Ph 406: Elementary Particle Physics Problem Set 3

K.T. McDonald kirkmcd@princeton.edu *Princeton University* Due Monday, October 6, 2014 (updated September 4, 2016)

1. Deduce the nonrelativistic form factors,

$$F(q^2) = \int \rho(r) \, e^{i\mathbf{q}\cdot\mathbf{r}} \, d^3\mathbf{r},\tag{1}$$

for the spherically symmetric charge densities with characteristic radius R,

$$\rho_a(r) = \begin{cases} 3Q/4\pi R^3 & (r < R), \\ 0 & (r > R), \end{cases}$$
(2)

$$\rho_b(r) = \frac{Q}{4\pi R^2} \delta(r - R), \tag{3}$$

and

$$\rho_c(r) = \frac{Q}{2\pi\sqrt{2\pi}R^3} e^{-r^2/2R^2},\tag{4}$$

all of which have total charge Q. Expand these form factors to order $(qR)^2$.

A neutral particle might have charge distributions ρ_+ and ρ_- with the above forms, but with different values of the characteristic radii R_+ and R_- .

The data are often fit to the form,¹

$$F_n(q^2) = \frac{Q}{[1+(qR)^2]^n},$$
(5)

with n = 2. What are the corresponding forms of the charge distributions $\rho_n(r)$ for n = 1, 2 and 3?

2. Arbitrary 2×2 Unitary Matrices and Pauli Spin Matrices

This problem concerns operators that act on 2-component spinors. Such operators can be expressed as 2×2 matrices. Operators that preserve the normalization of a state are called unitary.

Two of the simplest unitary operators on 2-component spinors are the identify matrix $I_2 = I$, and the spin-flip operator X (called the NOT operator in quantum computation),

$$\mathbf{I} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}. \tag{6}$$

¹For a review of nucleon form factors, see C.F. Perdrisat *et al.*, *Nucleon electromagnetic form factors*, Prog. Part. Nucl. Phys. **59**, 694 (2007), http://kirkmcd.princeton.edu/examples/EP/perdrisat_ppnp_59_694_07.pdf.

An arbitrary 2×2 unitary matrix U can be written as

$$\mathsf{U} = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = a \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) + b \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) + c \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) + d \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right), \quad (7)$$

where a, b, c and d are complex numbers such that $UU^{\dagger} = I$. The decomposition (7) is somewhat trivial. Express the general unitary matrix U as the sum of four unitary matrices, times complex coefficients, of which two are the classical unitary matrices I and X given above. Denote the "partner" of I by Z and the "partner" of X by Y such that

$$XY = iZ, \quad YZ = iX, \quad ZX = iY.$$
 (8)

You have, of course, rediscovered the so-called Pauli spin matrices,^{2,3}

$$\boldsymbol{\sigma}_{x} (=\boldsymbol{\sigma}_{1}) = \mathsf{X} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \boldsymbol{\sigma}_{y} (=\boldsymbol{\sigma}_{2}) = \mathsf{Y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \boldsymbol{\sigma}_{z} (=\boldsymbol{\sigma}_{3}) = \mathsf{Z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(9)

As usual, we define the Pauli "vector" σ as the triplet of matrices

$$\boldsymbol{\sigma} = (\boldsymbol{\sigma}_x, \boldsymbol{\sigma}_y, \boldsymbol{\sigma}_z). \tag{10}$$

Show that for ordinary 3-vectors **a** and **b**,

$$(\mathbf{a} \cdot \boldsymbol{\sigma})(\mathbf{b} \cdot \boldsymbol{\sigma}) = (\mathbf{a} \cdot \mathbf{b}) \mathbf{I} + i \boldsymbol{\sigma} \cdot \mathbf{a} \times \mathbf{b}.$$
 (11)

With this, show that a general 2×2 unitary matrix can be written as

$$\mathsf{U} = e^{i\delta} \left(\cos\frac{\theta}{2} \,\mathbf{I} + i\sin\frac{\theta}{2} \,\hat{\mathbf{u}} \cdot \boldsymbol{\sigma} \right) = e^{i\delta} e^{i\frac{\theta}{2}\hat{\mathbf{u}} \cdot \boldsymbol{\sigma}},\tag{12}$$

where δ and θ are real numbers and $\hat{\mathbf{u}}$ is a real unit vector.⁴ By the exponential e^{O} of an operator O we mean the Taylor series $\sum_{n} \mathsf{O}^{n}/n!$ where $\mathsf{O}^{0} = \mathbf{I}$.

What is the determinant of the matrix representation of U? The subset of 2×2 unitary matrices with unit determinant is called the **special unitary group** SU(2). What is the version of eq. (12) that describes 2×2 special unitary operators?

