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1. Deduce the nonrelativistic form factors,

F (q2) =
∫

ρ(r) eiq·r d3r, (1)

for the spherically symmetric charge densities with characteristic radius R,

ρa(r) =

⎧⎪⎨
⎪⎩

3Q/4πR3 (r < R),

0 (r > R),
(2)

ρb(r) =
Q

4πR2
δ(r − R), (3)

and

ρc(r) =
Q

2π
√

2πR3
e−r2/2R2

, (4)

all of which have total charge Q. Expand these form factors to order (qR)2.

A neutral particle might have charge distributions ρ+ and ρ− with the above forms,
but with different values of the characteristic radii R+ and R−.

The data are often fit to the form,1

Fn(q
2) =

Q

[1 + (qR)2]n
, (5)

with n = 2. What are the corresponding forms of the charge distributions ρn(r) for
n = 1, 2 and 3?

2. Arbitrary 2 × 2 Unitary Matrices and Pauli Spin Matrices

This problem concerns operators that act on 2-component spinors. Such operators can
be expressed as 2 × 2 matrices. Operators that preserve the normalization of a state
are called unitary.

Two of the simplest unitary operators on 2-component spinors are the identify matrix
I2 = I, and the spin-flip operator X (called the NOT operator in quantum computation),

I =

⎛
⎝ 1 0

0 1

⎞
⎠ X =

⎛
⎝ 0 1

1 0

⎞
⎠ . (6)

1For a review of nucleon form factors, see C.F. Perdrisat et al., Nucleon electromagnetic form factors,
Prog. Part. Nucl. Phys. 59, 694 (2007), http://kirkmcd.princeton.edu/examples/EP/perdrisat_ppnp_59_694_07.pdf.
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An arbitrary 2 × 2 unitary matrix U can be written as

U =

⎛
⎝ a b

c d

⎞
⎠ = a

⎛
⎝ 1 0

0 0

⎞
⎠+ b

⎛
⎝ 0 1

0 0

⎞
⎠+ c

⎛
⎝ 0 0

1 0

⎞
⎠+ d

⎛
⎝ 0 0

0 1

⎞
⎠ , (7)

where a, b, c and d are complex numbers such that UU† = I. The decomposition (7)
is somewhat trivial. Express the general unitary matrix U as the sum of four unitary
matrices, times complex coefficients, of which two are the classical unitary matrices I
and X given above. Denote the “partner” of I by Z and the “partner” of X by Y such
that

XY = iZ, YZ = iX, ZX = iY. (8)

You have, of course, rediscovered the so-called Pauli spin matrices,2,3

σx (= σ1) = X =

⎛
⎝ 0 1

1 0

⎞
⎠ , σy (= σ2) = Y =

⎛
⎝ 0 −i

i 0

⎞
⎠ , σz (= σ3) = Z =

⎛
⎝ 1 0

0 −1

⎞
⎠ .

(9)
As usual, we define the Pauli “vector” σ as the triplet of matrices

σ = (σx, σy, σz). (10)

Show that for ordinary 3-vectors a and b,

(a · σ)(b · σ) = (a · b) I + i σ · a× b. (11)

With this, show that a general 2 × 2 unitary matrix can be written as

U = eiδ

(
cos

θ

2
I + i sin

θ

2
û · σ

)
= eiδei θ

2
û·σ, (12)

where δ and θ are real numbers and û is a real unit vector.4 By the exponential eO of
an operator O we mean the Taylor series

∑
n On/n! where O0 = I.

What is the determinant of the matrix representation of U? The subset of 2×2 unitary
matrices with unit determinant is called the special unitary group SU(2). What is the
version of eq. (12) that describes 2 × 2 special unitary operators?

You may wish to convince yourself of a factoid related to eq. (12), namely that if A is
a square matrix of any order such that A2 = I, then eiθA = cos θ I + i sin θ A, provided
that θ is a real number. It follows that A can also be written in the exponential form

A = eiπ/2e−i π
2
A = e−iπ/2ei π

2
A. (13)

2W. Pauli, Zur Quantenmechanik des magnetischen Elektrons, Z. Phys. 43, 601 (1927),
http://kirkmcd.princeton.edu/examples/QM/pauli_zp_43_601_27.pdf.

