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1. Estimate the decay rate Γt→bW+ of the top quark, and give the order-of-magnitude of
the lifetime in seconds.

If you wish to pursue a more detailed calculation (not required), note that a top quark
in a given spin state can decay to a W+ in two different spin (helicity) states, so
the total rate is the sum of that to these two W -states. A good approximation is
that mb � mW , but mW is comparable to mt. It seems favorable to evaluate the
matrix elements directly using the appropriate Dirac spinors, rather than resorting to
Feynman’s trace tricks.

2. In Set 8, Prob. 5 you considered the cross section for the reaction e+e− → νν in the
V−A Fermi theory of the weak interaction, which theory is significantly modified at
high energy by the existence of the Z0 boson. Compare the amplitudes for the inverse
reaction, νν → e+e−, near threshold in the Weinberg-Salam model to those in the
Fermi theory to deduce the ratio of the cross sections in these two models. Also, give
an expression for the cross section as a function of center-of-mass energy

√
s ≈ mZ

supposing that the reaction is only νν → Z0 → e+e−.

You may ignore lepton masses, and consider only lefthanded neutrinos (righthanded
antineutrinos). The discussion in the Notes on p. 399, Lecture 22 has some unfortunate
typos, which you can correct by noting that the result on p. 216, Lecture 12 should
agree with that on p. 210, Lecture 9 when

√
s = ER = mc.

3. Now that the Higgs boson, h, has been discovered we optimistically contemplate mea-
surement of the reaction e+h → e+Z0. Estimate the cross section for this reaction in
the center-of-mass frame, and the form of its angular dependence assuming unpolarized
initial electrons.

Since the Higgs particle couples to mass, hee vertices are negligible here, although you
might wish to draw the simplest diagrams that include them.
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Solutions

1. A simple estimate of the decay rate Γt→Wb (whose dimension is energy/mass)

Γt→Wb ≈ C2mt ≈ g2mt ≈ Gm2
Wmt ≈ 104mp ≈ 104

10−24 s
= 1028 s−1, (1)

where the coupling constant at the Wtbθ vertex is C = g/2
√

2 =
√

Gm2
W/

√
2, and we

recall Set 1, probe. 1. The corresponding lifetime of the top quark, ≈ 10−28 s is too
short for any top-quark hadrons to form.

In more detail, the top quark decays via tL → W+bθ,L where the amplitude that the
bθ is a b quark is the C-K-M matrix element Vtb ≈ 1.

A t quark at rest with spin down along the z-axis can be said to have negative helicity
(to be lefthanded) if we regard this as the 4-spinor u−(p = 0, θ = 0) in the notation of
p. 114, Lecture 7 of the Notes. Likewise, a t quark at rest with spin up along the z-axis
can be said to be lefthanded) if we regard this as the 4-spinor u−(p = 0, θ = 180◦).
That is, top quarks at rest with either spin projection can decay weakly.

It suffices to consider one case, which we take to have spin down along the z-axis, as
shown below.

Taking the z′-axis along the direction of the W , at angle θ to the z=axis, the W
has Jz′ = −1 or 0 while the bL has Jz′ = 1/2, so the final state has Jz′ = ∓1/2. The

angular factor for the decay amplitude is therefore d
1/2
−1/2,±1/2 = cos θ/2 or sin θ/2 (while

for the case that the top quark has Jz = 1/2 the angular factor is d
1/2
1/2,±1/2 = sin θ/2 or

cos θ/2). The decay of a top quark for a particular spin configuration is parity violating
with angular distribution (1± cos θ)/2, while the decay of an unpolarized top quark is
isotropic (in the rest frame of the t).

Turning now to a detailed calculation, we invoke the general formula for a 2-body decay
for the process t → W + b,

dΓ

dΩ
=

Pf
∑

W spins |M|2
32π2m2

t

, (2)

where the square of the 4-vector relation W = t − b yields m2
W = m2

t + m2
b − 2mtEb,

and in the good approximation that mb � mW < mt, we have that

Pf ≈ Eb ≈ mt

2

(
1 − m2

W

m2
t

)
. (3)

The matrix element is (see p. 387, Lecture 21 of the Notes)

M =
gVtb

2
〈ubθ ,L|γμ|utL〉εμ =

√
Gm2

W

√
2Vtb〈ubθ,L|γμ|utL〉εμ, (4)
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where εμ is the polarization 4-vector of the W , for which we need the two cases ε0 (W
spin Jz′ = 0) and ε−1 (Jz′ = −1).

