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1. Proton and Neutron Decay. The emerging understanding that the strong force
becomes weaker at high energies while the electromagnetic force grows stronger, such
that αs ≈ αEM at E ≈ 1015 GeV, led1 to the conjecture of a “grand unification” of
strong, electromagnetic (and weak) forces, associated with various new bosons of mass
≈ 1015 GeV that couple quarks and leptons. Such bosons (with fractional electric
charge 1/3e and −4/3e, etc.) might mediate baryon-number- and lepton-number-
violating transitions, as sketched below, such that a proton could decay via p→ e+π0.

The coupling constants g1 and g2 might have strengths at energy ≈ 1 GeV such that
g2
1 ≈ αEM and g2

2 ≈ αs.

Make a simple estimate of the proton lifetime based on the above model.

Give a similar simple estimate for (3-body) neutron decay, n→ pe−νe, whose observed
lifetime is ≈ 1000 s.

2. The M-S-W Effect. An interesting phenomenon in the K0-K
0

system is that the

difference in the interaction of a K0 and a K
0

with matter permits regeneration of the
mass/lifetime eigenstate K0

S by a block of matter placed in a beam of Kaons where the
K0

S component has essentially died out and only K0
L remain.2 Use of two regenerators

with variable separation permits measurement of the magnitude of the K0
S-K0

L mass
difference,3,4 and if the two regenerators are placed close to the Kaon source so that the

1J.C. Pati and A. Salam, Lepton number as the fourth “color,” Phys. Rev. D 10, 275 (1974),
http://kirkmcd.princeton.edu/examples/EP/pati_prd_10_275_74.pdf
H. Georgi and S.L. Glashow, Unity of All Elementary-Particle Forces, Phys. Rev. Lett. 32, 438 (1974),
http://kirkmcd.princeton.edu/examples/EP/georgi_prl_32_438_74.pdf.

2A. Pais and O. Piccioni, Note on the Decay and Absorption of the θ0, Phys. Rev. 100, 1487 (1955),
http://kirkmcd.princeton.edu/examples/EP/pais_pr_100_1487_55.pdf.

3M.L. Good, Method for Determining the K0
+ − K0− Mass Difference, Phys. Rev. 110, 550 (1958),

http://kirkmcd.princeton.edu/examples/EP/good_pr_110_550_58.pdf.
4R.H. Good et al., Regeneration of Neutral K Mesons and Their Mass Difference, Phys. Rev. 124, 1223

(1961), http://kirkmcd.princeton.edu/examples/EP/good_pr_124_1223_61.pdf;
V.L. Fitch et al., Mass Difference of Neutral K Mesons, Nuovo Cim. 22, 1160 (1961),
http://kirkmcd.princeton.edu/examples/EP/fitch_nc_22_1160_61.pdf.
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K0
S component is still significant at the first regenerator, the sign of the mass difference

can be determined.5

In 1978, Wolfenstein noted6 that an electron (anti)neutrino can interact with mat-
ter via diagrams with either W or Z0 exchange, while νμ and ντ can only interact
via Z0 exchange, which leads to “matter effects” for neutrinos that are equivalent to

regeneration in the K0-K
0

system.

In this problem you should deduce some consequences of these matter effects in a two-
neutrino scenario, supposing that an electron or muon (anti)neutrino is produced at
time t = 0 with a definite momentum, mW � Pν � mi, such that the neutrino-mass
eigenstates ν1 and ν2 have energies Ei ≈ P +m2

i/2P ≈ P +m2
i/2E for i = 1, 2.7 Note

that

E ≡ E1 + E2

2
, E1,2 ≈ E ± Δm2

4E
, with Δm2 = Δm2

12 ≡ m2
1 − m2

2. (1)

The goal of this exercise is to display how the oscillations of a beam of initial muon
neutrinos that propagates through uniform matter are sensitive to the sign of Δm2

12.

