Ph 406: Elementary Particle Physics Problem Set 4

K.T. McDonald kirkmcd@princeton.edu *Princeton University* Due Monday, October 13, 2014 (updated August 11, 2017)

1. The form,

$$\mathsf{U} = e^{i\delta} \left(\cos\frac{\theta}{2} \, \mathbf{I} + i\sin\frac{\theta}{2} \, \hat{\mathbf{u}} \cdot \boldsymbol{\sigma} \right) = e^{i\delta} e^{i\frac{\theta}{2}\hat{\mathbf{u}} \cdot \boldsymbol{\sigma}},\tag{1}$$

of a general 2×2 unitary matrix [(Set 2, eq. (12)] suggests that these matrices have something to do with rotations. Certainly, a matrix that describes the rotation of a vector is a unitary transformation.

A general 2-component (spinor) state $|\psi\rangle = \psi_+|+\rangle + \psi_-|-\rangle$, where $|\psi_+|^2 + |\psi_-|^2 = 1$, can also be written as,

$$|\psi\rangle = e^{i\delta} \left(\cos\theta |+\rangle + e^{i\phi}\sin\theta |-\rangle\right).$$
⁽²⁾

The overall phase δ has no meaning to a measurement of $|\psi\rangle$. So, it is tempting to interpret parameters θ and ϕ as angles describing the orientation in a spherical coordinate system (r, θ, ϕ) of a unit 3-vector that is associated with the state $|\psi\rangle$. The state $|+\rangle$ might then correspond to the unit 3-vector $\hat{\mathbf{z}}$ that points up along the z-axis, while $|-\rangle \leftrightarrow -\hat{\mathbf{z}}$.

However, this doesn't work! The suggestion is that the state $|+\rangle$ corresponds to angles $\theta = 0$, $\phi = 0$ and state $|-\rangle$ to angles $\theta = \pi$, $\phi = 0$. With this hypothesis, eq. (2) gives a satisfactory representation of a spin-up state as $|+\rangle$, but it implies that the spin-down state would be $-|+\rangle = e^{i\pi}$ times the spin-up state, which is not really distinct from the spin-up state.

We fix up things be writing,

$$|\psi\rangle = e^{i\delta} \left[\cos\frac{\theta}{2} |+\rangle + e^{i\phi} \sin\frac{\theta}{2} |-\rangle \right],\tag{3}$$

and identifying angles θ and ϕ with the polar and azimuthal angles of a unit 3-vector in an abstract 3-space (sometimes called the Bloch sphere). That is, we associate the state $|\psi\rangle$ with the unit 3-vector whose components are $\psi_x = \sin \theta \cos \phi$, $\psi_y = \sin \theta \sin \phi$ and $\psi_z = \cos \theta$. Now, the associations,

spin up
$$\leftrightarrow (\theta = 0, \phi = 0) \leftrightarrow |+\rangle$$
, spin down $\leftrightarrow (\theta = \pi, \phi = 0) \leftrightarrow |-\rangle$, (4)

given by eq. (3) are satisfactory.

We then infer from eq. (3) that the spin-up and spin-down states in the direction (θ, ϕ) are, to within an overall phase factor,

$$|+(\theta,\phi)\rangle \propto \begin{pmatrix} \cos\frac{\theta}{2} \\ \sin\frac{\theta}{2}e^{i\phi} \end{pmatrix}, \qquad |-(\theta,\phi)\rangle \propto |+(\pi-\theta,\phi+\pi)\rangle = \begin{pmatrix} \sin\frac{\theta}{2} \\ -\cos\frac{\theta}{2}e^{i\phi} \end{pmatrix}.$$
 (5)

The standard form of the spin-up/down states is,

$$|+(\theta,\phi)\rangle = \begin{pmatrix} \cos\frac{\theta}{2}e^{-i\phi/2}\\ \sin\frac{\theta}{2}e^{i\phi/2} \end{pmatrix}, \qquad |-(\theta,\phi)\rangle = \begin{pmatrix} \sin\frac{\theta}{2}e^{-i\phi/2}\\ -\cos\frac{\theta}{2}e^{i\phi/2} \end{pmatrix}, \tag{6}$$

which is consistent with eq. (5), but perhaps does not obviously follow from it.

