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1. The reactions π±p → μ+μ− are thought to proceed via single-
photon exchange according to the so-called Drell-Yan diagram.
Use the quark model to predict the cross-section ratio

σπ−p→μ+μ−

σπ+p→μ+μ−
.

2. Discuss the motion of an electron of charge −e and rest mass m that is at rest on
average inside a plane electromagnetic wave which propagates in the +z direction of a
rectangular coordinate system. Suppose the wave is linearly polarized along x,

Ewave = x̂E0 cos(kz − ωt), Bwave = ŷE0 cos(kz − ωt), (1)

where ω = kc is the angular frequency of the wave, k = 2π/λ is the wave number, c is
the speed of light in vacuum, and x̂ is a unit vector in the x direction.

Consider only weak fields, for which the dimensionless field-strength parameter η � 1,
where

η =
eE0

mωc
. (2)

First, ignore the longitudinal motion, and deduce the transverse motion, expressing its
amplitude in terms of η and λ. Then, in a “macroscopic” view which averages over the
“microscopic” motion, the time-average total energy of the electron can be regarded as
mc2, where m > m is the effective mass of the electron (considered as a quasiparticle in
the quantum view). That is, the “background” electromagnetic field has “given” mass
to the electron beyond that in zero field.

This is an electromagnetic version of the Higgs (Kibble) mechanism.1

Also, deduce the form of the longitudinal motion for η � 1.

Not for credit: Where does the energy and (transverse) momentum of the electron
come from?

1For an insightful discussion by Kibble that elaborates on the present problem, see [1].
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3. The Weizsäcker-Williams Approximation

Following an earlier discussion by Fermi [2], Weizsäcker [3] and Williams [4] noted that
the electromagnetic fields of an electron in uniform relativistic motion are predomi-
nantly transverse, with E ≈ B (in Gaussian units). This is very much like the fields
of a plane wave, so one is led to regard a fast electron as carrying with it a cloud of
virtual photons that it can shed (radiate) if perturbed.

The key features of the frequency spectrum of the fields can be estimated as follows.
To an observer at rest at distance b from the electron’s trajectory, the peak electric
field is E = γe/b2, and the field remains above half this strength for time b/γc, so the
frequency spectrum of this pulse extends up to ωmax ≈ γc/b. The total energy of the
pulse (relevant to this observer) is U ≈ E2Vol ≈ γ2e2/b4 · b2 · b/γ ≈ γe2/b.

If the electron radiates all of this energy, the energy spectrum would be

dU(ω)

dω
≈ U

ωmax
≈ e2

c
. (3)

This result does not depend on the choice of impact parameter b, and is indeed of
general validity (to within a factor of ln γ). The number of photons nω of frequency ω
is thus

dnω =
dU(ω)

h̄ω
≈ e2

h̄c

dω

ω
= α

dω

ω
, (4)

where α = e2/h̄c ≈ 1/137 is the fine structure constant.

The quick approximation (3)-(4) is not accurate at high frequencies. In general, addi-
tional physical arguments are needed to identify the maximum frequency of its validity,
called the characteristic or critical frequency ωC , or equivalently, the minimum relevant
impact parameter bmin. A more detailed evaluation of the high-frequency tail of the
virtual photon spectrum shows it to be [2, 3, 4, 5]

dnω ≈ α
dω

ω
e−2ωbmin/γc (high frequency). (5)

From this, we see the general relation between the critical frequency and the minimum
impact parameter is

ωC ≈ γ
c

bmin
, bmin ≈ γλC . (6)

The characteristic angular spread θC of the radiation pattern near the critical frequency
can be estimated from eq. (6) by noting that the radiation is much like that of a beam
of light with waist bmin. Then, from the laws of diffraction we conclude that

θC ≈ λC

bmin
≈ 1

γ
. (7)

This behavior is also expected in that a ray of light emitted in the electron’s rest frame
at 90◦ appears at angle 1/γ to the laboratory direction of the electron.
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The Formation Length

To complete an application of the Weizsäcker-Williams method, we must also know
over what interval the virtual photon cloud is shaken off the electron to become the
radiation detected in the laboratory. Intense (and hence, physically interesting) ra-
diation processes are those in which the entire cloud of virtual photons is emitted as
rapidly as possible. This is usefully described by the so-called formation time t0 and the
corresponding formation length L0 = vt0 where v ≈ c is the velocity of the relativistic
electron.