It seems more convenient to work in the (x′, y′, z′) system than in (x, y, z). Recalling
p. 367, Lecture 20 of the Notes, the W -polarization 4-vectors are

ε0 = εz′ = (γWβW , 0, 0, γW ) =
1

mW
(PW , 0, 0, EW ) ≈ mt

2mW

(
1 − m2

W

m2
t

, 0, 0, 1 +
m2

W

m2
t

)
(5)

noting that PW = Pf and the square of the 4-vector relation b = t − W yields m2
b ≈

0 = m2
t + m2

W − 2mtEW ; and ε−1 is like a negative helicity (right-circularly polarized)
photon,1

ε−1 =
εx′ − iεy′√

2
=

1√
2
(0, 1,−i, 0). (6)

With respect to the z′-axis, the top-quark spin is at angle −θ, so its spinor is (again
recalling p. 114, Lecture 7 of the Notes)

|utL〉 =
√

2mt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin θ
2

cos θ
2

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Similarly, the bottom quark has negative helicity with respect to the −z′ axis (θ′ = π),
so its spinor is (for Eb ≈ Pf 	 mb)

|ubθ,L
〉 =

√
Pf

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 〈ubθ,L
| = 〈u†

bθ,L
|γ0 =

√
Pf (0, 1, 0,−1) . (8)

Recalling that the Dirac matrices are

γ0 =

⎛
⎜⎝ I 0

0 −I

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, γ1 =

⎛
⎜⎝ 0 σ1

−σ1 0

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1See, for example, sec. 7.2 of J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999),
http://kirkmcd.princeton.edu/examples/EM/jackson_ce3_99.pdf.
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γ2 =

⎛
⎜⎝ 0 σ2

−σ2 0

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, γ3 =

⎛
⎜⎝ 0 σ3

−σ3 0

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we find that the matrix element is (see p. 387, Lecture 22 of the Notes)

〈ubθ ,L|γμ|utL〉 =
√

2mtPf

(
cos

θ

2
,− sin

θ

2
,−i sin

θ

2
, cos

θ

2

)
. (9)

Hence, the matrix element for W -spin Jz′ = −1 is

M−1 =
√

Gm2
W

√
2 Vtb〈ubθ ,L|γμ|utL〉εμ

−1 =
√

Gm2
W

√
2 Vtb

2
√

2mtPf√
2

sin
θ

2
, (10)

with angular factor sin θ/2 as anticipated via the rotation matrix. The corresponding
differential decay rate is

dΓ−1

dΩ
=

Pf |M−1|2
32π2m2

t

=

√
2Gm2

W |Vtb|2 P 2
f

8π2mt
sin2 θ

2
, Γ−1 =

√
2Gm2

W |Vtb|2 P 2
f

4πmt
. (11)

Similarly, the matrix element for W -spin Jz′ = 0 is

M0 =
√

Gm2
W

√
2 Vtb〈ubθ ,L|γμ|utL〉εμ

0 =
√

Gm2
W

√
2 Vtb

2
√

2mtPfmW

mt
cos

θ

2
, (12)

with angular factor sin θ/2 as anticipated via the rotation matrix. The corresponding
differential decay rate is

dΓ0

dΩ
=

Pf |M0|2
32π2m2

t

=
2
√

2Gm4
W |Vtb|2 P 2

f

8π2m3
t

cos2 θ

2
, Γ0 =

2
√

2Gm4
W |Vtb|2 P 2

f

4πm3
t

. (13)

The total decay rate is

Γt→bW+ = Γ−1 + Γ0 =

√
2Gm2

W |Vtb|2 P 2
f

4πmt

(
1 +

2m2
W

m2
t

)

=

√
2Gm2

Wmt |Vtb|2
16π

(
1 − m2

W

m2
t

)2 (
1 +

2m2
W

m2
t

)
. (14)

The decay rate to d and s quarks has the same form on substitution of |Vtd|2 or |Vts|2
for |Vtb|2; hence the corresponding branching fractions are tiny.

This result was first deduced by I Bigi et al., Production and Decay Properties of
Ultra-Heavy Quarks, Phys. Lett. B181, 157 (1986),
http://kirkmcd.princeton.edu/examples/EP/Big_pl_b181_157_86.pdf.
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2. The two “tree-level” graphs for the reaction νν → e+e− are shown below.

The two diagrams for the final state e−Le+
R interfere, so the amplitudes are proportional

to

Aνν→e−
L

e+
R
∝ g2CL

4 cos2 θW

1

s −m2
z

− g2

2

1

t− m2
W

, Aνν→e−
R

e+
L
∝ g2CR

4 cos2 θW

1

s − m2
z

, (15)

where CL = 2 sin2 θW − 1 ≈ −1/2, CR = 2 sin2 θW ≈ 1/2, referring to p. 388, Lecture
22 of the Notes.

For low center-of-mass energies,
√

s � mZ and |t| � m2
W , we note that mZ cos θW =

mw, so the amplitudes are approximately

Aνν→e−L e+
R
∝ − g2

2m2
W

(
1 +

CL

2

)
, Aνν→e−Re+

L
∝ −g2CR

4m2
w

. (16)

The angular dependence of the amplitudes can be inferred from spinology, as shown in
the figure below:

Aνν→e−L e+
R
∝ d1

−1,−1(θ) =
1 + cos θ

2
, Aνν→e−Re+

L
∝ d1

−1,1(θ) =
1 − cos θ

2
, (17)

so the integrals of the angular distributions are the same for the two cases (although
each angular distribution violates parity). Hence, the low-energy cross section is pro-
portional to

∣∣∣Aνν→e−L e+
R

∣∣∣2 +
∣∣∣Aνν→e−Re+

L

∣∣∣2 ∝ G2

(
1 + CL +

C2
L + C2

R

4

)
≈ 5G2

8
. (18)

In the V−A Fermi theory, CL = 0 = CR, so the low-energy cross-section in the
Weinberg-Salam model is ≈ 5/8 of that in the Fermi theory (compare Set 8, Prob. 5).
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There is no divergence in the cross section σνν→e−e+ at low energies, since Eν,min =
me/2, for which vν ≈ c even for massive neutrinos.