The Problem: Deduce the up and down 2-component spinor states along direction (θ, ϕ) in a spherical coordinate system via rotation matrices (where first a rotation is made by angle θ and then by angle ϕ).

Rotation Matrices

A general rotation in 3-space is characterized by 3 angles. We follow Euler in naming these angles as in the figure above.¹ The rotation takes the axis (x, y, z) into the axes (x', y', z') in 3 steps:

- (a) A rotation by angle α about the z-axis, which brings the y-axis to the y_1 axis.
- (b) A rotation by angle β about the y_1 -axis, which brings the z-axis to the z'-axis.
- (c) A rotation by angle γ about the z'-axis, which brings the y_1 -axis to the y'-axis (and the x-axis to the x'-axis).

¹From sec. 58 of Landau and Lifshitz, *Quantum Mechanics*, 2nd ed. (Pergamon, 1965), http://kirkmcd.princeton.edu/examples/QM/landau_qm_65.pdf

The 2×2 unitary matrix that corresponds to this rotation (of coordinate axes) is,

$$\begin{aligned} \mathsf{R}(\alpha,\beta,\gamma) &= \begin{pmatrix} \cos\frac{\beta}{2}e^{i(\alpha+\gamma)/2} & \sin\frac{\beta}{2}e^{i(-\alpha+\gamma)/2} \\ -\sin\frac{\beta}{2}e^{i(\alpha-\gamma)/2} & \cos\frac{\beta}{2}e^{-i(\alpha+\gamma)/2} \end{pmatrix} \\ &= \begin{pmatrix} e^{i\gamma/2} & 0 \\ 0 & e^{-i\gamma/2} \end{pmatrix} \begin{pmatrix} \cos\frac{\beta}{2} & \sin\frac{\beta}{2} \\ -\sin\frac{\beta}{2} & \cos\frac{\beta}{2} \end{pmatrix} \begin{pmatrix} e^{i\alpha/2} & 0 \\ 0 & e^{-i\alpha/2} \end{pmatrix} \\ &= \mathsf{R}_{z'}(\gamma)\mathsf{R}_{y_1}(\beta)\mathsf{R}_z(\alpha), \end{aligned}$$
(7)

where the decomposition into the product of 3 rotation matrices² follows from the particular rules,

$$\mathsf{R}_{x}(\phi) = \begin{pmatrix} \cos\frac{\phi}{2} & i\sin\frac{\phi}{2} \\ i\sin\frac{\phi}{2} & \cos\frac{\phi}{2} \end{pmatrix}, \tag{8}$$

$$\mathsf{R}_{y}(\phi) = \begin{pmatrix} \cos\frac{\phi}{2} & \sin\frac{\phi}{2} \\ -\sin\frac{\phi}{2} & \cos\frac{\phi}{2} \end{pmatrix}, \tag{9}$$

$$\mathsf{R}_{z}(\phi) = \begin{pmatrix} e^{i\phi/2} & 0\\ 0 & e^{-i\phi/2} \end{pmatrix}.$$
 (10)

Convince yourself that the combined rotation (7) could also be achieved if first a rotation is made by angle γ about the z axis, then a rotation is made by angle β about the original y axis, and finally a rotation is made by angle α about the original z axis.

There is unfortunately little consistency among various authors as to the conventions used to describe rotations. I follow the notation of Barenco *et al.*,³ who appear to write eq. (7) simply as,

$$\mathsf{R}(\alpha,\beta,\gamma) = \mathsf{R}_z(\gamma)\mathsf{R}_y(\beta)\mathsf{R}_z(\alpha). \tag{11}$$

Occasionally one needs to remember that in eq. (11) the axes of the second and third rotations are the results of the previous rotation(s).