The task is to identify the mass eigenstates of neutrinos propagating inside matter.
An approximate analysis of the neutrino wavefunction, |ψ(t)〉 = ae(t)|νe〉+aμ(t)|νμ〉 =
b1(t)|ν1〉 + b2(t)|ν2〉, is that it obeys the Schrödinger equation iψ̇ = Hψ = (H0 +
H ′)ψ, where the Hamiltonian (a 2 × 2 matrix) H0 applies for propagation in vacuum,
and H ′ describes the additional effect of propagation through matter. Of course, the
amplitudes in the flavor basis and the mass basis are related by

⎛
⎜⎝ ae

aμ

⎞
⎟⎠ = U

⎛
⎜⎝ b1

b2

⎞
⎟⎠ =

⎛
⎜⎝ cos θ sin θ

− sin θ cos θ

⎞
⎟⎠
⎛
⎜⎝ b1

b2

⎞
⎟⎠ , (2)

where θ = θ12 is the neutrino-mixing angle.

Problem: Give the forms of the vacuum Hamiltonian H0 in the mass basis and in
the flavor basis for a neutrino of momentum P . Show that in the flavor basis H0 is
the average energy E times the unit matrix I plus Δm2/4E times a symmetric matrix
that is a function of 2θ. Note a relation between the mixing angle and all four of the

5J.V. Jovanovich et al., Experiment on the Sign and Magnitude of the K0
L-K0

S Mass Difference, Phys.
Rev. Lett. 124, 1223 (1961), http://kirkmcd.princeton.edu/examples/EP/jovanovich_prl_17_1075_66.pdf;
W.A.W. Melhop et al., Interference between Neutral Kaons and Their Mass Difference, Phys. Rev. 172,
1613 (1968), http://kirkmcd.princeton.edu/examples/EP/melhop_pr_172_1613_68.pdf.

6L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17, 2369 (1978),
http://kirkmcd.princeton.edu/examples/neutrinos/wolfenstein_prd_17_2369_78.pdf;
Neutrino oscillations and stellar collapse, Phys. Rev. D 20, 2634 (1979),
http://kirkmcd.princeton.edu/examples/neutrinos/wolfenstein_prd_20_2634_79.pdf.

7For aspects of a more detailed description in which the neutrino is produced in an entangled state such
that energy is conserved during neutrino oscillations, see K.T. McDonald, Do Neutrino Oscillations Conserve
Energy? (July 21, 2013), http://kirkmcd.princeton.edu/examples/neutrino_osc.pdf.
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elements of the matrix H0, which relation can be used to identify the effective mixing
angle θ′ for the full Hamiltonian H once you have found this.

Next, we need to add the effect of neutrino interactions with matter. One way of
thinking about this is that the matter interactions scatter neutrinos out of the beam,
such that the beam is attenuated, which effect seems equivalent to neutrino decay.
However, another view is that the matrix elements of the Hamiltonian (in, say, the
flavor basis) represent the transition amplitude that a neutrino of one flavor becomes a
neutrino of another (or the same) flavor. Since a matter interaction cannot (directly)
change the flavor of a neutrino, we can/should consider the amplitude that after a
matter interaction the neutrino of a given flavor remains one of the same flavor.

These two viewpoints are related by the so-called optical theorem8 that the total scatter-
ing cross section is proportional to the imaginary part of the forward elastic scattering
cross section.

A technical detail that has been omitted in this course is that the propagators in
Feynman diagrams include a factor i, such that the amplitudes that we have discussed
for, say, elastic scattering are actually imaginary, as to be consistent with the optical
theorem.

Then, the matrix H ′ in the Hamiltonian H0 +H ′ that characterizes the matter effects
(in the flavor basis) has H ′

eμ = H ′
μe = 0, and H ′

ee and H ′
μμ as the amplitudes from

the Feynman diagrams for forward elastic scattering of the neutrinos off the electrons,
neutrons, and protons in matter.

Consider low energies, where the term q2 in the propagators is negligible compared to
m2

W,Z , and note that lefthanded protons and neutrons form a weak doublet with weak
isospin I3 = 1/2 and weak hypercharge Y = 1, while righthanded protons have weak
I3 = 0, weak Y = 2 and righthanded neutrons have weak I3 = 0, weak Y = 0.

The forward scattering amplitudes are then proportional to the sum of amplitudes for
scattering by e, p and n (since in forward scattering one can’t tell while particle did
the scattering; the forward scattering amplitude is coherent), where each subamplitude
is the product of the number density N/cm3 of scatterers, the vertex factors, and the
(simplified) propagator. Recall (p. 388, Lecture 22 of the Notes) that introducing the

8A historical survey is given in R.G. Newton, Optical theorem and beyond, Am. J. Phys. 44, 639 (1976),
http://kirkmcd.princeton.edu/examples/EM/newton_ajp_44_639_76.pdf.
For discussion of the optical theorem in classical electromagnetism, see sec. 10.11 of J.D. Jackson, Classical
Electrodynamics, 3rd ed. (Wiley, 1999), http://kirkmcd.princeton.edu/examples/EM/jackson_ce3_99.pdf.
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coupling factors CL and CR permits summing over left- and righthanded states j in
the amplitudes, so the vertex factors for Zjj coupling are proportional to the relevant
sum CL + CR.

