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1. Deduce the nonrelativistic form factors,

F (q2) =
∫

ρ(r) eiq·r d3r, (1)

for the spherically symmetric charge densities with characteristic radius R,

ρa(r) =

⎧⎪⎨
⎪⎩

3Q/4πR3 (r < R),

0 (r > R),
(2)

ρb(r) =
Q

4πR2
δ(r − R), (3)

and

ρc(r) =
Q

2π
√

2πR3
e−r2/2R2

, (4)

all of which have total charge Q. Expand these form factors to order (qR)2.

A neutral particle might have charge distributions ρ+ and ρ− with the above forms,
but with different values of the characteristic radii R+ and R−.

The data are often fit to the form,1

Fn(q
2) =

Q

[1 + (qR)2]n
, (5)

with n = 2. What are the corresponding forms of the charge distributions ρn(r) for
n = 1, 2 and 3?

2. Arbitrary 2 × 2 Unitary Matrices and Pauli Spin Matrices

This problem concerns operators that act on 2-component spinors. Such operators can
be expressed as 2 × 2 matrices. Operators that preserve the normalization of a state
are called unitary.

Two of the simplest unitary operators on 2-component spinors are the identify matrix
I2 = I, and the spin-flip operator X (called the NOT operator in quantum computation),

I =

⎛
⎝ 1 0

0 1

⎞
⎠ X =

⎛
⎝ 0 1

1 0

⎞
⎠ . (6)

1For a review of nucleon form factors, see C.F. Perdrisat et al., Nucleon electromagnetic form factors,
Prog. Part. Nucl. Phys. 59, 694 (2007), http://kirkmcd.princeton.edu/examples/EP/perdrisat_ppnp_59_694_07.pdf.
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An arbitrary 2 × 2 unitary matrix U can be written as

U =

⎛
⎝ a b

c d

⎞
⎠ = a

⎛
⎝ 1 0

0 0

⎞
⎠+ b

⎛
⎝ 0 1

0 0

⎞
⎠+ c

⎛
⎝ 0 0

1 0

⎞
⎠+ d

⎛
⎝ 0 0

0 1

⎞
⎠ , (7)

where a, b, c and d are complex numbers such that UU† = I. The decomposition (7)
is somewhat trivial. Express the general unitary matrix U as the sum of four unitary
matrices, times complex coefficients, of which two are the classical unitary matrices I
and X given above. Denote the “partner” of I by Z and the “partner” of X by Y such
that

XY = iZ, YZ = iX, ZX = iY. (8)

You have, of course, rediscovered the so-called Pauli spin matrices,2,3

σx (= σ1) = X =

⎛
⎝ 0 1

1 0

⎞
⎠ , σy (= σ2) = Y =

⎛
⎝ 0 −i

i 0

⎞
⎠ , σz (= σ3) = Z =

⎛
⎝ 1 0

0 −1

⎞
⎠ .

(9)
As usual, we define the Pauli “vector” σ as the triplet of matrices

σ = (σx, σy, σz). (10)

Show that for ordinary 3-vectors a and b,

(a · σ)(b · σ) = (a · b) I + i σ · a× b. (11)

With this, show that a general 2 × 2 unitary matrix can be written as

U = eiδ

(
cos

θ

2
I + i sin

θ

2
û · σ

)
= eiδei θ

2
û·σ, (12)

where δ and θ are real numbers and û is a real unit vector.4 By the exponential eO of
an operator O we mean the Taylor series

∑
n On/n! where O0 = I.

What is the determinant of the matrix representation of U? The subset of 2×2 unitary
matrices with unit determinant is called the special unitary group SU(2). What is the
version of eq. (12) that describes 2 × 2 special unitary operators?

You may wish to convince yourself of a factoid related to eq. (12), namely that if A is
a square matrix of any order such that A2 = I, then eiθA = cos θ I + i sin θ A, provided
that θ is a real number. It follows that A can also be written in the exponential form

A = eiπ/2e−i π
2
A = e−iπ/2ei π

2
A. (13)

2W. Pauli, Zur Quantenmechanik des magnetischen Elektrons, Z. Phys. 43, 601 (1927),
http://kirkmcd.princeton.edu/examples/QM/pauli_zp_43_601_27.pdf.

3The Pauli spin matrices (and the unit matrix I) are not only unitary, they are also hermitian, meaning
that they are identical to their adjoints: σ†

j = σj.
4Note that if make the replacements θ → −θ and û → −û we obtain another valid representation of U,

since the physical operation of a rotation by angle θ about an axis û is identical to a rotation by −θ about
the axis −û.
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There are several unitary operators of interest, such as the Pauli matrices, that are
their own inverse. If we call such an operator V, then its exponential representation of
V can be written in multiple ways,

V = eiδei θ
2
v̂·σ = V−1 = e−iδe−i θ

2
v̂·σ. (14)

3. Give the explicit 4 × 4 matrix form of the four Dirac matrices γμ,
5 as well as that for

γ5 = iγ0γ1γ2γ3, in their representation via the 2×2 Pauli matrices I and σi, i = 1, 2, 3,

γ0 =

⎛
⎜⎝ I 0

0 −I

⎞
⎟⎠ , γi =

⎛
⎜⎝ 0 σi

−σi 0

⎞
⎟⎠ , (15)

It should be then evident that tr(γμ) = 0 = tr(γ5), where tr is the trace operator.
Then, it immediately follows that tr(/a) = 0, where /a ≡ aμγμ and aμ is an arbitrary
4-vector.

Show that
γμγν + γνγμ = 2ημνI4, (16)

where ημν has diagonal elements 1,−1,−1,−1 and I4 is the 4 × 4 unit matrix,6 and
hence that

tr(γμγν) = 4ημν , and tr(/ab/) = 4aμb
μ ≡ 4ab. (17)

Show also that
tr(γμγνγργσ) = 4(ημνηρσ − ημρηνσ + ημσηνρ), (18)

and hence that
tr(/ab/c//d) = 4[(ab)(cd) − (ac)(bd) + (ad)(bc)]. (19)

A factoid which you need not demonstrate is that the Dirac equivalent of eq. (11) is

/ab/ = abI4 +
aμbν

2
(γμγν − γνγμ). (20)

If you think that maxtrix manipulation is the key to physics, then you might enjoy my
course, Physics of Quantum Computation,
http://kirkmcd.princeton.edu/examples/ph410problems.pdf.

5The matrices γµ were introduced by Dirac in the form used here, but with his γ4 being our γ0, in sec. 3
of The Quantum Theory of the Electron, Proc. Roy. Soc. London A 117, 610 (1928),
http://kirkmcd.princeton.edu/examples/QED/dirac_prsla_117_610_28.pdf.

6The matrix I4 is typically denoted by 1.
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