
i(kz−ωt), V = V0e

i(kz−ωt), (13)
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which are consistent with B = ∇ × A = 0. From the Lorentz gauge condition
(11) we have

kAz =
ω

c
V0, (14)

and from eq. (12) we find

Ez = ikV0 + i
ω

c
Az. (15)

Hence,

A = −i ωc

ω2 + k2c2
Exẑe

i(kz−ωt), V = −i kc2

ω2 + k2c2
Eze

i(kz−ωt) (Lorentz gauge).

(16)

We could also derive the wave (1) from the potentials

A = −i c
ω
Ezx̂e

i(kz−ωt), V = 0 (Neumann(?) gauge). (17)

Thus, an “electrostatic wave” is not necessarily associated with an “electrostatic”
scalar potential.

(d) Energy Considerations

A common expression for the electric field energy density is E · D/8π. However,
this vanishes for longitudinal electric waves, according to eq. (7). Further, since
the longitudinal electric wave can exist with zero magnetic field, there is no Poynt-
ing vector S = (c/4π)E×H or momentum density pfield = D×B/4πc, according
to the usual prescriptions.

Let us recall the origins of the standard lore. Namely, the rate of work done by
the field E on current density J is

J · E =
∂P

∂t
· E = − 1

4π

∂E

∂t
·E = −∂E

2/8π

∂t
, (18)

using eqs. (6) and (9). This work is done at the expense of the electric field energy
density ufield, which we therefore identify as

ufield =
E2

8π
=
E2

x

8π
cos2(kz − ωt), (19)

for the longitudinal wave (1). We readily interpret this energy density as moving
in the +z direction at the phase velocity vp = ω/k, even though the derivation of
eq. (18) did not lead to a Poynting vector.

We should also note that energy is stored in the medium in the form of kinetic
energy of the electrons (and, in general, ions as well) that contribute to the po-
larization,

P = Ne(x − x0) = − E

4π
. (20)

Thus, the velocity of an electron is given by

v = v0 − Ė

4πNe
= v0 − ωExx̂

4πNe
sin(kx− ωt). (21)
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In squaring this to get the kinetic energy, we neglect the term in v0 · ẑ, assuming
its average to be zero as holds for a medium that is at rest on average (and also
holds for a plasma in a tokamak when z is taken as the radial coordinate in a
small volume). Then, we find the mechanical energy density to be

umech =
1

2
Nmv2 =

1

2
Nmv2

0+
E2

z

8π

ω2m

4πNe2
sin2(kz−ωt) = umech,0+

ω2

ω2
p

E2
x

8π
sin2(kz−ωt),

(22)

where ωp =
√

4πNe2/m is the plasma frequency. We again can interpret the
additional term as an energy density that flows in the +x direction at the phase
velocity.

The total, time-averaged energy density associated with the longitudinal wave is

〈uwave〉 =
ω2 + ω2

p

2ω2
p

E2
z

8π
. (23)

If the wave frequency is less than the plasma frequency, as is the case for examples
of Bernstein waves discussed in
http://physics.princeton.edu/˜mcdonald/examples/bernstein.pdf, the longitudi-
nal electric field energy density is larger than that of the mechanical energy density
of the wave.

2. We can anticipate the answer to this question via dimensional analysis. The stored
energy is proportional to the cavity volume times the square of the field strength:
〈U〉 ∝ a3 |E0|2. Energy is lost into the cavity walls, and the fields die out over roughly
one skin depth d. The energy lost is therefore proportional to the volume in the walls
that contains one skin depth, times the square of the field strength: ΔUcycle ∝ a2d |E0|2.
Hence, the cavity Q varies as Q ∝ 〈U〉 /ΔUcycle ∝ a/d.

(a) Fields in the cavity, if the walls are perfect conductors

The cubical cavity extends over 0 < x < a, 0 < y < a, 0 < z < a. The boundary
conditions for perfectly conducting walls are that the tangential component of the
electric field, and the normal component of the magnetic field, vanish at the walls.