The formation length (time) is the distance (time) the electron travels while a radiated
wave advances one wavelength λ ahead of the projection of the electron’s motion onto
the direction of observation. The wave takes on the character of radiation that is no
longer tied to its source only after the formation time has elapsed. That is,

λ = ct0 − vt0 cos θ ≈ L0(1 − β cos θ) ≈ L0

(
1

2γ2
+

θ2

2

)
, (8)

for radiation observed at angle θ to the electron’s trajectory. Thus, the formation
length is given by

L0 ≈ 2λ

θ2 + 1/γ2
(9)

If the frequency of the radiation is near the critical frequency (6), then the radiated
intensity is significant only for θ <∼ θC ≈ 1/γ, and the formation length is

L0 ≈ γ2λ (λ ≈ λC). (10)

A good discussion of the formation length in both classical and quantum contexts has
been given in ref. [6].

Summary of the Method

A relativistic electron carries with it a virtual photon spectrum of α photons per unit
frequency interval. When radiation occurs, for whatever reason, the observed frequency
spectrum will closely follow this virtual spectrum. In cases where the driving force for
the radiation extends over many formation lengths, the spectrum of radiated photons
per unit path length for intense processes is given by expressions (4)-(5), which describe
the radiation emitted over one formation length, divided by the formation length (9):

dnω

dl
≈ α

L0(ω)

dω

ω
×
⎧⎪⎨
⎪⎩

1 (ω < ωC),

e−ω/ωC (ω ≥ ωC).
(11)

Synchrotron radiation, undulator radiation, transition radiation, and Čerenkov radia-
tion are examples of processes which can be described within the context of classical
electromagnetism, but for which the Weizsäcker-Williams approximation is also suit-
able. Čerenkov radiation and transition radiation are often thought of as rather weak
processes, but the Weizsäcker-Williams viewpoint indicates that they are actually as
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intense as is possible for radiation by a single charge, in the sense that the entire virtual
photon cloud is liberated over a formation length.

In this problem, we emphasize a simplified version of the Weizsäcker-Williams method
with the goal of illustrating the main qualitative features of synchrotron radiation.2

The Problem: Synchrotron Radiation

Synchrotron radiation arises when a charge, usually an electron, is deflected by a
magnetic field.3 For a large enough region of uniform magnetic field, the electron’s
trajectory would be a complete circle. However, synchrotron radiation as considered
here occurs whenever the magnetic-field region is longer than a formation length.4

Consider an electron of Lorentz factor γ � 1 that moves in a circle of radius R.
First, deduce the characteristic/critical frequency ωC of the radiation by estimating
the time width of a pulse of radiation detected by a fixed observer as the “searchlight”
beam of synchrotron radiation sweeps past him/her. Then, reconsider the meaning
of the formation length L0 noting that the electron moves on a circle but photons
move on a chord to find a cubic relation between the wavelength λ and the “formation
angle” θ0 = L0/R. Consider separately the limiting cases λ � λC and λ � λC , and
estimate the frequency spectra dnω/dl for these cases, as well as the energy spectra
dU(ω)/dl, where l is path length along the electron’s trajectory. Compare the integral
over frequency of your energy spectrum with the Larmor formula (using the Hint at
the end of prob. 5).

4. A betatron5 is a circular device of radius R designed to accelerate electrons (charge e,
mass m) via a changing magnetic flux Φ̇ = πR2Ḃave through the circle. Side views of
early versions are shown below.

Deduce the relation between the magnetic field B at radius R and the magnetic field
Bave averaged over the area of the circle needed for a betatron to function. Also deduce

2A more detailed analysis can reproduce the complete forms of the classical radiation, as has been
demonstrated for synchrotron radiation in [8].

