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Reading: Griffiths secs. 4.3-4.4, 7.1.1-7.1.2

1. Griffiths’ probs. 4.4 and 4.7. For problem 4.4, evaluate both the force on the charge
due to the (induced, i.e., not permanent) dipole field, and the force on the dipole due
to the charge.

One way to approach prob. 4.7 (in which“ideal dipole” means “tiny, permanent dipole”)
is to recast eq. (4.5) as the gradient of some quantity, using an appropriate vector
calculus identity. Then, invoking the mechanical relation F = −∇U , you can identify
the energy U . Note that this transformation holds only if ∇×E = 0, i.e., it holds only
for electrostatics.

Counterexample: if p = px̂ and E = kxŷ, then p · E = 0, but the force on the dipole
is nozero according to eq. (4.5). However, in this case ∇× E 6= 0, so there must be a
time-dependent magnetic field present, and the problem is not one of electrostatics.

You should find that U = −p ·E for a dipole of fixed magnitude p, but U = −1
2
p ·E for

an induced dipole that obeys p = αE. The difference arises because there is a positive
energy of deformation of the induced dipole – as could be confirmed by a model for
polarizable molecules. Use F = −∇U to calculate the force on the dipole in prob. 4.4,
and compare with the result obtained using eq. (4.5).

This illustrates that to deduce the force from the energy U , the total energy must be
used. We note the famous paradox hinted in sec. 4.4.4, that if U = Uelectrostatic, then
F = −∇Uel is ok if the external field is maintained by a set of fixed charges (as in
prob. 4.4), but when the external fields are maintained by a set of conductors held at
fixed potentials by batteries, then F = −∇Utot = −∇(Ubatt + Uel) = +∇Uel, because
∇Ubattery = −2∇Uel.

2. Griffiths’ prob. 4.28.

3. Griffiths’ prob. 4.34. By now you may appreciate such shortcuts as noting that since
the dipole is the ultimate source of the all of the electric potential in this problem, and
that the dipole potential varies as P1(cos θ), so only terms in the Legendre polynomial
expansion will be those in P1. Hence, you could write

V (r < R) =
(

A1

r2
+ B1r

)
P1(cos θ),

V (r > R) =
(

C1

r2
+ D1r

)
P1(cos θ).

To determine the four unknowns A1, B1, C1, and D1, you need four equations. Of
course, the potential at infinity can be set to zero in this problem, so D1 = 0. However,
we cannot set A1 to zero, because of the dipole at the origin; indeed, the term A1P1/r

2

is the potential (for r < R) due to dipole p when it is embedded inside a dielectric
of constant εr. A way to get at this term is to consider the electric displacement D,
which is due only to the external charges in the problem, i.e., due only to the dipole
at the origin. In general, the field D due to a specified external charge distribution is
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the same as the field E due to that charge distribution in vacuum, but multiplied by
ε0. Thus, from Griffiths’ eq. (3.102), we know that

Ddipole = −∇ pP1

4πr2
.

But, we also know that

Ddipole = εrε0Edipole inside dielectric = −εrε0∇Vdipole inside dielectric = −εrε0∇
(

A1P1

r2

)
.

etc.

Show also that the results of this problem satisfy Griffiths’ eq. (3.105), when you take
into account that the complete field of a point dipole in vacuum is given by Griffiths’
eq. (3.106). (What is the expression for the field of a point dipole embedded in a
medium of relative dielectric constant εr?) The total dipole moment of the system
is the sum of the original point dipole p and the integral of the induced polarization
density P = (εr − 1)ε0E.

4. Griffiths’ prob. 4.38.

5. Griffiths’ prob. 7.1.

6. Griffiths’ prob. 7.41. The premise of this problem is that there will be a steady current
that travels distance 2πa inside the (curved but otherwise uniform) sheet. Since the
voltage drop around the circumference of the sheet is V0, the electric field strength
inside the sheet should be V0/2πa (what is its direction?). Verify that an appropriate
derivative of the potential V (s, φ) found in part (a) leads to this result.

The surface charge found in part (b) is needed to shape the electric field to the desired
uniform value on the surface. It should therefore be no surprise that a (small) surface
charge is required to maintain the electric field that drives a steady current inside an
ordinary wire....

The total charge on the surface is zero. [Can you give a simple argument for this,
before solving for the potential?] This fact means that you can neglect the logarithmic
term that appears in the general (exterior) solution for the potential in cylindrical
coordinates. Can you give another argument as to why the logarithmic term is not
present?