In the cavity, the fields obey the wave equation

∇2E,B +
1

c2
∂E,B

∂t2
= 0. (24)

We seek standing-wave solutions with angular frequency ω,

E,B = E,B(x, y, z)e−iωt, (25)

for which the wave equation (24) becomes the Helmhotz equation

∇2E,B + k2E,B = 0, (26)
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where the wave number k is defined to be the ratio ω/c. For each of the six
scalar components (such as ψ = Ex) of eq. (26), we seek a separation-of-variables
solution, i.e.,

ψ = X(x)Y (y)Z(z). (27)

Inserting this in the Helmholtz equation (26) and dividing by ψ, we are led to the
three separated equations

X ′′ = −k2
xX, Y ′′ = −k2

yZ, Z ′′ = −k2
zZ, (28)

where the separation constants kx, ky and kz obey

k2 = k2
x + k2

y + k2
z . (29)

Clearly, the functions X, Y and Z are sines and cosines (such as X = cos kxx,
etc.).

Consider, for example, ψ = Ex. This component is tangential to the walls at
y = 0, a and at z = 0, a, and so must vanish there. Hence, the functions Y and
Z for Ex must be sines, not cosines, and the separation constants must be of the
form ky = mπ/a, kz = nπ/a. When we consider ψ = Ey or Ez we learn that
kx = lπ/a (where l, m, n are integers). That is the wave vector k can be written

k =
π

z
(l,m, n). (30)

We also learn that the functions X and Z for Ey, and the functions X and Y for
Ez must be sines. So far, we haven’t learned of the character of function X of Ex,
Y of Ey or Z of Ez.

If we now consider ψ to be a component of the magnetic field, whose normal
component vanishes as the wall, we learn that the function X of Bx must have
the form sin lπx/a, and likewise that function Y of By and function Z of Bz are
sines also.

So far, we have that

Ex = Ex0XEx sin
mπy

a
sin

nπz

a
e−iωt, (31)

Ey = Ey0 sin
lπx

a
YEy sin

nπz

a
e−iωt, (32)

Ez = Ez0 sin
lπx

a
sin

mπy

a
ZEze

−iωt, (33)

Bx = Bx0 sin
lπx

a
YBxZBxe

−iωt, (34)

By = By0XBy sin
mπy

a
ZBye

−iωt, (35)

Bz = Bz0XEzYBz sin
nπz

a
e−iωt. (36)

To go further, we can use Faraday’s law to relate E and B. For example, the x
component of this tells us that

−1

c

∂Bx

∂t
= ikBx =

∂Ey

∂z
− ∂Ez

∂y
. (37)
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Comparing with the forms (32), (33) and (34), we see that YEy must be cosmπy/a,
ZEz must be cosnπz/a and XBx must be sin lπx/a. By similar consideration of
the y and z components of Faraday’s law, we see that the fields have the form

Ex = Ex0 cos
lπx

a
sin

mπy

a
sin

nπz

a
e−iωt, (38)

Ey = Ey0 sin
lπx

a
cos

mπy

a
sin

nπz

a
e−iωt, (39)

Ez = Ez0 sin
lπx

a
sin

mπy

a
cos

nπz

a
e−iωt, (40)

Bx = Bx0 sin
lπx

a
cos

mπy

a
cos

nπz

a
e−iωt, (41)

By = By0 cos
lπx

a
sin

mπy

a
cos

nπz

a
e−iωt, (42)

Bz = Bz0 cos
lπx

a
cos

mπy

a
sin

nπz

a
e−iωt. (43)

The normalizations

E0 = (Ex0, Ey0, Ez0) and B0 = (Bx0, By0, Bz0) (44)

are not yet determined. The Maxwell equations ∇ · E = 0 = ∇ · B require that

E0 · k = 0 = B0 · k, (45)

while the Maxwell equations ∇ × E = −∂B/∂ct and ∇ × B = ∂E/∂ct require
that

ikB0 = k× E0, −ikE0 = k× B0. (46)

The vectors E0, B0 and k form an orthogonal triad where |E0| = |B0|. For a
given set of indices (l,m, n) there are, in general, two solutions to eq. (45), i.e.,
two polarizations of the fields. The 5 distinct equations of (45) and (46) imply
that of the six components of E0 and B0 is independent. That is, for a given set
of indices (l,m, n) and of polarization, the strength of the fields E and B can be
characterized by a single scalar parameter.