3Synchrotron radiation is sometimes called magnetic Bremsstrahlung. See, for example, sec. 74 of [7].
4The radiation observed when the magnetic field extends for less than a formation length has been

discussed in [8, 9, 10].
5The name betatron was given by Kerst [14] to the circular induction accelerator after its first successful

demonstration [15, 16], which followed a long conceptual history [17, 18, 19, 20, 21, 22, 23].
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the maximum energy E to which an electron could be accelerated by a betatron in terms
of B, Ḃave ≡ B/τ , R and the QED critical field strength Bcrit of prob. 4, set. 1.

Hints: The electrons in this problem are relativistic, so it is useful to introduce the
factor γ = E/mc2 where c is the speed of light. Recall that Newton’s second law has the
same form for nonrelativistic and relativistic electrons except that in the latter case the
effective mass is γm. Recall also that for circular motion the rest frame acceleration is
γ2 times that in the lab frame, and that the power radiated by an accelerated charge is
a relativistic invariant (in that both energy and time are time-components of 4-vectors;
for elaborations, see, http://kirkmcd.princeton.edu/examples/moving_far.pdf).

For a problem on the stability of orbits in a betatron, see
http://kirkmcd.princeton.edu/examples/betatron_osc.pdf.
This example is an introduction to the issue of stability of beams in particle accelera-
tors.

5. A magnetic monopole of magnetic charge g, mass m and velocity β = v/c passes
through a material with electron density N/cm3 and unit relative permeability. Es-
timate the energy loss, dE/dx, of the monopole assuming β ≈ 1. Hint: What is the
Lorentz force on a magnetic monopole?

Compare your result to that for particles of electrical charge e supposing that the
monopole satisfies Dirac’s quantum condition eg = h̄c/2, where −e is the charge on an
electron [28].6

For magnetic monopoles with β ≈ 10−3, as might be consistent with extragalactic
origin, your result for dE/dx should be modified. Consider energy loss in a metal plate
of resistivity ρ due to Joule heating by the Eddy currents induced by the changing
magnetic flux as the onopole passes through with normal incidence. You may assume
that β remains constant. An example of an Eddy-current calculation is at
http://kirkmcd.princeton.edu/examples/pennies.pdf

Note that the macroscopic concept of Joule heating does not apply for arbitrarily small
length scales.

There exists an unresolved puzzle that if both electric charges and magnetic charges
(monopoles) exist then energy may not be conserved,
http://kirkmcd.princeton.edu/examples/comay.pdf.

6See, for example, sec. 6.12 of [5].
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Solutions

1. The π− is a ūd diquark state, while the π+ is a ud̄ state.

The Drell-Yan amplitude is proportional to Qq̄ times the number of quarks in the
proton (uud) that the q̄ could annihilate with. Hence the amplitude for π−p → μ+μ−

is proportional to (2/3) ·2, while that for π+p → μ+μ− is proportional to (1/3) ·1. The
cross section is proportional to the square of the amplitude, so we predict that

σπ−p→μ+μ−

σπ+p→μ+μ−
= 16.

2. Transverse Motion of the Electron in a Weak Wave

A free electron of mass m oscillates in this field such that its average position is at the
origin. This simple statement hides the subtlety that our frame of reference is not the
lab frame of an electron that is initially at rest, but which is overtaken by a wave. If
the velocity of the oscillating electron is small, we can ignore the v/c×B force and take
the motion to be entirely in the plane z = 0. Then, (also ignoring radiation damping)
the equation of motion of the electron is

mẍ = eEwave(0, t) = ex̂E0 cos ωt. (12)

Using eq. (1) we find the position of the electron to be

x = − e

mω2
x̂E0 cosωt. (13)

The amplitude of this oscillation is, recalling the definition (2),

x0 =
eE0

mω2
=

eE0

mωc

c

ω
=

η

2π
λ � λ. (14)

The velocity of the electron is

v =
eE0

mω
x̂ sinωt = ηc x̂ sinωt, (15)

and its kinetic energy is

T =
mẋ2

2
=

e2E2
0

2m2ω2
m sin2 ωt =

η2

2
mc2 sin2 ωt. (16)

The time average of the total energy of the electron in the wave is

Ē = mc2

(
1 +

η2

4

)
≈ mc2

√
1 + η2/2 ≡ m̄c2, (17)

where m̄ = m
√

1 + η2/2 in a view that averages over the “microscopic” motion of the
electron within the wave. That is, the “background” electromagnetic field has “given
mass” to the electron beyond the mass m in zero field.
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Longitudinal Motion of the Electron

