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Please do all work in the exam booklets provided.

You may use either Gaussian or SI units on this exam.

1. (10 pts.) Find the approximate radius of a grounded conducting sphere such that
when placed between like charges whose separation is 2a, the force on these charges
vanishes.

2. (10 pts.) Find the magnetic force (magnitude and direction) on a loop of radius a that
carries current I when the loop is distance b away from an infinite sheet of a classical
superconductor = a material inside of which the fields E and B are zero, but which
can have a layer of charges and/or currents on its surface. The plane of the loop is
parallel to the surface of the sheet.

You may restrict your discussion to the two limiting cases b ¿ a, and a ¿ b.

3. (20 pts.) A conducting sphere of radius a, relative dielectric constant ε = 1 (i.e., D =
E), and relative permeability µ = 1 rotates with constant angular velocity ω about a
diameter. A constant, uniform, external magnetic field B is applied parallel to the axis
of rotation. The total charge on the sphere is zero. Assuming that you can ignore any
magnetic field due to the rotating sphere, calculate the following steady-state quantities
(in any order):

a) The electric field E everywhere.

b) The volume charge density ρ inside the sphere and the charge density σ on its
surface.

c) The electric potential φ everywhere, defining the potential at infinity to be zero.

Comment briefly on how the solution would differ if the sphere were superconducting.

Reminder: in spherical coordinates (r, θ, ϕ),

∇ · E =
1

r2

∂r2Er

∂r
+

1

r sin θ

∂ sin θEθ

∂θ
+

1

r sin θ

∂Eϕ

∂ϕ
, (1)

∇φ = r̂
∂φ

∂r
+

θ̂

r

∂φ

∂θ
+

ϕ̂

r sin θ

∂φ

∂ϕ
. (2)

Hint: a possible sequence is to calculate the electric field inside the sphere, the charge
density inside the sphere, the potential inside the sphere, the potential outside the
sphere, the electric field outside the sphere, and finally the surface charge density.
Check that the total charge is zero. Note that in the steady state, charges are at rest
with respect to an ordinary conductor, unless there is an electromotive force present –
which there is not in the present problem.
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Solutions

1. [Prob. 1, Chap. 5 of Smythe, Static and Dynamic Electricity.]

The solution is readily found using the image method for a single charge and a grounded
conducting sphere, since any number of charges and their images can be superimposed
and the conducting sphere remains at zero potential.

Recall that the image of charge q at distance a from a grounded conducting sphere of
radius b is q′ = −qb/a, and the image charge is located at distance c = b2/a from the
center of the sphere, on the line joining the center of the sphere and charge q.

In the present problem, image charges q′ are located at positions c on both sides of the
center of the sphere. Hence, the force on one of the charges q is

F =
q2

(2a)2
+

qq′

(a− c)2
+

qq′

(a + c)2
= q2

[
1

4a2
− 2b

a

a2 + c2

(a2 − c2)2

]

= q2

[
1

4a2
− 2ab

a4 + c4

(a4 − b4)2

]
(3)

Requiring this force to vanish, we find

a8 − 2a4b4 + b8 = 8a7b + 8a3b5. (4)

We suppose that b ¿ a and neglect higher powers of b in eq. (4) to find the approximate
result a8 ≈ 8a7b, or b ≈ a/8.

In the next approximation, we could write b ≈ a(1+ ε)/8 in the term 8a7b and b ≈ a/8
elsewhere to find

a8 − 2a4
(

a

8

)4

+
(

a

8

)8

≈ a8(1 + ε) + 8a3
(

a

8

)5

. (5)

and

ε ≈ − 1

2048
− 1

4096
+

1

16777216
≈ − 3

4096
≈ −0.0007. (6)

2. [Similar to Griffiths’ prob. 7.43.]