3The Pauli spin matrices (and the unit matrix I) are not only unitary, they are also hermitian, meaning
that they are identical to their adjoints: σ†

j = σj.
4Note that if make the replacements θ → −θ and û → −û we obtain another valid representation of U,

since the physical operation of a rotation by angle θ about an axis û is identical to a rotation by −θ about
the axis −û.
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There are several unitary operators of interest, such as the Pauli matrices, that are
their own inverse. If we call such an operator V, then its exponential representation of
V can be written in multiple ways,

V = eiδei θ
2
v̂·σ = V−1 = e−iδe−i θ

2
v̂·σ. (14)

3. Give the explicit 4 × 4 matrix form of the four Dirac matrices γμ,
5 as well as that for

γ5 = iγ0γ1γ2γ3, in their representation via the 2×2 Pauli matrices I and σi, i = 1, 2, 3,

γ0 =

⎛
⎜⎝ I 0

0 −I

⎞
⎟⎠ , γi =

⎛
⎜⎝ 0 σi

−σi 0

⎞
⎟⎠ , (15)

It should be then evident that tr(γμ) = 0 = tr(γ5), where tr is the trace operator.
Then, it immediately follows that tr(/a) = 0, where /a ≡ aμγμ and aμ is an arbitrary
4-vector.

Show that
γμγν + γνγμ = 2ημνI4, (16)

where ημν has diagonal elements 1,−1,−1,−1 and I4 is the 4 × 4 unit matrix,6 and
hence that

tr(γμγν) = 4ημν , and tr(/ab/) = 4aμb
μ ≡ 4ab. (17)

Show also that
tr(γμγνγργσ) = 4(ημνηρσ − ημρηνσ + ημσηνρ), (18)

and hence that
tr(/ab/c//d) = 4[(ab)(cd) − (ac)(bd) + (ad)(bc)]. (19)

A factoid which you need not demonstrate is that the Dirac equivalent of eq. (11) is

/ab/ = abI4 +
aμbν

2
(γμγν − γνγμ). (20)

If you think that maxtrix manipulation is the key to physics, then you might enjoy my
course, Physics of Quantum Computation,
http://kirkmcd.princeton.edu/examples/ph410problems.pdf.

5The matrices γµ were introduced by Dirac in the form used here, but with his γ4 being our γ0, in sec. 3
of The Quantum Theory of the Electron, Proc. Roy. Soc. London A 117, 610 (1928),
http://kirkmcd.princeton.edu/examples/QED/dirac_prsla_117_610_28.pdf.

6The matrix I4 is typically denoted by 1.
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Solutions

1. Form Factors. We take the z-axis along the direction of the 3-momentum vector q,
such that the form factor associated with charge density a spherically symmetry charge
density ρ(r) is

F (q2) =
∫ ∞

0
2πr2 dr ρ(r)

∫ 1

−1
d cos θ eiqr cos θ =

∫ ∞

0
2πr2 dr ρ(r)

eiqr − e−iqr

iqr

=
4π

q

∫ ∞

0
r dr ρ(r) sin qr. (21)

Then, the form factor associated with charge density (2) is,

ρa(r) =

⎧⎪⎨
⎪⎩

3Q/4πR3 (r < R),

0 (r > R),
(2)

Fa(q
2) =

3Q

4πR3

4π

q3

∫ qR

0
qr d qr sin qr =

3Q

(qR)3
(sin qR − qR cos qR) ≈ Q

(
1 − (qR)2

10

)
.(22)

The first zero of Fa is for qR = tan qR. This can be found by going to Wolfram Alpha,
http://www.wolframalpha.com/, and entering x = tan x. The result is that q = 4.493..../R.
For R = 1 fermi, we need q = 4.5 · 197 = 877 MeV to detect the first zero.

The form factor associated with charge density (3) is,

ρb(r) =
Q

4πR2
δ(r − R), (3)

Fb(q
2) =

Q

4πR2

4π

q

∫ ∞

0
r dr δ(r − R) sin qr = Q

sin qR

qR
≈ Q

(
1 − (qR)2

6

)
. (23)

The first zero of Fb is at q = π/R.

The form factor associated with charge density (4) is,

ρc(r) =
Q

2π
√

2πR3
e−r2/2R2

, (4)

Fc(q
2) =

Q

2π
√

2πR3

4π

q

∫ ∞

0
r dr e−r2/2R2

sin qr = Q e−q2R2/2 ≈ Q

(
1 − (qR)2

2

)
. (24)

Fc has no zeroes, but its characteristic width in q is 1/R.