Note that according to eqs. (8)-(10),

$$\boldsymbol{\sigma}_x = \boldsymbol{\sigma}_1 = -i\mathsf{R}_x(180^\circ), \qquad \boldsymbol{\sigma}_y = \boldsymbol{\sigma}_2 = -i\mathsf{R}_y(180^\circ), \qquad \boldsymbol{\sigma}_z = \boldsymbol{\sigma}_3 = -i\mathsf{R}_z(180^\circ), \tag{12}$$

and also,

$$\boldsymbol{\sigma}_x = i\mathsf{R}_x(-180^\circ), \qquad \boldsymbol{\sigma}_y = i\mathsf{R}_y(-180^\circ), \qquad \boldsymbol{\sigma}_z = i\mathsf{R}_z(-180^\circ), \tag{13}$$

so that the Pauli spin matrices are equivalent to the formal matrices for 180° rotations only up to a phase factor *i*.

 2 The order of operations is that the rightmost rotation in eq. (7) is to be performed first.

³http://kirkmcd.princeton.edu/examples/QM/barenco_pra_52_3457_95.pdf

Show that a more systematic relation between the Pauli spin matrices and the rotation matrices is that eqs. (8)-(10) can be written as,

$$\mathsf{R}_{u}(\phi) = e^{i\frac{\varphi}{2}\hat{\mathbf{u}}\cdot\boldsymbol{\sigma}},\tag{14}$$

which describes a rotation of the coordinate axes in Bloch space by angle ϕ about the $\hat{\mathbf{u}}$ axis (in a right-handed convention).

Rather than rotating the coordinate axes, we may wish to rotate vectors in Bloch space by an angle ϕ about a given axis \hat{u} , while leaving the coordinate axes fixed. The operator,

$$\mathsf{R}_{u}(-\phi) = e^{-i\frac{\phi}{2}\hat{\mathbf{u}}\cdot\boldsymbol{\sigma}} \tag{15}$$

performs this type of rotation. With this in mind, you can finally solve the main problem posed on p. 2.

2. Helicity Conservation in High-Energy Electromagnetic Interactions of pointlike spin-1/2 particles.

Recalling pp. 86 and 88 of Lecture 6 of the Notes, general (spin-1/2) particle 4-spinors u for plane-wave states,

$$\psi = u \, e^{-ipx} = u \, e^{-ip_{\mu}x^{\mu}},\tag{16}$$

with rest mass m, 3-momentum **p** and energy $E = \sqrt{p^2 + m^2}$, can be written as,

$$u = \sqrt{E+m} \begin{pmatrix} \chi \\ \frac{\mathbf{p} \cdot \boldsymbol{\sigma}}{E+m} \chi \end{pmatrix} = \begin{pmatrix} \sqrt{E+m} \, \chi \\ \frac{p}{\sqrt{E+m}} \, \hat{\mathbf{p}} \cdot \boldsymbol{\sigma} \, \chi \end{pmatrix} = \begin{pmatrix} \sqrt{E+m} \, \chi \\ \sqrt{E+m} \, \hat{\mathbf{p}} \cdot \boldsymbol{\sigma} \, \chi \end{pmatrix}, \quad (17)$$

where the 2-spinor χ obeys $\chi^{\dagger}\chi = 1$. Similarly, antiparticle 4-spinors v are associated with plane-wave states,^{4,5}

$$\hat{\psi} = v \, e^{ipx},\tag{18}$$

(note the sign change with respect to the form (16)), that can be written as,

$$v = \sqrt{E+m} \begin{pmatrix} \frac{\mathbf{p} \cdot \boldsymbol{\sigma}}{E+m} \tilde{\chi} \\ \tilde{\chi} \end{pmatrix} = \begin{pmatrix} \frac{p}{\sqrt{E+m}} \hat{\mathbf{p}} \cdot \boldsymbol{\sigma} \tilde{\chi} \\ \sqrt{E+m} \tilde{\chi} \end{pmatrix} = \begin{pmatrix} \sqrt{E-m} \hat{\mathbf{p}} \cdot \boldsymbol{\sigma} \tilde{\chi} \\ \sqrt{E+m} \tilde{\chi} \end{pmatrix}, \quad (19)$$

where $\tilde{\chi}$ is a 2-spinor with $\tilde{\chi}^{\dagger} \tilde{\chi} = 1$.

These states obey the Dirac equations $i\partial^{\mu}\gamma_{\mu}\psi = \not p\psi = m\psi$ and $i\partial^{\mu}\gamma_{\mu}\tilde{\psi} = -\not p\tilde{\psi} = m\tilde{\psi}$, which imply the 4-spinor equations $\not pu = mu$ and $-\not pv = mv$.