This problem is also suitable for solution via the image method – for magnetic materials.
The magnetic field outside the sheet can be thought of as due to the original loop plus
an imaginary loop at distance b below the surface of the sheet. The force on the original
loop is that due to its interaction with the magnetic field of the image loop. The image
current “clearly” has magnitude I, but what is its direction?

To determine the direction of the image current, we consider the boundary conditions.

Since ∇ · B = 0 everywhere, the perpendicular component of B is continuous across
the boundary. Since B = 0 inside the superconductor, we must have B⊥ = 0 at its
surface.

At the surface of the sheet there can free currents, so ∇×B = (4π/c)J which tells us
that there can be a tangential component of B next to the surface of the superconduc-
tor.
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Hence, the image current must produce a magnetic field that cancels the normal com-
ponent of the field from the original loop at the surface of the sheet. Therefore, the
image current has the opposite sense to that of the original current. And since an-
tiparallel currents repel, the loop is repelled by the superconducting sheet. [A magnet
can be levitated above a superconductor.]

We can confirm this result by considering the loop as a magnetic dipole made from a
set of + and − (fictitious) magnetic monopoles. We see that the image prescription for
magnetic poles above a classical superconductor is that the image pole has the SAME
SIGN as the original pole, so that the sum of their fields is parallel to the sheet (not
perpendicular as for electric charges). Since the loop is parallel to the sheet, the dipole
axis is perpendicular to the sheet. Taking the original dipole to have its + pole farther
from the sheet, the image dipole has its + pole farther from the sheet. Hence the image
dipole has the opposite orientation as the original dipole, and so the currents flow in
the opposite direction.

In the limit that radius a is small compared to height b the loops can be approximated
as point dipoles. We take the z axis along the line of centers of the two dipoles, of
strength

±p = ±πa2I

c
ẑ. (7)

The force on the dipole due to the magnetic field of the image dipole is given by

Fz =
∂(p ·Bimage)

∂z
= p

∂Bz(z = b)

∂z
. (8)

The magnetic field along the axis of the image dipole −p is given by

Bz(z) =
3(−p · ẑ)− (−p)

r3
= − 2p

(z + b)3
. (9)

Hence, eqs. (7)-(9) combine to give

F = 3
2p2

(2b)4
=

3π2a4I2

8c2b4
(a ¿ b). (10)

Here, the positive force implies the loop is repelled by the superconductor.

When b ¿ a, the radius of the loop is large compared to its distance from the plate,
and the loops are not simply equivalent to point dipoles of strength πa2I/c. Rather, we
note that in this case the two loops are very close together, so the magnetic field from
one loop at the position of the other is essentially the same as that due to a straight
wire carrying current I, namely

B =
2I

c(2b)
=

I

cb
. (11)

The magnetic field is perpendicular to the loop, so the total force on the original loop
is therefore

F =
2πaIB

c
=

2πaI2

c2b
(b ¿ a). (12)

As above, this force repels the loop from the sheet.
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3. [Sec. 48 of Mason and Weaver, The Electromagnetic Field (Dover, 1929). Uses Heaviside-
Lorentz units ⇒ factors of 4π different from Gaussian units!]

In the steady state, charges cannot be in motion relative to a sphere of finite con-
ductivity unless there is a driving electromotive force – which is absent in the present
problem. Otherwise, Joule losses would quickly reduce the relative velocity of the
charges to zero. Hence, if a nonzero charge density ρ arises, the charges are rotating
with angular velocity ω.

This contrasts with the case of a superconductor, in which currents can flow without an
electromotive force. In this case, surface currents develop so as to cancel the external
magnetic field in the interior of the sphere (for any angular velocity ω). The surface
current would vary as sin θ, as discussed in Ph501 Problem Set 4, prob. 9a. Outside
the sphere these currents would add a dipole magnetic field to the uniform external
magnetic field. The surface current is not due to the rotation of a net surface charge
density, as this would require the interior of the superconductor to have a nonzero
charge density, and hence a nonzero electric field. Rather, the surface of the sphere
remains neutral, and the electric field is everywhere zero. The surface currents are
thus unrelated to the angular velocity of the sphere, which can have any value without
changing the magnetic fields. [For another variant, see Griffiths’ prob. 7.45.]