In the weak-field approximation, we can now use eq. (15) for the velocity to evaluate
the second term of the Lorentz force:

e
v

c
× B =

e2E2
x

2mωc
ẑ sin 2ωt = mz̈. (18)

This term vanishes for circular polarization, in which case the motion is wholly in
the transverse plane. However, for linear polarization the v/c × B force leads to
oscillations along the z axis at frequency 2ω, as first analyzed in general by Landau.7

For polarization along the x̂ axis, the x-z motion has the form of a “figure 8”, which
for weak fields (η � 1) is described by

x = − η

2π
λ cos ωt, z = − e2E2

x

8m2ω3c
sin 2ωt = − η2

16π
λ sin 2ωt. (19)

If the electron had been at rest before the arrival of the plane wave, then inside the
wave it would move with an average drift velocity given by

vz =
η2/2

1 + η2/2
c, (20)

along the direction of the wave vector, as first deduced by McMillan.8 Here, we work
in the frame in which the electron has no average velocity along the z axis. Therefore,
prior to its encounter with the plane wave the electron had been moving in the negative
z direction with speed given by eq. (20).

The energy and momentum of the electron are compensated by changes in the elec-
tromagnetic energy and momentum associated with the interaction of the plane wave
fields and the fields of the oscillating charge. For further discussion, see
http://kirkmcd.princeton.edu/examples/transmom2.pdf

http://kirkmcd.princeton.edu/accel/acceleration2.pdf

3. Synchrotron Radiation

The Critical Frequency

An important fact about synchrotron radiation is that the frequency spectrum peaks
near the critical frequency, ωC , which depends on the radius R of curvature of the
electron’s trajectory, and on the Lorentz factor γ via

ωC ≈ γ3 c

R
. (21)

7L. Landau and E.M. Lifshitz, The Classical Theory of Fields, 4th ed. (Pergamon Press, Oxford, 1975),
prob. 2, § 47 and prob. 2, § 49; p. 112 of the 1941 Russian edition,
http://kirkmcd.princeton.edu/examples/EM/landau_teoria_polya_41.pdf

8E.M. McMillan, The Origin of Cosmic Rays, Phys. Rev. 79, 498-501 (1950),
http://kirkmcd.princeton.edu/examples/accel/mcmillan_pr_79_498_50.pdf
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Since ω0 = c/R is the angular velocity for particles with velocity near the speed of light,
synchrotron radiation occurs at very high harmonics of this fundamental frequency.
The wavelength at the critical frequency is then

λC ≈ R

γ3
. (22)

For completeness, we sketch a well-known argument leading to eq. (21). The charac-
teristic frequency ωC is the reciprocal of the pulselength of the radiation from a single
electron according to an observer at rest in the lab. In the case of motion in a circle,
the electron emits a cone of radiation of angular width θ = 1/γ according to eq. (7)
that rotates with angular velocity ω = c/R. Light within this cone reaches the fixed
observer during time interval δt′ = θ/ω ≈ R/γc. However, this time interval measures
the retarded time t′ at the source, not the time t at the observer. Both t and t′ are
measured in the lab frame, and are related by t′ = t − r/c where r is the distance
between the source and observer. When the source is heading towards the observer,
we have δr = −vδt′, so δt = δt′(1 − v/c) ≈ δt′/2γ2 ≈ R/γ3c, from which eq. (21)
follows.

The Formation Length

The formation length L0 introduced in eq. (9) applies for radiation processes during
which the electron moves along a straight line, such as Čerenkov radiation and transi-
tion radiation. But, synchrotron radiation occurs when the electron moves in the arc of
a circle of radius R. During the formation time, the electron moves by formation angle
θ0 = L0/R with respect to the center of the circle. We now reconsider the derivation
of the formation time, noting that while the electron moves on the arc Rθ0 = vt0 of
the circle, the radiation moves on the chord 2R sin(θ0/2) ≈ Rθ0 − Rθ3

0/24. Hence,

λ = ct0 − chord ≈ cRθ0

v
− Rθ0 +

Rθ3
0

24

≈ Rθ0(1 − β) +
Rθ3

0

24
≈ Rθ0

2γ2
+

Rθ3
0

24
, (23)

for radiation observed at small angles to the chord.