(b) Inserting any of the field components (38)-(43) into the Helmholtz equation (26),
we find that

k =
ω

c
=
π

a

√
l2 +m2 + n2. (47)

One can think of the standing-wave pattern inside a resonant cavity as due to
“trapping” of a travelling wave inside a waveguide that is terminated by a pair of
“mirrors”. Then, the travelling wave factor ei(kgz−ωt) is reduced to the standing-
wave factor e−iωt. That is, the “guide wave number” kg goes to zero. Hence,
Griffiths’ eq. (9.187), in which he denotes by k what I have just called kg, now
tells us that ω/c = (π/a)

√
m2 + n2. If we realize that the “trapped” travelling

waves can also be thought of as moving in the x or y directions, the generalization
to eq. (47) is to be expected.
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(c) The time-average stored energy is

〈U〉 =
1

2

∫ |E|2 + |B|2
8π

dVol =
∫ |E|2

8π
dVol =

|E0|2 a3

64π
, (48)

since the average of each of the three spatial factors of any component of E is 1/2
over the range of its argument.

(d) We now consider the fields inside the material of the walls, whose conductivity is
σ. These fields are small, but nonzero. As a consequence, there are currents in the
walls, which then dissipate energy due to Joule heating. We desire a relation for
the total energy lost to this Joule heating per cycle. It is possible to calculate the
current density J in the walls, and integrate J2/σ to find the energy dissipation.
However, is suffices to calculate the Poynting vector,

S =
c

4π
E × B, (49)

just inside the walls, since we know that S points into the material, and that all
the energy that enters the walls is eventually dissipated.

We recall that inside a good conductor the magnetic field is much larger than the
electric field. Indeed, Faraday’s law tells us that

i
ω

c
B = ik× E, (50)

where inside a good conductor the wave vector k is given by

k =
k̂

d
(1 + i), (51)

where the skin depth d is

d =
c√

2πσω
, (52)

and the unit vector k̂ points normally into the conductor. Thus,

E =
ω

kc
k̂ × B =

ωd

2c
(1 − i)k̂× B, (53)

and the time-averaged Poynting vector can be written

〈S〉 =
1

2

c

4π
Re(E × B�) =

ωd

16π
k̂ |B|2 , (54)

Now, the tangential component of the magnetic field is continuous across a bound-
ary, so we can use B from eqs. (41)-(43) evaluated at the cavity wall (where B is
tangential by construction).

The time-averaged energy flow into the cavity walls is therefore〈
dU

dt

〉
=
∫

〈Swall〉 · dArea =
ωa2d

16π
|B0|2 , (55)
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The energy dissipated per cycle is 2π/ω times this:

ΔUcycle =
a2d

8
|B0|2 =

a2d

8
|E0|2 , (56)

The cavity Q is (2π times) the ratio of eqs. (48) and (56),

Q = 2π
〈U〉

ΔUcycle

=
a

4d
=
a
√

2πσω

4c
. (57)

The cavity Q is independent of the indices (l,m, n), and increases as
√
σω

3. (a) If we approximate the half-wave dipoles by point dipoles each of strength p0, then
the dipole moment of the system can be written

p = p0e
−iωt = p0(x̂ + iŷ)e−iωt, (58)

taking the antenna to be aligned along the x and y axes. The electromagnetic
fields in the far zone are then

B = k2p0
ei(kr−ωt)

r
k̂ × (x̂ + iŷ) E = B × k̂. (59)