Once the center of mass energy becomes comparable to mW , the t-channel, W -exchange
diagram is negligible compared to the s-channel, Z-exchange diagram. Then, the latter
should include the effect of the width of the Z0, which implies that the (relativistic)
Breit-Wigner cross section should be used. Since the discussion of this on p. 399,
Lecture 22 of Notes contains various unfortunate typos, I attempt to (re)present the
argument here.

The nonrelativistic argument, summarized on p. 210, Lecture 11 of the Notes, is that
the cross section for the reaction a + b → c → d + e is

σa+b→c→d+e =
π

P 2
i

2Sc + 1

(2Sa + 1)(2Sb + 1)

Γc→abΓc→cd

(Ecm − mc)2 + Γ2
c→all/4

, (19)

where Ecm = Ea + Eb =
√

s.

On p. 216, Lecture 12 of the Notes, we remarked (without “proof”) that in quantum
field theory we are considering an s-channel process whose diagram is

for which the propagator of particle c, whose total decay rate is Γt = Γc→all, can be
written as 1/[s − (mc + iΓt/2)

2] ≈ 1/(s − m2
c + imcΓt). This propagator appears

in the matrix element, so the cross section is proportional to its absolute square,
1/[(s − m2

c)
2 + m2

cΓ
2
t ]. The cross section when Ecm =

√
s = mc should remain the

same, so the relativistic form of the Breit-Wigner cross section is

σa+b→c→d+e =
4πs

P 2
i

2Sc + 1

(2Sa + 1)(2Sb + 1)

Γc→abΓc→cd

(s − m2
c)

2 + m2
c Γ2

t

, (20)

where we insert a factor s in the numerator on dimensional grounds.

Then, the reaction e−e+ → Z0 → all has the Breit-Wigner cross section

σe−e+→Z0→all = 12π
ΓZ0→e−e+ΓZ0→all

(s − m2
Z)2 + m2

Z Γ2
Z0→all

, σpeak = 12π
ΓZ0→e−e+

m2
z ΓZ0→all

. (21)

noting that Pi ≈ √
s/2, as quoted on p. 399, Lecture 22 of the Notes.

Returning to the case of νν → e−e+, we consider that the spin factor 2Sν + 1 for
massless neutrinos is 1, and again Pi =

√
s/2, such that

σνν→e−e+ ≈ 4πs

P 2
i

2SZ + 1

(2Sν + 1)2

ΓZ0→ννΓZ0→e−e+

(s − m2
Z)2 + m2

zΓ
2
Z0→all

≈ 48πΓZ0→ννΓZ0→e−e+

(s − m2
Z)2 + m2

ZΓ2
Z0→all

, (22)

where mZ = 91.188 GeV, ΓZ0→νν ≈ 0.152 GeV, ΓZ0→νν = 0.084 GeV and ΓZ0→all =
2.495 GeV.

6



3. The reaction e− +h → e− +Z0 could proceed via three “tree level” diagrams, as shown
below.

Because the Higgs particle h couples to mass, the two diagrams with hee vertices are
negligible (at least at low energies) compared to the left one with a hZZ vertex. The
vertex factors for the left diagram are taken from pp. 388 and 404, Lecture 22 of the
Notes, such that the matrix element is approximately

M ≈ g2mZ

cos2 θW m2
Z

≈ g2

mZ
≈ G, (23)

where the factor of m2
Z in the denominator is from the propagator for Z-exchange at

low q2. Since G has dimensions of 1/E2, the cross section must vary as

σeh→eZ ∝ |M|2 ≈ G2s. (24)

Presumably, the contribution of the two diagrams with electron exchange keeps the
cross section finite at high energies.

As to the angular dependence of the cross section, we note that the Z0 couples to either
left- or right-handed electrons, as sketched in the figure below. For coupling to eL, the
spin along the axis of the initial state is Sz = −1/2 and that along the axis of the final
state is Sz′ = 1/2, taking the axis in the direction of motion of the electron. Hence the

amplitude for this case is proportional to d
1/2
−1/2,1/2 = − sin θ/2. Similarly, for coupling

to eR, the spin along the axis of the initial state is Sz = 1/2 and that along the axis of
the final state is Sz′ = −1/2, taking the axis in the direction of motion of the electron.

Hence the amplitude for this case is proportional to d
1/2
1/2,−1/2(θ) = sin θ/2.

In both cases, the cross section varies as sin2 θ/2 = (1 − cos θ)/2 (since the effect of
the propagator, 1/(q2 − m2

Z) ≈ −1/m2
Z on the angular distribution is negligible, and

for all t-channel weak-interaction diagrams).
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