For wavelengths longer than λC , the formation angle grows large compared to the
characteristic angle θC ≈ 1/γ, and the first term of eq. (23) can be neglected compared
to the second. In this case,

θ0 ≈
(

λ

R

)1/3

≈ 1

γ

(
λ

λC

)1/3

(λ � λC), (24)

and

L0 ≈ R2/3λ1/3 ≈ γ2λC

(
λ

λC

)1/3

(λ � λC), (25)

using eq. (22).
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The formation angle θ0(λ) can also be interpreted as the characteristic angular width
of the radiation pattern at this wavelength. A result not deducible from the simplified
arguments given above is that for λ � λC , the angular distribution of synchrotron
radiation falls off exponentially:dU(λ)/dΩ ∝ e−θ2/2θ2

0 . See, for example, sec. 14.6 of [5].

For wavelengths much less than λC, the formation length is short, the formation angle
is small, and the last term of eq. (23) can be neglected. Then, we find that

θ0 ≈ λ

γλC
, L0 ≈ γ2λ (λ � λC), (26)

the same as for motion along a straight line, eq. (10). In this limit, our approxima-
tion neglects the curvature of the particle’s trajectory, which is an essential aspect of
synchrotron radiation, and we cannot expect our analysis to be very accurate. But for
λ � λC , the rate of radiation is negligible.

Of greater physical interest is the region λ ≈ λC where the frequency spectrum begins
to be exponentially damped but the rate is still reasonably high. The cubic equation
(23) does not yield a simple analytic result in the region. So, we interpolate between
the limiting results for θ0 at large and small wavelengths, eqs. (24) and (26), and
estimate that

θ0 ≈ 1

γ

√
λ

λC

(λ ≈ λC), (27)

which agrees with a more detailed analysis [5]. The corresponding formation length
Rθ0 is then

L0 ≈ γ2
√

λλC (λ ≈ λC). (28)

Digression: Transverse Coherence Length

The longitudinal origin of radiation is uncertain to within one formation length L0.
Over this length, the trajectory of the electron is curved, so there is an uncertainty in
the transverse origin of the radiation as well. A measure of the transverse uncertainty
is the sagitta L2

0/8R, which we label w0 anticipating a useful analogy with the common
notation for the waist of a focused laser beam. For λ � λC, we have from eq. (25),

w0 ≈ L2
0

R
≈ R1/3λ2/3 ≈ γλC

(
λ

λC

)2/3

(λ � λC). (29)

The sagitta (29) is larger than the minimum transverse length (6), so we expect that
the full virtual photon cloud is shaken off over one formation length.

For λ � λC, the characteristic angular spread (24) of the radiation obeys

θ0 ≈ λ

w0
, (30)

consistent with the laws of diffraction. Hence, the distance w0 of eq. (29) can also be
called the transverse coherence length [11] of the source of synchrotron radiation.
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The analogy with laser notation is also consistent with identifying the formation length
L0 with the Rayleigh range z0 = w0/θ0, since we see that

L0 ≈ λ

θ2
0

≈ w0

θ0
. (31)

A subtle difference between the radiation of a relativistic charge and a focused laser
beam is that the laser beam has a Gouy phase shift [12, 13] between its waist and the
far field, while radiation from a charge does not.

For λ ≈ λC, the sagitta is L2
0/R ≈ γ2λ, using eq. (28). When λ < λC, the characteristic

angle θ0 given by eq.(27) is less than λ/sagitta, and the sagitta is no longer a good
measure of the transverse coherence length, which is better defined as λ/θ0 ≈ γ

√
λλC.

Frequency Spectrum

The number of photons radiated per unit path length l during synchrotron radiation
is obtained from the Weizsäcker-Williams spectrum (11) using eqs. (25) and (28) for
the formation length:

dnω

dl
≈
⎧⎪⎨
⎪⎩

αω
2/3
C dω/γ2cω2/3 (λ � λC),

αω
1/2
C e−ω/ωCdω/γ2cω1/2 (λ <∼ λC).