To recover a (spherically symmetric) charge distribution ρ(r) from a form factor F (q2)
we use the inverse transform,

ρ(r) =
1

(2π)3

∫ ∞

0
2πq2 dq F (q2)

∫ 1

−1
d cos θ e−iqr cos θ =

1

(2π)2

∫ ∞

0
q2 dq F (q2)

e−iqr − eiqr

−iqr

=
1

2π2r

∫ ∞

0
q dq F (q2) sin qr. (25)
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Hence, the form factor (4) corresponds to

ρn(r) =
Q

2π2rR2n

∫ ∞

0
q dq

sin qr

[1/R2 + q2]n
. (26)

The general form of this integral is given in Gradsthetyn and Ryzhik, 3.737.2. For
n = 1, G&R 3.723.3 gives

ρ1(r) =
Q e−r/R

4πrR2
, (27)

which is not well behaved at the origin, although
∫

ρ1 dVol = Q. Note that the form
factor F1(q

2) is hardly distinguishable at small q from the forms (22), (23) and (24).
The divergence of the charge density (27) at small r could only be revealed in the form
factor/Fourier transform by measurements at large q (large energy of the probe), which
reinforces that high energies are needed to reveal phenomena at small distances.

For n = 2, G&R 3.729.2 gives

ρ2(r) =
Q e−r/R

8πR3
, (28)

a simple exponential falloff. The case n = 2 is often called the dipole form factor, for
reasons obscure to me. For n = 3, G&R 3.737.4 gives

ρ3(r) =
Q e−r/R

32πR3

(
1 +

r

R

)
, (29)

which distribution has slightly more charge at large radii than the case of n = 2.

2. Arbitrary 2 × 2 Unitary Matrix

A straightforward expansion of a general 2× 2 unitary matrix U that involves the unit
matrix I and the NOT matrix X is

U =

⎛
⎝ a b

c d

⎞
⎠

=
a + d

2

⎛
⎝ 1 0

0 1

⎞
⎠ +

a − d

2

⎛
⎝ 1 0

0 −1

⎞
⎠+

b + c

2

⎛
⎝ 0 1

1 0

⎞
⎠ +

−b + c

2

⎛
⎝ 0 −1

1 0

⎞
⎠

=
a + d

2
I +

a − d

2
Z +

b + c

2
X +

−b + c

2
Ỹ. (30)

The unitary matrices Ỹ and Z have real matrix elements, which seems desirable at first
glance. However, when multiplying the unitary matrices based on expansion (30), we
find the products

XỸ = Z, ỸZ = X, ZX = −Ỹ. (31)

A symmetric pattern of products is obtained, following Pauli, if we use the unitary
matrix Y = iỸ. Then,

σx = X =

⎛
⎝ 0 1

1 0

⎞
⎠ , σy = Y =

⎛
⎝ 0 −i

i 0

⎞
⎠ , σz = Z =

⎛
⎝ 1 0

0 −1

⎞
⎠ , (32)
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and
XY = iZ, YZ = iX, ZX = iY. (33)

We can now write our expansion of a general 2 × 2 unitary matrix as

U = a I + b ·σ, (34)

where a is a complex number (in general different from the a of eq. (30)), b is a triplet
of complex numbers, and σ is the triplet (σx, σy, σz) of Pauli matrices.

The (hermitian) Pauli matrices σj obey

σ†
j = σj, σ2

j = I, and σjσk = iεjkl σl when j �= k, (35)

where εjkl = 1 for an even permutation of xyz, −1 for an odd permutation, and 0
otherwise.7 Thus,

(a · σ)(b · σ) =
∑
j

aj σj

∑
k

bk σk =
∑
j=k

ajbk σjσk +
∑
j �=k

ajbk σjσk

= (a · b) I + i
∑
j �=k

ajbkεjkl σl

= (a · b) I + i σ · a× b. (36)

The condition that matrix (34) be unitary can now be written

I = UU† = (a I + b · σ)(a� I + b� · σ†) = (a I + b · σ)(a� I + b� · σ)

= (|a|2 + |b|2) I + σ · [2Re(ab�) + i b× b�]. (37)

Hence, we need

(|a|2 + |b|2) = 1, (38)

0 = 2Re(ab�) + i b× b� = 2Re(ab�) + 2Re(b) × Im(b). (39)

If a �= 0, we write it as a = a0e
iδ where a0 and δ are real. We also write b = eiδ(c+ id)

where c and d are real vectors. Then, we eq. (39) becomes

0 = Re(ab�) + Re(b) × Im(b) = a0 c + c × d, (40)

which implies that c = 0. Thus,

b = ib0e
iδ û, (41)

where b0 = |d| and û = d/ |d| is a real unit vector.