Returning to the case of finite conductivity, the key argument is that there can be no
net force on charges inside the sphere due to the macroscopic E and B fields there.

One way to argue is via the full version of Ohm’s law, Griffiths’ eq. (7.2), applied in
the rest frame of the rotating sphere, where J? = 0 according to the first paragraph of
this solution. We therefore conclude that 0 = σE? = γσ(E + v/c×B), noting that B
is transverse to v, and hence any needed electric field E will be also. Thus, the electric
field inside the sphere is related by

E = −v

c
×B. (13)

This leaves unresolved the question as to what force provides the centripetal accelera-
tion ω2r⊥ of the electrons and ions at distance r⊥ from the axis of the sphere. Consider
first the case of zero magnetic field. Whenever a conductor spins about an axis, inter-
nal forces must be generated to provide the centripetal force, or the conductor would
fly apart. There must be microscopic forces that act on the conduction electron as
well as on the positive ion lattice, or all the conduction electrons would accumulate
the surface leaving the interior positively charged and hence unstable against breakup.
Since conductors do not typically fall apart when spun, we infer that microscopic inter-
nal forces, presumably due to electromagnetic fields, will provide the centripetal force
−mω2r⊥ for both electron and ions so that the bulk material remains neutral.

The result that the electric field E? must vanish in the rest frame of the rotating sphere
implies that the atoms cannot have taken on a dipole deformation proportional to r⊥,
as might have appealed to one’s intuition. Otherwise, the the sphere would have a
bulk polarization P? proportional to r⊥, a uniform bound charge density ρ?

b = −∇·P?

(looking ahead to eq. (17)), and hence a nonzero electric field E?.
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In any case, when we add external fields their effect is in addition to the microscopic
forces that provide the centripetal force. In the steady-state of a rotating conductor
the interior charges must rotate as for a rigid body, so there must be no net additional
force on these charges. Since the rotating free charges experience a v×B force, there
must be some additional force that cancels this. The free charge distribution rearranges
itself until it generates an electric field that cancels the magnetic force. That is, the
resulting volume charge distribution ρ obeys

Fmacroscopic = 0 = ρ
(
E +

v

c
×B

)
, (14)

so far as the macroscopic fields E and B are concerned. Hence, the electric field in the
interior of the sphere is

E = −v

c
×B = −ωẑ× r

c
×Bẑ =

ωB

c
[(r · ẑ)ẑ− r] = −ωBr

c
(r̂ sin2 θ + θ̂ sin θ cos θ)

= −ωBr⊥
c

r̂⊥, (15)

noting that

ẑ = r̂ cos θ − θ̂ sin θ, and r̂⊥ = r̂ sin θ + θ̂ cos θ, and r⊥ = r sin θ. (16)

The charge distribution can now be obtained via the first Maxwell equation,

ρ =
∇ · E
4π

= −ωB

4πc

(
1

r2

∂r3 sin2 θ

∂r
+

1

r sin θ

∂r sin2 θ cos θ

∂θ

)
= −ωB

2πc
, (17)

recalling eq. (1). The total charge in the interior of the sphere is

Q =
4πa3ρ

3
= −2ωBa3

3c
. (18)

It is noteworthy that the charge distribution in the interior is uniform, but the electric
field is not spherically symmetric. This can happen if the surface charge distribution
(required since the sphere is neutral overall) is not spherically symmetric.

The strategy for the remainder of the problem is as follows. Use E = −∇φ to deduce
the form of the electric potential in the interior of the sphere. Then extrapolate the
potential to the exterior by matching at the boundary r = a. Then, we calculate
the electric field outside the sphere, and finally we can calculate the surface charge
distribution.