⁴The antiparticle of particle a is often denoted as \bar{a} , but as \bar{u} is the adjoint of a Dirac 4-spinor u, we write \tilde{a} for the antiparticle of state a.

⁵Dirac interpreted his negative-energy solutions as related to "anti-electrons" on p. 52 of *Quantised Singularities in the Electromagnetic Field*, Proc. Roy. Soc. London A **133**, 60 (1931), http://kirkmcd.princeton.edu/examples/QED/dirac_prsla_133_60_31.pdf.

That paper is also noteworthy for relating the possible existence of a magnetic monopole of pole strength p to the electric charge e by $ep = \hbar/2$.

The positive and negative helicity spinor states for a particle with 3-momentum **p** in direction (θ, ϕ) are $\chi_{+} = |+(\theta, \phi)\rangle$ and $\chi_{-} = |-(\theta, \phi)\rangle$, respectively, recalling eq. (6), while the helicity states of an antiparticle are $\tilde{\chi}_{+} = |-(\theta, \phi)\rangle = \chi_{-}$ and $\tilde{\chi}_{-} = -|+(\theta, \phi)\rangle = -\chi_{+}$. In all cases, positive helicity means spin in the direction of momentum **p**.

In the high-energy limit, these 4-spinors simplify to,

$$u \to \sqrt{E} \begin{pmatrix} \chi \\ \hat{\mathbf{p}} \cdot \boldsymbol{\sigma} \chi \end{pmatrix}, \qquad v \to \sqrt{E} \begin{pmatrix} \hat{\mathbf{p}} \cdot \boldsymbol{\sigma} \tilde{\chi} \\ \tilde{\chi} \end{pmatrix},$$
 (20)

Give explicit forms of the helicity spinors $u_+(\theta, \phi)$, $u_-(\theta, \phi)$, $v_+(\theta, \phi)$ and $v_-(\theta, \phi)$ for (anti)particles moving and at angles (θ, ϕ) to the +z-axis, and also their simplification to $u_+(0)$, $u_-(0)$, $v_+(0)$ and $v_-(0)$ for motion along the z-axis in the high-energy limit.

If these are pointlike particles of charge e, their electromagnetic interaction is described by the 4-current $j_{\mu} = e \gamma_{\mu}$. Verify that the matrix elements $\langle \bar{u}_{-}(\theta) | \gamma_{\mu} | u_{+}(0) \rangle$ vanish for $\mu = 0, 1, 2, 3$, and similarly that $\langle \bar{v}_{+}(\theta) | \gamma_{\mu} | u_{+}(0) \rangle = 0$. Remember that $\bar{v} = v^{\dagger} \gamma_{0}$, etc.

Digression: Electric Charge Conjugation. The above claim that the antiparticle helicity 2-spinors $\tilde{\chi}_{\pm}$ are related to the particle helicity 2-spinors χ_{\pm} by $\tilde{\chi}_{\pm} = \pm \chi_{\mp}$ can be justified by considerations of a transformation, called electric charge conjugation with symbol C, between particles and their antiparticles (with respect to their electromagnetic interactions), such that $\tilde{\psi} = C\psi^*$ is the antiparticle state of a spin-1/2 particle ψ .⁶

http://kirkmcd.princeton.edu/examples/QED/dirac_prsla_126_360_30.pdf.

⁶That $\tilde{\psi} = C\psi^*$ and not $\tilde{\psi} = C\psi$ follows from the sign change in the spacetime waveform between eqs. (16) and (18).

Charge conjugation leaves mass unchanged, such that a particle and its antiparticle have the same rest mass m. This was not initially understood by Dirac, who first speculated that the antiparticle of an electron is a proton, A Theory of Electrons and Protons, Proc. Roy. Soc. London A **126**, 360 (1930),

The charge-conjugation operator C was discussed (in a different representation, and not given a name) on p. 130 of W. Pauli, *Contributions mathématique à la théorie des matrices de Dirac*, Ann. Inst. H. Poincaré **6**, 109 (1936), http://kirkmcd.princeton.edu/examples/QED/pauli_aihp_6_109_36.pdf.