Problem: Deduce the form of the (diagonal) transition Hamiltonian H ′, and give
an expression for the effective mixing angle θ′ for νe and νμ that propagate through
uniform-density matter. Note that this angle depends on the sign of Δm2, which
could thereby be measured from observation of oscillations of neutrinos that propagate
through the Earth from a source to a remote detector, both on the surface. Estimate
the characteristic distance scale (oscillation length Lmatter) over which matter effects
become prominent, noting that this length ∝ 1/energy ≈ 1/H ′.

Your result should indicate that the effective mixing angle θ′ goes to zero in very
high-density matter (a kind of “quantum watchdog” effect9), and that there exists a
“resonance” condition for the matter density at which θ′ = ±45◦. For example, with
E = 3 MeV as representative of solar or reactor (anti)neutrinos, and the empirical
results that Δm2

12 ≈ 8 × 10−5 eV2, sin2 2θ12 = 0.86, cos 2θ12 ≈ 0.4, the “resonance”
occurs (I believe) for density similar to that of gold. These effects complicate the
analysis of oscillations of neutrinos produced in stars, as pointed out by Mikheyev and
Smirnov.10

3. The See-Saw Mechanism. An appealing qualitative “explanation” of why the ob-
served neutrinos have very small mass is that each has a partner in some grand-unified
theory, and in principle there could be oscillations between these two states governed
by a mass matrix (Hamiltonian) of the form

⎛
⎜⎝ m1 m12

m12 m2

⎞
⎟⎠ , (3)

where the “ideal” mass m1 of the ordinary neutrino could be 0 while that of the
grand-unified partner is m2, and m12 describes the coupling between the two “ideal”
states. Deduce the “physical” mass eigenvalues mν and m′

ν in the approximation that
m1 � m12 � m2, and that the coupling m12 has some effect on mν . What is the
resulting mν for m2 ≈ 1015 GeV, the grand-unified energy scale, and m12 ≈ mHiggs as
representative of the electroweak energy scale.

The “discovery” of the see-saw mechanism is attributed to various people. The earliest
paper I have found wth some form of it is H. Fritzsch, M. Gell-Mann and P. Minkowski,
Vectorlike Weak Currents and New Elementary Fermions, Phys. Lett. B 59, 256 (1975),
http://kirkmcd.princeton.edu/examples/EP/fritzsch_pl_59b_256_75.pdf. see also, H. Fritzsch
and P. Minkowski, Vectorlike Weak Currents, Massive Neutrinos, and Neutrino Beam

9K. Kraus, Measuring Processes in Quantum Mechanics I. Continuous Observation and the Watchdog
Effect, Found. Phys. 11, 549 (1981), http://kirkmcd.princeton.edu/examples/QM/kraus_fp_11_549_81.pdf.

10S.P. Mikheyev and A.Y. Smirnov, Resonant Amplification of ν Oscillations in Matter and Solar-Neutrino
Spectroscopy, Nuovo Cim. 9C, 17 (1986),
http://kirkmcd.princeton.edu/examples/neutrinos/mikheyev_nc_9c_17_86.pdf.
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Oscillations, Phys. Lett. B 62, 72 (1976),
http://kirkmcd.princeton.edu/examples/EP/fritzsch_pl_62b_72_76.pdf. The term “see-
saw” seems not to have been used in formal papers prior to 1986.
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Solutions

1. Proton and Neutron Decay. A simple estimate for the proton-decay rate, based
on the diagrams given in prob. 1, is that the decay matrix element is proportional to
g1g2/m

2
X , and hence

Γp→all ≈ g2
1g

2
2

m4
X

m5
p ≈

αEMαs

1060
GeV ≈ 10−63

10−24 s
= 10−39 s−1 ≈ 10−32 year−1, (4)

recalling Set 1, Prob. 1, and that a year has ≈ π × 107 s. That is, we estimate the
proton lifetime in a grand-unified theory to be about 1032 years.