This problem is azimuthally symmetric, so the potential depends only on r and θ.
Using eq. (1), we have

E = −∇φ = −r̂
∂φ

∂r
− θ̂

r

∂φ

∂θ
, (19)

Hence, for r < a eq. (15) tells us that

∂φ

∂r
=

ωBr sin2 θ

c
, and so φ(r < a) = φ0 +

ωBr2 sin2 θ

2c
. (20)
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As a check, eqs. (15) and (19) also tell us that

∂φ

∂θ
=

ωBr2 sin θ cos θ

c
, and likewise φ = φ0 +

ωBr2 sin2 θ

2c
. (21)

For r > a, the charge density vanishes so ∇2φ = 0 there, and we can expand the
potential in terms of Legendre functions as

φ(r > a) =
∑ An

rn+1
Pn(cos θ), (22)

choosing φ(r = ∞) = 0. To match this to eq.(20) at r = a, we note that

P0 = 1, P2 =
3 cos2 θ − 1

2
=

2− 3 sin2 θ

2
, so sin2 θ =

2

3
(P0 − P2), (23)

and

φ(r < a) =

(
φ0 +

ωBr2

3c

)
P0 − ωBr2

3c
P2. (24)

Matching eqs. (22) and (24) at r = a, we see that all the Ai vanish except A0 and A2,
which obey

A0 = aφ0 +
ωBa3

3c
, and A2 = −ωBa5

3c
. (25)

The potential is then

φ(r < a) = φ0 +
ωBr2

3c
(1− P2), (26)

φ(r > a) = φ0
a

r
+

ωBa2

3c

(
a

r
− a3

r3
P2

)
. (27)

We can now calculate the electric field outside the sphere to be

Er(r > a) = −∂φ

∂r
= φ0

a

r2
+

ωBa2

3c

(
a

r2
− 3

a3

r4
P2

)
, (28)

Eθ(r > a) = −1

r

∂φ

∂θ
= −ωBa5 sin θ cos θ

cr4
. (29)

For comparison, we rewrite the electric field (15) in the interior as

Er(r < a) = −2ωBr

3c
(1− P2), (30)

Eθ(r < a) = −ωBr sin θ cos θ

c
. (31)

The tangential electric field Eθ must be continuous at the boundary r = a, which is
satisfied by eqs. (29) and (31).
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The surface charge density σ can now be found via a Gaussian pillbox surrounding a
segment of the surface r = a:

σ =
Er(r = a+)− Er(r = a−)

4π
=

φ0

4πa
+

ωBa

12πc
(3− 5P2) , (32)

The total charge on the surface of the sphere is

Q = 4πa2

(
φ0

4πa
+

ωBa

4πc

)
= φ0a +

ωBa3

c
, (33)

which must be the negative of the total charge (18) inside the sphere, since the total
charge is zero. Hence, at great length we determine the constant φ0 to be

φ0 = −ωBa2

3c
. (34)

We can now go back and tidy up the quantities that contain φ0:

φ(r < a) =
ωB

3c
(r2 − a2 − r2P2), (35)

φ(r > a) = −ωBa5P2

3cr3
, (36)

Er(r > a) = −ωBa5P2

cr4
, (37)

σ =
ωBa

12πc
(2− 5P2) . (38)

How big is the charge density σ, in terms of electrons/cm2? Suppose, for example that
ω = 1 rad/s, B = 1 tesla = 104 gauss, and a = 1 cm. Then, σ ≈ 104/1012 = 10−8

esu/cm2. Since the charge of the electron is e ≈ 5 × 10−10 esu, the surface charge
density would be about 20 electrons/cm2.

Returning to the issue of the centripetal force, we consider its magnitude compared to
that of the v ×B force.

meω
2r

evB/c
≈ mec

e

ω

B
≈ 10−27 · 1010

10−10

ω

B
≈ 10−7 ω

B
. (39)

For the example of ω = 1 rad/s and B = 104 gauss, the ratio is negligible. Even in the
Earth’s magnetic field, ≈ 1 gauss, the ratio would not be appreciable until ω ≈ 107

rad/s! Hence, the issue of the microscopic origin of the centripetal force in a spinning
conductor is more of pedagogic than practical interest.