(32)

We multiply by h̄ω to recover the energy spectrum:

dU(ω)

dl
≈
⎧⎪⎨
⎪⎩

e2ω
2/3
C ω1/3dω/γ2c2 (λ � λC),

e2ω
1/2
C ω1/2e−ω/ωCdω/γ2c2 (λ <∼ λC).

(33)

Thus, the Weizsäcker-Williams method shows that the energy spectrum varies as ω1/3

at low frequencies, and as
√

ωe−ω/ωC at frequencies above the critical frequency ωC =
γ3c/R.

The total radiated power is estimated from eq. (33) using ω ≈ dω ≈ ωC ≈ γ3c/R, and
multiplying by v ≈ c to convert dl to dt:

dU

dt
≈ e2γ4c

R2
. (34)

This well-known result is also obtained from the Larmor formula, dU/dt = 2e2a�2/3c2,
where the rest-frame acceleration is given by a� = γ2a ≈ γ2c2/R in terms of lab
quantities.

For discussion of undulator radiation, transition radiation, and Čerenkov radiation via
the Weizsäcker-Williams method, see http://kirkmcd.princeton.edu/examples/weizsacker.pdf

The Weizsäcker-Williams method can also be used to characterize the radiation from
a single oscillating electric charge.9 The radiation associated with a current pulse that

9K.T. McDonald and M.S. Zolotorev, Hertzian Dipole Radiation via the Weizsäcker-Williams Method
(Aug. 4, 2003), http://kirkmcd.princeton.edu/examples/hertzian.pdf
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propagates along a conductor and reflects off its end is much like that of an electric
charge that has the same velocity (≈ c) as the pulse (even though the velocities of the
charges in the conductor are much less than c.10

The author has used the Weizsäcker-Williams approximation to estimate the cross
section for the nonlinear QED trident process e + nω0 → e′ + e+e−, where a high-
energy electron interacts with an intense laser beam of angular frequency ω0,
http://kirkmcd.princeton.edu/examples/trident.pdf

4. This problem is due to Iwanenko and Pomeranchuk.11

The electron is held in its circular orbit by the Lorentz force due to the field B.
Newton’s law, F = ma, for this circular motion can be written (in Gaussian units)

F = γma =
γmv2

R
= e

v

c
B. (35)

For a relativistic electron, v ≈ c, so we have

γ ≈ eRB

mc2
. (36)

The electron is being accelerated by the electric field that is induced by the changing
magnetic flux. Applying the integral form of Faraday’s law to the circle of radius R,
we have (ignoring the sign)

2πREφ =
Φ̇

c
=

πR2Ḃave

c
, (37)

and hence,

Eφ =
RḂave

2c
, (38)

The rate of change of the electron’s energy E due to Eφ is

dE
dt

= F · v ≈ ecEφ =
eRḂave

2
, (39)

Since E = γmc2, we can write

γ̇mc2 =
eRḂave

2
, (40)

which integrates to

γ =
eRBave

2mc2
. (41)

10T.W. Hertel and G.S. Smith, Pulse Radiation from an Insulated Antenna: An Analog of Cherenkov
Radiation from a Moving Charged Particle, IEEE Trans. Ant. Prop. 48, 165 (2000),
http://kirkmcd.princeton.edu/examples/EM/hertel_ieeetap_48_165_00.pdf

11D. Iwanenko and I. Pomeranchuk, On the Maximal Energy Attainable in a Betatron, Phys. Rev. 65,
343 (1944), http://kirkmcd.princeton.edu/examples/accel/iwanenko_pr_65_343_44.pdf
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Comparing with eq. (36), we find the required condition on the magnetic field:

B =
Bave

2
. (42)

As the electron accelerates it radiates energy at rate given by the Larmor formula in
the rest frame of the electron,

dE�

dt�
= −2e2p̈�2

3c3
= −2e2a�2

3c3
(43)

Because E and t are both the time components of 4-vectors their transforms from
the rest frame to the lab frame have the same form, and the rate dE/dt is invariant.
However, acceleration at right angles to velocity transforms according to a� = γ2a.
Hence, the rate of radiation in the lab frame is

dE
dt

= −2e2γ4a2

3c3
= −2e4γ2B2

3m2c3
, (44)

using eq. (35) for the acceleration a.