The term "charge conjugation" (but with the symbol L) may have been first used in H.A. Kramers, The use of charge conjugated wavefunctions in the hole theory of the electron, Proc. Roy. Neder. Acad. Sci. **40**, 814 (1937), http://kirkmcd.princeton.edu/examples/neutrinos/kramers_pknaw_40_814_37.pdf.

The term antimatter was introduced by Schuster in 1898, but in his vision antimatter had negative mass; Potential Matter—A Holiday Dream, Nature 58, 367, 618 (1898),

http://kirkmcd.princeton.edu/examples/GR/schuster_nature_58_367_98.pdf

http://kirkmcd.princeton.edu/examples/GR/schuster_nature_58_618_98.pdf.

The present vision of antiparticles via electric charge conjugation of particles is perhaps closer to Kelvin's image method for a planar conductor, p. 288 of W. Thomson, *Effects of Electrical Influence on Internal Spherical and on Plane Conducting Surfaces*, Camb. Dublin Math. J. 4, 276 (1849),

http://kirkmcd.princeton.edu/examples/EM/thomson_cdmj_4_276_49.pdf.

One way to do this starts with the Dirac equation for a spin-1/2 particle state ψ ,⁷

$$i\partial^{\mu}\gamma_{\mu}\psi = m\psi. \tag{21}$$

We expect that the antiparticle state $\tilde{\psi}$ also satisfies the Dirac equation,

$$i\partial^{\mu}\gamma_{\mu}\tilde{\psi} = m\tilde{\psi}.$$
 (22)

A clever step is to take the complex conjugate of eq. (21),

$$-i\partial^{\mu}\gamma^{*}_{\mu}\psi^{*} = m\psi^{*}.$$
(23)

Applying the desired charge-conjugation operator C to this, we have,

$$-i\partial^{\mu}C\gamma^{*}_{\mu}\psi^{*} = mC\psi^{*} = m\bar{\psi}.$$
(24)

For this to be the Dirac equation (22)⁸ we require that,

$$-C\gamma_{\mu}^{*} = \gamma_{\mu}C. \tag{25}$$

You can verify that this implies the electric-charge-conjugation matrix operator to be,⁹

$$C = i\gamma_2 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & i\sigma_2 \\ -i\sigma_2 & 0 \end{pmatrix}.$$
 (26)

Then, applying the electric-charge-conjugation transformation to the particle 4-spinor u of eq. (17), we obtain (on suppression of the overall factor $\sqrt{E+m}$) the antiparticle spinor,

$$\tilde{u} = i\gamma_2 \begin{pmatrix} \chi^* \\ \frac{\mathbf{p}\cdot\boldsymbol{\sigma}^*}{E+m}\chi^* \end{pmatrix} = \begin{pmatrix} i\sigma_2\frac{\mathbf{p}\cdot\boldsymbol{\sigma}^*}{E+m}\chi^* \\ -i\sigma_2\chi^* \end{pmatrix} = \begin{pmatrix} \frac{\mathbf{p}\cdot\boldsymbol{\sigma}}{E+m}(-i\sigma_2\chi^*) \\ -i\sigma_2\chi^* \end{pmatrix} = \begin{pmatrix} \frac{\mathbf{p}\cdot\boldsymbol{\sigma}}{E+m}\tilde{\chi} \\ \tilde{\chi} \end{pmatrix} = v, \ (27)$$

using that fact (verify it!) that $\sigma_2 \sigma^* = -\sigma \sigma_2$. Hence, the antiparticle 2-spinor $\tilde{\chi}$ is related to its corresponding particle 2-spinor χ by,

$$\tilde{\chi} = -i\sigma_2\chi^*, \qquad \chi = i\sigma_2\tilde{\chi}^*.$$
(28)

⁷This argument follows sec. 5.4, p. 107 of F. Halzen and A.D. Martin, *Quarks and Leptons* (Wiley, 1984), http://kirkmcd.princeton.edu/examples/EP/halzen_martin_84.pdf.