Note. This example is abstracted from the larger topic of unipolar (or homopolar)
induction (Faraday, 1831). From eq. (13), and also eq. (30), we see that the radial
electric field in the equatorial plane inside the conducting sphere is

Er(r < a, θ = π/2) = −ωrB

c
. (40)
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Hence there is a voltage difference ∆V = ωBa2/2 between the axis and the equator
of the sphere. If a load resistor R is connected via wires with sliding contacts at the
pole and the equator of the sphere, a current I = ∆V/R will flow, and power can be
extracted from the system. In this case, there is a torque exerted on the radial current
by the magnetic field,

N =
∫ a

0
rFθ dr =

IB

c

∫ a

0
r dr =

IBa2

2c
, (41)

and an external source must provide input power

P = Nω =
ωIBa2

2c
= I∆V, (42)

which exactly equals the power dissipated in the load resistor.

This is very reassuring, except we recall the basic consequence of the Lorentz force
law, that magnetic fields do no work. On reflection, we realize that the torque
described by eq. (41) is on the conductions electrons, and not on the lattice of positive
ions, which is is what the outside source makes mechanical contact with. But, because
the currents must flow essentially radially, the lattice must set up azimuthal electric
fields to counteract the azimuthal magnetic force. These electric fields are what do the
work....

Note 2. Contemporary interest in this problem is because of its possible relevance to
the difficult question of the magnetism of planets and stars. Two web pages on this
intriguing topic are
http://www-istp.gsfc.nasa.gov/earthmag/dmglist.htm
http://www.psc.edu/science/glatzmaier.html
The planetary dynamo problem is an aspect of magnetohydrodynamics. See chap. 18 of
http://www.pma.caltech.edu/Courses/ph136/ph136.html for an up-to-date introduc-
tion to this field.

Note 3. The solution presented here is based on the conventional wisdom that no
charge separation occurs in a spinning object that is in zero external electric and mag-
netic fields. The difficulty in explaining planetary magnetism has led to the conjecture,
particularly by P.M. Blackett in 1947, that spinning neutral objects can generate mag-
netic fields without the presence of internal convective flow. This idea is generally
believed to be incorrect, but still has its enthusiasts (somewhat on the fringes of sci-
ence). See, for example,
http://www.stardrive.org/Jack/sirag-vigier3.pdf

Note 4. In a paramagnetic medium there is a small effect whereby rotation induces
a small magnetic field even in the absence of external electric and magnetic fields,
as noted by S.J. Barnett, Phys. Rev. 6, 239 (1915). Paramagnetic materials contain
permanent moments whose average alignment is zero in the absence of an external
magnetic field. If a paramagnetic material is placed in a rotating frame, the Coriolis
effect on the molecular currents induces a precession of the magnetic moments that has
the same sense no matter what the orientation of the magnetic moment. This results
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in a net effective current in the same sense as the angular velocity of the body, and
hence a net magnetic field. There is an even smaller effect of the same sign due to the
centrifugal force.

Since iron is paramagnetic, this might have some relation to the Earth’s magnetic field,
but Barnett calculated that it would imply a field of about 10−10 gauss. Nonetheless,
Barnett was able to detect the effect in spinning iron rods, finding a value close to
1/2 that predicted by classical theory. Since this work was done the same year as
the Einstein-de Haas experiment, which is conceptually related, and the latter claimed
to agree with classical theory, Barnett’s work never attracted much attention. But
Einstein was wrong and Barnett was right. We now know that paramagnetism in iron
is a nonclassical effect, and Barnett should be credited as having the first experimental
result that showed the electron gyromagnetic ratio to be 2, not 1.