The maximal energy of the electrons in the betatron obtains when the energy loss (44)
cancels the energy gain (39), i.e., when

eRḂave

2
=

2e4γ2
maxB

2

3m2c3
, (45)

and

γmax =

√
3m2c3RḂave

4e3B2
=

√
3R

4αc

Ḃave

B

Bcrit

B
≈
√

3R

4αcτ

Bcrit

B
, (46)

where α = e2/h̄c = 1/137 is the fine structure constant, Bcrit = m2c3/eh̄ = 4.4×1013 G
is the so-called QED critical field strength, and τ is the characteristic cycle time of the
betatron such that Ḃave = B/τ . For example, with R = 1 m, τ = 0.03 sec (30 Hz),
and B = 104 G, we find that γmax ≈ 200, or Emax ≈ 100 MeV.

We have ignored the radiation due to the longitudinal acceleration of the electron,
since in the limiting case this acceleration ceases.

For discussion of the stability of the motion of electrons in a betatron, see
http://kirkmcd.princeton.edu/examples/betatron_osc.pdf.

5. The Lorentz force on a magnetic monopole of magnetic charge q is12

F = g(B − β × E), (47)

so the maximum force due to an electron (at rest) of charge −e has magnitude

Fmax =
gβe

b2
, (48)

12Discussion of the force law in case there were macroscopic densities of magnetic monopoles is given in
http://kirkmcd.princeton.edu/examples/poynting.pdf.
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where b is the impact parameter of the monopole with the electron¿ The discussion
now follows closely the case for an electrically charged particle.

The monopole experiences the peak force (48) for time Δt ≈ 2b/v, and so receives an
momentum impulse

Δp ≈ FmaxΔt ≈ 2eg

bc
, (49)

from each electron independent of β.13 Each electron in the atom experiences an equal
and opposite impulse, which corresponds to a gain of kinetic energy of14

ΔE =
Δp2

2me
≈ 2e2g2

meb2c2
. (50)

The number of electrons per cm2 in thickness dx is N0Z dx/A, where N0 is Avagadro’s
number and A is the atomic number of the atom, such that the energy loss is

dE

dx
=

N0Z

Z

∫ bmax

bmin

2πb db
2e2g2

meb2c2
= 4πN0

Z

A

e2g2

mec2
ln

bmax

bmin

≈ 4πN0
Z

A

e2g2

mec2
ln

2meγ
2v2

I
,(51)

where the estimates for bmax and bmin are from p. 42, Lecture 4 of the Notes, γ =

1/
√

1 − β2, and I is the ionization potential of the atom.

Comparing with the result for a passing particle of electrical charge e, we have for
β ≈ 1, and for the Dirac condition that g = h̄c/2e,

dEmonopole/dx

dEcharged/dx
=

g2

e2
=

(
h̄c

2e2

)2

=
1

4α2
≈ 1372

4
� 1. (52)

That is, the energy loss of relativistic magnetic monopole is very large compared to
that of relativistic charged particles, so such monopoles should be easy to detect.

β ≈ 10−3.

For lower-speed monopoles we consider the effect of energy loss to Joule heating by
Eddy currents induced in a metal plate as the monopole passes through it (with con-
stant speed). The monopole moves along the z-axis and the plate is in the plane z = 0
(but with thickness T ).

13This impulse is perpendicular to the plane that contains the electric charge and line of motion of the
monopole. Hence, the electron takes on angular momentum L ≈ bΔp = 2eg/c. This is consistent with the
fact that the system of charge plus monopole contains nonzero field angular momentum of magnitude eg/c,
directed along their line of centers (as first noted by J.J. Thomson, On Momentum in the Electric Field,
Phil. Mag. 8, 331 (1904), http://kirkmcd.princeton.edu/examples/EM/thomson_pm_8_331_04.pdf). As
the monopole passes the atom, the line of centers reverse direction, so the field angular momentum changes
by 2eg/c, such that total angular momentum is conserved. See also, J.S. Trefil, A derivation of the classical
monopole energy loss from angular momentum conservation, Am. J. Phys. 51, 1113 (1983),
http://kirkmcd.princeton.edu/examples/EP/trefil_ajp_51_1113_83.pdf.