⁸For $\tilde{\psi} = v e^{ipx}$, eqs. (24)-(25) lead to the spinor form of the Dirac equation for antiparticles, $-\not pv = mv$. ⁹Warning: Many people write $C\gamma_0$ for the matrix C of eq. (26).

In particular, the helicity 2-spinors of eq. (6) transform under electric-charge conjugation as,

$$\chi_{+} = \begin{pmatrix} \cos\frac{\theta}{2}e^{-i\phi/2} \\ \sin\frac{\theta}{2}e^{i\phi/2} \end{pmatrix} \rightarrow \tilde{\chi}_{+} = -i\sigma_{2}\chi_{+}^{*} = \begin{pmatrix} -\sin\frac{\theta}{2}e^{-i\phi/2} \\ \cos\frac{\theta}{2}e^{i\phi/2} \end{pmatrix} = \chi_{-}, \quad (29)$$

$$\chi_{-} = \begin{pmatrix} -\sin\frac{\theta}{2}e^{-i\phi/2} \\ \cos\frac{\theta}{2}e^{i\phi/2} \end{pmatrix} \rightarrow \tilde{\chi}_{-} = -i\sigma_2\chi_{-}^* = \begin{pmatrix} -\cos\frac{\theta}{2}e^{-i\phi/2} \\ -\sin\frac{\theta}{2}e^{i\phi/2} \end{pmatrix} = -\chi_{+}, \quad (30)$$

as claimed above.

3. The cross section for inelastic scattering of electrons off some target can be expressed in terms of two generalized structure functions $W_{1,2}(q^2, \nu)$ where $q = p_{ei} - p_{ef}$ and $\nu = q_0 = E_i - E_f$, as on p. 131, Lecture 8 of the Notes. If the inelastic scattering is due to the interaction of the virtual photon emitted by the incident electron with a spin-1/2, charge Q, mass m constituent of the target, such that the rest of the target is a "spectator" to this interaction, then the cross section is that given on p. 99, Lecture 6 of the Notes, and we infer that,¹⁰

$$W_1(q*2,\nu) = \frac{-q^2}{4m^2}Q^2\,\delta\left(\nu + \frac{q^2}{2m}\right), \qquad W_2(q^2,\nu) = Q^2\,\delta\left(\nu + \frac{q^2}{2m}\right). \tag{31}$$

An argument of Bjorken¹¹ is that the lab-frame energy difference between the initial and final electron can be written as,

$$E_i - E_f = \nu = q_0 = \frac{qP}{M}, \qquad (32)$$

where P is the energy-momentum 4-vector of the target (of rest mass M), which is just P = (M, 0, 0, 0) in the lab frame. Then, in a frame in which the target has very high momentum, the 4-vector p of a constituent which carries (scalar) fraction x of the target's 3-momentum can be written approximately as $p \approx xP$. A consequence of this approximation is that the constituent mass m is related by $m^2 = p^2 \approx x^2P^2 = x^2M^2$, *i.e.*, that $m \approx xM$ (as appropriate for consideration of very high-energy scattering). This permits us to rewrite eq. (31) as¹²

$$W_1 = \frac{-q^2}{4M^2 x^2} Q^2 \delta\left(\nu + \frac{q^2}{2Mx}\right), \qquad W_2 = Q^2 \delta\left(\nu + \frac{q^2}{2Mx}\right).$$
(33)

Supposing the constituents are distributed with the target (as viewed from a frame in which the target has high speed) with probability f(x) dx, give expressions for the generalized structure functions W_1 and W_2 in terms of a single variable x.

¹⁰C.G. Callan, Jr and D.J. Gross, *High-Energy Electroproduction and the Constitution of the Electric Current*, Phys. Rev. Lett. **22**, 156 (1969),

http://kirkmcd.princeton.edu/examples/EP/callan_prl_22_156_69.pdf.

¹¹J.D. Bjorken and E.A. Paschos, Inelastic Electron-Proton and γ -Proton Scattering and the Structure of the Nucleon, Phys. Rev. 185, 1975 (1969),

http://kirkmcd.princeton.edu/examples/EP/bjorken_pr_185_1975_69.pdf.

 $^{^{12}\}mathrm{A}$ different version of this argument is given on p. 139, Lecture 8 of the Notes, where a Breit frame is used.