A similar simple estimate for neutron decay via the weak interaction n→ pe−νe whose
3-body final state has Q ≈ mn −mp −me ≈ me is that

Γn→pe−νe ≈ G2Q5 ≈ 10−10Q
5

m5
p

mp ≈ 10−10 · 10−17 GeV ≈ 10−27

10−24 s
= 10−3 s−1, (5)

such that the neutron lifetime is be about 103 s, in reasonable agreement with obser-
vation.

2. The M-S-W Effect. The Hamiltonian H0 for neutrinos ν1,2 of definite mass and
definite momentum P in vacuum is, of course, the diagonal matrix

H0,mass =

⎛
⎜⎝ E1 0

0 E2

⎞
⎟⎠ ≈

⎛
⎜⎝ E + Δm2

4E
0

0 E − Δm2

4E

⎞
⎟⎠ , (6)

where

Ei ≈ P +
m2

i

2E
, E ≡ E1 + E2

2
, E1,2 ≈ E ± Δm2

4E
, Δm2 ≡ m2

1 −m2
2. (7)

such that in vacuum, where ψflavor = Uψmass, and

U =

⎛
⎜⎝ cos θ sin θ

− sin θ cos θ

⎞
⎟⎠ , (8)

the time evolution of a neutrino state ψmass in the mass basis is

iψ̇mass = i U−1ψ̇flavor = H0,massψmass = H0,massU
−1ψ̇flavor. (9)

That is, in the flavor basis,

iψ̇flavor = UH0,massU
−1ψ̇flavor = H0,flavorψ̇flavor, (10)
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with

H0,flavor = UH0,massU
−1

≈
⎛
⎜⎝ cos θ sin θ

− sin θ cos θ

⎞
⎟⎠
⎛
⎜⎝ E1 0

0 E2

⎞
⎟⎠
⎛
⎜⎝ cos θ − sin θ

sin θ cos θ

⎞
⎟⎠

=

⎛
⎜⎝ E1 cos2 θ + E2 sin2 θ −(E1 −E2) cos θ sin θ

−(E1 − E2) cos θ sin θ E2 cos2 θ + E1 sin2 θ

⎞
⎟⎠

= E I +
Δm2

4E

⎛
⎜⎝ cos 2θ − sin 2θ

− sin 2θ − cos 2θ

⎞
⎟⎠ . (11)

We note that the mixing angle θ is related to the matrix elements by

tan 2θ =
H0,12 +H0,21

H0,22 −H0,11
. (12)

Turning to forward elastic scattering, νe can scatter off (lefthanded) electrons via W
exchange with amplitude

Aνee→W→νee ∝ ne
g

2
√

2

1

M2
W

g

2
√

2
=
Neg

2

8M2
W

=
NeGF√

2
. (13)

Both νe and νμ can scatter off (lefthand and righthanded) electrons, protons and
neutrons via Z0 exchange. In all cases the Zνν vertex factor is g/4 cos θW , and the
propagator is (approximately) 1/m2

Z . The remaining vertex factors have the form

g(CL + CR)

4 cos θW

, where CL,R = cos2 θWI3,L,R − sin2 θW
YL,R

2
. (14)

That is, the subamplitudes for scattering via Z0 exchange have the form (p. 388,
Lecture 22 of the Notes)

Ng2(CL + CR)

(4 cos θW )2M2
Z

=
NGF (CL + CR)

2
√

2
, (15)

recalling that cos2 θWM
2
Z = M2

W . Lefthanded electrons and muons have weak I3 =
−1/2 and weak Y = −1, while righthanded electrons and muons have weak I3 = 0 and
weak Y = −2, such that

CL,e,μ + CR,e,μ = cos2 θW (−1/2 + 0) − sin2 θW
(−1 − 2)

2
= −1

2
+ 2 sin2 θW . (16)

Lefthanded protons have weak I3 = 1/2 and weak Y = 1, while righthanded protons
have weak I3 = 0 and weak Y = 2, such that

CL,p + CR,p = cos2 θW (1/2 + 0) − sin2 θW
(1 + 2)

2
=

1

2
− 2 sin2 θW . (17)
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Lefthanded neutrons have weak I3 = −1/2 and weak Y = 1, while righthanded neu-
trons have weak I3 = 0 and weak Y = 0, such that