We desire the components of E and B in spherical coordinates, but it is more
convenient to calculate first in rectangular coordinates, where

k̂ = sin θ cos φ x̂ + sin θ sinφ ŷ + cos θ ẑ. (60)

Then,

k̂ × (x̂ + iŷ) = −i cos θx̂ + cos ŷ + (i sin θ cos φ− sin θ sinφ)ẑ

= −i cos θ(sin θ cos φ r̂ + cos θ cos φ θ̂ − sinφ φ̂)

+ cos θ(sin θ sinφ r̂ + cos θ sinφ θ̂ + cosφ φ̂)

+(i sin θ cosφ− sin θ sinφ)(cos θr̂ − sin θ θ̂)

= (sin φ− i cos φ) θ̂ − (cosφ+ i sin φ) φ̂. (61)

The components of the fields in spherical coordinates are therefore

Er = Br = k̂ · B = 0, (62)

Eθ = Bφ = −p0k
2 e

i(kr−ωt)

r
cos θ(cos φ+ i sinφ), (63)

Eφ = −Bθ = −p0k
2 e

i(kr−ωt)

r
(sinφ− i cos φ). (64)

In the plane of the antenna, θ = 90◦, the electric field has no θ component, and
hence no z component; the turnstile radiation in the horizontal plane is horizon-
tally polarized. In the vertical direction, θ = 0◦ or 180◦, the radiation is circularly
polarized. For intermediate angles θ the radiation is elliptically polarized.
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The magnitudes of the fields are

E0 = B0 =
p0k

2

r

√
1 + cos2 θ, (65)

so the time-averaged radiation pattern is

〈
dP

dΩ

〉
=
cr2

8π
B2

0 =
p2

0ω
4

8πc3
(1 + cos2 θ). (66)

The intensity of the radiation varies by a factor of 2 over the sphere, that is,
by 3 dB, as shown below. Compared to other simple antennas, this pattern is
remarkably isotropic.
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(b) But we can make the pattern even more isotropic by considering a vertical stack
of turnstile antennas.

If the center of the turnstile antenna had been at height z along the z-axis, the only
difference in the resulting electric and magnetic fields would be a phase change by
kz cos θ because the path length to the distant observer differs by z cos θ. That
is, the fields (62)-(64) would simply be multiplied by the phase factor e−ikz cos θ.

Thus, if we have two turnstile antennas, one whose center is at the origin, and
the other whose center is at height z, and we operated them in phase, the fields
(62)-(64) would be multiplied by

1 + e−ikz cos θ. (67)

The time-averaged radiated power would therefore by eq. (66) multiplied by the
absolute square of eq. (67):

〈
dP

dΩ

〉
= 2

p2
0ω

4

8πc3
(1 + cos2 θ)[1 + cos(kz cos θ)]. (68)

For example, suppose kz = π/2, i.e., the vertical separation of the two antennas
is 1/4 of a wavelength. Then, the peak of the radiation pattern is only 1.08 times
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(0.35 db) greater than the minimum, above. For most practical purposes, this
double turnstile antenna could be considered to be isotropic.

Saunders1 has further shown that an infinite array of turnstile antennas yields
strictly isotropic radiation provided the number N(z) of such antennas in an
interval dz along the vertical axis is proportional to K0(kz), the so-called modified
Bessel function of order zero, whose behavior is sketched below. The antennas
are all driven in phase. Since the function K0(kz) is sharply peaked at z = 0, we
see that a properly spaced collection of turnstile antennas that extends over only
±1 wavelength in z could produce an extremely isotropic radiation pattern.

Additional discussion of isotropic antenna is given in
http://physics.princeton.edu/˜mcdonald/examples/isorad.pdf

1W.K. Saunders, On the Unity Gain Antenna, in Electromagnetic Theory and Antennas, ed. by E.C. Jor-
dan (Pergamon Press, 1963), Vol. 2, p. 1125,
http://physics.princeton.edu/˜mcdonald/examples/EM/saunders eta 2 1125 63.pdf