On the other hand, if a = 0 then eq. (39) requires that vector Re(b) must be parallel
to vector Im(b), so the vector b can be written as

b = Re(b) û + iIm(b) û = ib0e
iδ û, (42)

7Digression. If one defines I = −iσ1, J = −iσ2 and K = −iσ3, then I2 = J2 = K2 = IJK = −I, such
that {I, I, J, K} are a represention of Hamilton’s quaterions (aka Clifford algebra).
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where b0 and δ are real, and û is a real unit vector.

Hence, in any case the general 2 × 2 unitary matrix (34) can be written

U = eiδ(a0 I + ib0 û · σ), (43)

where the real numbers a0 and b0 obey

a2
0 + b2

0 = 1, (44)

so that condition (38) is satisfied. We can formally express a0 and b0 in terms of an
angle θ such that

a0 = cos
θ

2
, b0 = sin

θ

2
. (45)

Then,

U = eiδ

(
cos

θ

2
I + i sin

θ

2
û · σ

)
= eiδei θ

2
û·σ. (46)

By the exponential eA of an operator A we, of course, mean the Taylor series

eA =
∞∑

n=0

An

n!
. (47)

For two noncommuting operators A and B, in general eA+B = eB+A �= eAeB �= eBeA.

The validity of the exponential form in eq. (46) is confirmed by noting that

ei θ
2
û·σ =

∑
j

(i θ
2
û · σ)j

j!
=

[
I − ( θ

2
)2(û · σ)2

2
+ . . .

]
+ i

[
θ

2
û · σ − ( θ

2
)3(û · σ)3

6
+ . . .

]

=

[
1 − ( θ

2
)2

2
+ . . .

]
I + i

[
θ

2
− ( θ

2
)3

6
+ . . .

]
û · σ = cos

θ

2
I + i sin

θ

2
û · σ, (48)

via repeated uses of eq. (36) with a = b = û.

While the Pauli operators σj do not commute with one another, we see from eq. (48)
that eaσj+bσk = ebσk+aσj . However, eaσj+bσk �= eaσj ebσk �= ebσkeaσj when j �= k. In
particular, ei θ

2
û·σ �= ei θ

2
uxσxei θ

2
uyσyei θ

2
uzσz .

The matrix form of eq. (46) is

U = eiδ

⎛
⎝ cos θ

2
+ i sin θ

2
ux i sin θ

2
(ux − iuy)

i sin θ
2
(ux + iuy) cos θ

2
− i sin θ

2
ux

⎞
⎠ , (49)

so the determinant of U is

ΔU = e2iδ

[
cos2 θ

2
+ sin2 θ

2

(
u2

x + u2
y + u2

z

)]
= e2iδ. (50)
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Hence, the 2 × 2 special unitary operators (those for which ΔU = 1) are those with
δ = 0 or π,

U = ±
(

cos
θ

2
I + i sin

θ

2
û · σ

)
= ±ei θ

2
û·σ, U ∈ SU(2). (51)

As to the factoid related to eq. (13), whenever A2 = I we can make the Taylor expan-
sion,

eiθA =
∞∑

k even

(iθA)k

k!
+

∞∑
k odd

(iθA)k

k!
=

∞∑
k even

(−1)k/2θk

k!
I + i

∞∑
k odd

(−1)(k−1)/2θk

k!
A

= cos θ I + i sin θ A. (52)

3. In terms of the 2×2 Pauli matrices I and σi, the Dirac matrices γμ can be written as8

γ0 =

⎛
⎜⎝ I 0

0 −I

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, γ1 =

⎛
⎜⎝ 0 σ1

−σ1 0

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

γ2 =

⎛
⎜⎝ 0 σ2

−σ2 0

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, γ3 =

⎛
⎜⎝ 0 σ3

−σ3 0

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

γ5 = iγ0γ1γ2γ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝ 0 I

I 0

⎞
⎟⎠ . (53)