CL,n + CR,n = cos2 θW (−1/2 + 0) − sin2 θW
(1 + −)

2
= −1

2
. (18)

Ordinary matter is electrically neutral, ne = np, so the amplitudes cancel for neutri-
nos scattering off electrons and protons via Z0 exchange, and the only Z0-exchange
amplitude is that due to neutrino-neutron scattering,

Aνe,µn→νe,µn ∝ −NnGF

4
√

2
. (19)

Altogether, the Hamiltonian H = H0 +H ′ has the form (in the flavor basis)

Hflavor =

(
E − NnGF

4
√

2

)
I +

Δm2

4E

⎛
⎜⎝ cos 2θ − sin 2θ

− sin 2θ − cos 2θ

⎞
⎟⎠+

⎛
⎜⎝ NeGF√

2
0

0 0

⎞
⎟⎠ . (20)

The mixing angle θ′ for neutrinos propagating through uniform matter is

tan 2θ′ =
H12 +H21

H22 −H11

=
Δm2 sin 2θ

Δm2 cos 2θ − 2
√

2NeGFE
=

tan 2θ

1 − 2
√

2NeGFE/Δm2 cos 2θ
.(21)

Hence, the effective mixing angle observed in experiments involving neutrino propaga-
tion (over sufficient distance) in matter is larger or smaller than the mixing angle θ as
Δm2 is positive or negative.

Since energy ∝ 1/length, the length scale over which matter effects have a notable
impact on neutrino oscillations is

Lmatter ≈ 1

H ′
11

≈ 1

NeGF
≈ cm3 · GeV2

6 × 1023 · 10−5
· 1

(200 MeV · f)2

=
cm3 · MeV2

6 × 1012
· 1

4 × 10−22 MeV2 · cm2
= 4 × 108 cm2 = 4000 km, (22)

independent of the neutrino energy, assuming that Ne ≈ NAvagadro/cm
3 as holds ap-

proximately for matter in the Earth (and for the Sun on average, while the density at
the center of the Sun is about 100 times larger).

While eq. (21) indicates that the effective mixing angle θ′ is essentially zero for very
large electron density Ne, there is a “resonance” condition for any given neutrino
energy E such that θ′ = ±45◦. For example, with E = 3 MeV as representative of
solar or reactor (anti)neutrinos, and the empirical results that Δm2

12 ≈ 8 × 10−5 eV2,
sin2 2θ12 = 0.86, cos 2θ12 ≈ 0.4, the “resonance” occurs for

Ne =
Δm2 cos 2θ

2
√

2GFE
≈ 8 × 10−5 eV2 · 0.4

3 · 10−5 GeV−2 · 3 MeV
≈ 4 × 10−7 MeV3

(200 MeV-f)3
≈ 5 × 1025 cm−3, (23)

which is similar to the electron density in gold.
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3. The See-Saw Mechanism. The eigenvalues λ of the mass matrix (3) are the roots
of the determinant equation,

∣∣∣∣∣∣∣
m1 − λ m12

m12 m2 − λ

∣∣∣∣∣∣∣ = λ2 − (m2 +m1)λ +m1m2 −m2
12 = 0. (24)

Then, for m1 � m12 � m2,

λ =
m2 +m1 ±

√
(m2 +m1)2 − 4m1m2 + 4m2

12

2

=
m2 +m1 ±

√
(m2 −m1)2 + 4m2

12

2
≈ m2 +m1

2
± m2 −m1

2

(
1 +

2m2
12

(m2 −m1)2

)

≈ m2, m1 − m2
12

m2
. (25)

The mass of the heavier state is essentially unaffected, mν′ ≈ m2, while the mass of
the “ordinary” neutrino, mν ≈ m1 −m2

12/m2, is affected by the coupling m12 only if
m1 ≈ m2

12/m2 ≈ mν.

The “prediction” here is both a bit tentative and qualitative, with
mν ≈ (100 GeV)2/1015 GeV = 10−11 GeV = 0.01 eV,
for m2 = 1015 GeV and m12 = 100 GeV.

This prescription as to how a very light mass might appear in a theory involving two
larger, and disparate mass scales is generically called the “see-saw” mechanism, and
many variants appear in the literature.

This elementary analysis does not reveal why it may be essential that the electrically
neutral particles 1 and 2 be Majorana states.
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