You may wish to convince yourself of a factoid related to eq. (12), namely that if A is a square matrix of any order such that $A^2 = I$, then $e^{i\theta A} = \cos \theta I + i \sin \theta A$, provided that θ is a real number. It follows that A can also be written in the exponential form

$$\mathsf{A} = e^{i\pi/2} e^{-i\frac{\pi}{2}\mathsf{A}} = e^{-i\pi/2} e^{i\frac{\pi}{2}\mathsf{A}}.$$
(13)

²W. Pauli, Zur Quantenmechanik des magnetischen Elektrons, Z. Phys. **43**, 601 (1927), http://kirkmcd.princeton.edu/examples/QM/pauli_zp_43_601_27.pdf.

³The Pauli spin matrices (and the unit matrix **I**) are not only unitary, they are also hermitian, meaning that they are identical to their adjoints: $\sigma_j^{\dagger} = \sigma_j$. ⁴Note that if make the replacements $\theta \to -\theta$ and $\hat{\mathbf{u}} \to -\hat{\mathbf{u}}$ we obtain another valid representation of U,

⁴Note that if make the replacements $\theta \to -\theta$ and $\hat{\mathbf{u}} \to -\hat{\mathbf{u}}$ we obtain another valid representation of U, since the physical operation of a rotation by angle θ about an axis $\hat{\mathbf{u}}$ is identical to a rotation by $-\theta$ about the axis $-\hat{\mathbf{u}}$.

There are several unitary operators of interest, such as the Pauli matrices, that are their own inverse. If we call such an operator V, then its exponential representation of V can be written in multiple ways,

$$\mathsf{V} = e^{i\delta} e^{i\frac{\theta}{2}\hat{\mathbf{v}}\cdot\boldsymbol{\sigma}} = \mathsf{V}^{-1} = e^{-i\delta} e^{-i\frac{\theta}{2}\hat{\mathbf{v}}\cdot\boldsymbol{\sigma}}.$$
 (14)

3. Give the explicit 4×4 matrix form of the four Dirac matrices γ_{μ} ,⁵ as well as that for $\gamma_5 = i\gamma_0\gamma_1\gamma_2\gamma_3$, in their representation via the 2×2 Pauli matrices I and σ_i , i = 1, 2, 3,

$$\gamma_0 = \begin{pmatrix} \mathbf{I} & 0\\ 0 & -\mathbf{I} \end{pmatrix}, \qquad \gamma_i = \begin{pmatrix} 0 & \boldsymbol{\sigma}_i\\ -\boldsymbol{\sigma}_i & 0 \end{pmatrix}, \tag{15}$$

It should be then evident that $\operatorname{tr}(\gamma_{\mu}) = 0 = \operatorname{tr}(\gamma_5)$, where tr is the trace operator. Then, it immediately follows that $\operatorname{tr}(\phi) = 0$, where $\phi \equiv a^{\mu}\gamma_{\mu}$ and a_{μ} is an arbitrary 4-vector.

Show that

$$\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 2\eta_{\mu\nu}\mathbf{I}_{4},\tag{16}$$

where $\eta_{\mu\nu}$ has diagonal elements 1, -1, -1, -1 and \mathbf{I}_4 is the 4×4 unit matrix,⁶ and hence that

$$\operatorname{tr}(\gamma_{\mu}\gamma_{\nu}) = 4\eta_{\mu\nu}, \quad \text{and} \quad \operatorname{tr}(\not{a}\not{b}) = 4a_{\mu}b^{\mu} \equiv 4ab.$$
 (17)

Show also that

$$\operatorname{tr}(\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}) = 4(\eta_{\mu\nu}\eta_{\rho\sigma} - \eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho}), \tag{18}$$

and hence that

$$tr(\# \not \!\!/ \phi \not \!\!/ d) = 4[(ab)(cd) - (ac)(bd) + (ad)(bc)].$$
(19)

A factoid which you need not demonstrate is that the Dirac equivalent of eq. (11) is

$$\phi \phi = ab\mathbf{I}_4 + \frac{a^{\mu}b^{\nu}}{2}(\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu}).$$
⁽²⁰⁾

If you think that maxtrix manipulation is the key to physics, then you might enjoy my course, **Physics of Quantum Computation**,

http://kirkmcd.princeton.edu/examples/ph410problems.pdf.

⁵The matrices γ_{μ} were introduced by Dirac in the form used here, but with his γ_4 being our γ_0 , in sec. 3 of The Quantum Theory of the Electron, Proc. Roy. Soc. London A **117**, 610 (1928),

http://kirkmcd.princeton.edu/examples/QED/dirac_prsla_117_610_28.pdf.

⁶The matrix \mathbf{I}_4 is typically denoted by 1.