Note that

γ0γ0 =

⎛
⎜⎝ I 0

0 −I

⎞
⎟⎠
⎛
⎜⎝ I 0

0 −I

⎞
⎟⎠ =

⎛
⎜⎝ I 0

0 I

⎞
⎟⎠ = I4,

8The Dirac matrix γ5 may have been introduced on p. 126 of W. Pauli, Contributions mathématique à
la théorie des matrices de Dirac, Ann. Inst. H. Poincaré 6, 109 (1936),
http://kirkmcd.princeton.edu/examples/QED/pauli_aihp_6_109_36.pdf.
Pauli’s original γ5 was just γ0γ1γ2γ3, without the factor of i that is now conventional. The matrix γ0γ1γ2γ3

was identified as one of 16 linearly independent 4 × 4 Dirac matrices on p. 881 of J. von Neumann, Einige
Bemerkungen zur Diracschen Theorie des relativistischen Drehelektrons, Z. Phys. 48 868 (1928),
http://kirkmcd.princeton.edu/examples/QED/voneumann_zp_48_868_28.pdf.

8



γ iγi =

⎛
⎜⎝ 0 σi

−σi 0

⎞
⎟⎠
⎛
⎜⎝ 0 σi

−σi 0

⎞
⎟⎠ =

⎛
⎜⎝ −σiσi 0

0 −σiσi

⎞
⎟⎠ = −I4,

γ5γ5 =

⎛
⎜⎝ 0 I

I 0

⎞
⎟⎠
⎛
⎜⎝ 0 I

I 0

⎞
⎟⎠ =

⎛
⎜⎝ I 0

0 I

⎞
⎟⎠ = I4, (54)

where I4 is the 4 × 4 unit matrix. Hence, (after a bit of algebra),

γμγν + γνγμ = 2ημνI4, γ5γμ = −γμγ5, (55)

where we don’t regard ημν as a γ-matrix although it is a 4 × 4 collection of numbers.
Taking the trace of this γ-matrix equation, we have that

tr(γμγν) + tr(γνγμ) = 2tr(γμγν) = 2ημνtr(I4) = 8ημν , (56)

tr(γμγν) = 4ημν . (57)

Hence,

tr(/ab/) = aμbνtr(γμγν) = 4aμbνημν = 4aμbν = 4ab. (58)

Next, we consider (following http://en.wikipedia.org/wiki/Gamma_matrices)

tr(γμγνγργσ) = tr
(
γμγν(2ηρσ − γσγρ)

)
= 2ηρσtr

(
γμγν

)
− tr

(
γμγνγσγρ

)
, (59)

using eq. (55). For the term on the right, we’ll continue the pattern of swapping γσ

with its neighbor to the left,

tr
(
γμγνγσγρ

)
= tr

(
γμ(2ηνσ − γσγν)γρ

)
= 2ηνσtr

(
γμγρ

)
− tr

(
γμγσγνγρ

)
. (60)

Again, for the term on the right swap γσ with its neighbor to the left,

tr
(
γμγσγνγρ

)
= tr

(
(2ημσ − γσγμ)γνγρ

)
= 2ημσtr

(
γνγρ

)
− tr

(
γσγμγνγρ

)
. (61)

Equation (61) is the term on the right of eq. (60), and eq. (60) is the term on the right
of eq. (59). We also use identity (57) to simplify terms, such as,

2ηρσtr
(
γμγν

)
= 2ηρσ(4ημν) = 8ηρσημν. (62)

So when you plug eqs. (60)-(62) into eq. (59) we have,

tr(γμγνγργσ) = 8ηρσημν − 8ηνσημρ + 8ημσηνρ − tr
(
γσγμγνγρ

)
. (63)

The terms inside the trace can be cycled, so

tr
(
γσγμγνγρ

)
= tr(γμγνγργσ). (64)
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So really eq. (62) is

2tr(γμγνγργσ) = 8ηρσημν − 8ηνσημρ + 8ημσηνρ, (65)

or

tr(γμγνγργσ) = 4
(
ηρσημν − ηνσημρ + ημσηνρ

)
. (66)

Finally,

tr(/ab/c//d) = aμbνcρdσtr(γμγνγργσ) = 4aμbνcρdσ
(
ηρσημν − ηνσημρ + ημσηνρ

)
= 4[(ab)(cd) − (ac)(bd) + (ad)(bc)]. (67)

Digression: For future reference, we note that

γ0γiγ5 =

⎛
⎜⎝ I 0

0 −I

⎞
⎟⎠
⎛
⎜⎝ 0 σi

−σi 0

⎞
⎟⎠
⎛
⎜⎝ 0 I

I 0

⎞
⎟⎠ =

⎛
⎜⎝ σi 0

0 σi

⎞
⎟⎠ . (68)
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