14The atomic nucleus gains negligible energy, as discussed on p. 41, Lecture 4 of the Notes.
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The fields of a monopole with uniform velocity v are the duals of those of a moving
electron,15

B =
gR̂

γ2R2(1 − β2 sin2 θ)3/2
, E = −β × B, (53)

where R is the (instantaneous) vector from the monopole to the observer, and θ is the
angle between v and R. When the monopole is at (x, y, z) = (0, 0, vt) above the plate,
and moving with velocity v = v ẑ, its (azimuthal) electric field at a point at radius r
in the plane z = 0 is

Eφ =
βgr

γ2(r2 + z2)3/2[1 − β2r2/(r2 + z2)]3/2
=

βgr

γ2(r2 + z2 − β2r2)3/2

≈
⎧⎪⎨
⎪⎩

0 γ � 1,

βgr/(r2 + z2)3/2 β � 1.
(54)

We see that the Eddy-current effects will be negligible for relativistic monopoles.

Another derivation starts from the z-component of the magnetic field,

Bz =
gz

γ2(r2 + z2)3/2[1 − β2r2/(r2 + z2)]3/2
=

gz

γ2(r2 + z2 − β2r2)3/2

≈
⎧⎪⎨
⎪⎩

0 γ � 1,

gz/(r2 + z2)3/2 β � 1.
(55)

Continuing with the nonrelativistic case, the magnetic flux Φ through a ring of radius
r in the plate is

Φ =
∫ r

0
2πr dr Bz =

∫ r

0
2πr dr

gz

(r2 + z2)3/2
= 2πg

(
1 − z√

r2 + z2

)
. (56)

The changing magnetic flux results in an azimuthal electric field around the ring ac-
cording to Faraday’s law,

Eφ = − 1

2πrc

dΦ

dt
=

gβ

r

(
1

(r2 + z2)1/2
− z2

(r2 + z2)3/2

)
=

βgr

(r2 + z2)3/2
, (57)

as found above.

This electric field leads to current density Jφ = σEφ = Eφ/ρ, where ρ is the resistivity of
the plate, and the power density dissipated by this current J ·E = E2

φ/ρ. However, the
electric field diverges at r = 0 as the monopole passes through the plate, so the Joule
heating would be infinite if it exists on very small length scales. We recall that in the

15See, for example, p. 223a of http://kirkmcd.princeton.edu/examples/ph501/ph501lecture18.pdf.
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Drude model, Joule heating is associated with inelastic collisions between conduction
electrons and the “lattice,” such that,16

σ =
1

ρ
=

ne2τ

2me
, (58)

where n is the number density of conduction electrons and τ is the characteristic
collision time. If the conduction electrons have microscopic average velocity denoted
by vFermi, then Joule heating is not meaningful for distances less than

rmin ≈ vFermiτ =
2mevFermi

ne2ρ
. (59)

The total energy dissipated in the resistive plate as the monopole moves according to
z = vt is

U =
∫ ∞

−∞
dt
∫ E2

φ

ρ
dVol =

∫ ∞

−∞
v dt

v

∫ ∞

rmin

2πrT dr
g2β2

ρ

r2

(r2 + v2t2)3

=
2πg2βT

cρ

∫ ∞

rmin

r3 dr
3π

8r5
=

3π2g2βT

4cρ

1

rmin

=
3π2n(eg)2βT

8mec2βFermi

. (60)

For monopoles that obey the Dirac condition, eg = h̄c/2, we have that energy loss is

dE

dx
=

U

T
=

3π2n(h̄c)2

32mec2

β

βFermi

=
3π2nr2

emec
2

32

β

βFermi

, (61)

where here dE/dx has units of energy/cm, and re = e2/mec
2 is the classical electron

radius.

For further discussion, see S.P. Ahlen and K. Kinoshita, Calculation of the stopping
power of very-low-velocity magnetic monopoles, Phys. Rev. D 26, 2347 (1982),
http://kirkmcd.princeton.edu/examples/detectors/ahlen_prd_26_2347_82.pdf.

16See, for example, p. 76 of http://kirkmcd.princeton.edu/examples/ph501/ph501lecture7.pdf.
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