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1. The form,

U = eiδ

(
cos

θ

2
I + i sin

θ

2
û · σ

)
= eiδei θ

2
û·σ, (1)

of a general 2 × 2 unitary matrix [(Set 2, eq. (12)] suggests that these matrices have
something to do with rotations. Certainly, a matrix that describes the rotation of a
vector is a unitary transformation.

A general 2-component (spinor) state |ψ〉 = ψ+|+〉 + ψ−|−〉, where
∣∣∣ψ+

∣∣∣2 +
∣∣∣ψ−

∣∣∣2 = 1,
can also be written as,

|ψ〉 = eiδ
(
cos θ|+〉 + eiφ sin θ|−〉

)
. (2)

The overall phase δ has no meaning to a measurement of |ψ〉. So, it is tempting
to interpret parameters θ and φ as angles describing the orientation in a spherical
coordinate system (r, θ, φ) of a unit 3-vector that is associated with the state |ψ〉. The
state |+〉 might then correspond to the unit 3-vector ẑ that points up along the z-axis,
while |−〉 ↔ −ẑ.

However, this doesn’t work! The suggestion is that the state |+〉 corresponds to angles
θ = 0, φ = 0 and state |−〉 to angles θ = π, φ = 0. With this hypothesis, eq. (2) gives a
satisfactory representation of a spin-up state as |+〉, but it implies that the spin-down
state would be −|+〉 = eiπ times the spin-up state, which is not really distinct from
the spin-up state.

We fix up things be writing,

|ψ〉 = eiδ

[
cos

θ

2
|+〉 + eiφ sin

θ

2
|−〉

]
, (3)

and identifying angles θ and φ with the polar and azimuthal angles of a unit 3-vector
in an abstract 3-space (sometimes called the Bloch sphere). That is, we associate the
state |ψ〉 with the unit 3-vector whose components are ψx = sin θ cos φ, ψy = sin θ sinφ
and ψz = cos θ. Now, the associations,

spin up ↔ (θ = 0, φ = 0) ↔ |+〉, spin down ↔ (θ = π, φ = 0) ↔ |−〉, (4)

given by eq. (3) are satisfactory.
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We then infer from eq. (3) that the spin-up and spin-down states in the direction (θ, φ)
are, to within an overall phase factor,

|+(θ, φ)〉 ∝
⎛
⎜⎝ cos θ

2

sin θ
2
eiφ

⎞
⎟⎠ , | − (θ, φ)〉 ∝ |+(π− θ, φ+π)〉 =

⎛
⎜⎝ sin θ

2

− cos θ
2
eiφ

⎞
⎟⎠ . (5)

The standard form of the spin-up/down states is,

| + (θ, φ)〉 =

⎛
⎜⎝ cos θ

2
e−iφ/2

sin θ
2
eiφ/2

⎞
⎟⎠ , | − (θ, φ)〉 =

⎛
⎜⎝ sin θ

2
e−iφ/2

− cos θ
2
eiφ/2

⎞
⎟⎠ , (6)

which is consistent with eq. (5), but perhaps does not obviously follow from it.

The Problem: Deduce the up and down 2-component spinor states along direction
(θ, φ) in a spherical coordinate system via rotation matrices (where first a rotation is
made by angle θ and then by angle φ).

Rotation Matrices

A general rotation in 3-space is characterized by 3 angles. We follow Euler in naming
these angles as in the figure above.1 The rotation takes the axis (x, y, z) into the axes
(x′, y′, z′) in 3 steps:

(a) A rotation by angle α about the z-axis, which brings the y-axis to the y1 axis.

(b) A rotation by angle β about the y1-axis, which brings the z-axis to the z′-axis.

(c) A rotation by angle γ about the z′-axis, which brings the y1-axis to the y′-axis
(and the x-axis to the x′-axis).

1From sec. 58 of Landau and Lifshitz, Quantum Mechanics, 2nd ed. (Pergamon, 1965),
http://kirkmcd.princeton.edu/examples/QM/landau_qm_65.pdf
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The 2 × 2 unitary matrix that corresponds to this rotation (of coordinate axes) is,

R(α, β, γ) =

⎛
⎜⎝ cos β

2
ei(α+γ)/2 sin β

2
ei(−α+γ)/2

− sin β
2
ei(α−γ)/2 cos β

2
e−i(α+γ)/2

⎞
⎟⎠

=

⎛
⎝ eiγ/2 0

0 e−iγ/2

⎞
⎠
⎛
⎜⎝ cos β

2
sin β

2

− sin β
2

cos β
2

⎞
⎟⎠
⎛
⎜⎝ eiα/2 0

0 e−iα/2

⎞
⎟⎠

= Rz′(γ)Ry1(β)Rz(α), (7)

where the decomposition into the product of 3 rotation matrices2 follows from the
particular rules,

Rx(φ) =

⎛
⎜⎝ cos φ

2
i sin φ

2

i sin φ
2

cos φ
2

⎞
⎟⎠ , (8)

Ry(φ) =

⎛
⎜⎝ cos φ

2
sin φ

2

− sin φ
2

cos φ
2

⎞
⎟⎠ , (9)

Rz(φ) =

⎛
⎜⎝ eiφ/2 0

0 e−iφ/2

⎞
⎟⎠ . (10)

Convince yourself that the combined rotation (7) could also be achieved if first a
rotation is made by angle γ about the z axis, then a rotation is made by angle β about
the original y axis, and finally a rotation is made by angle α about the original z axis.

There is unfortunately little consistency among various authors as to the conventions
used to describe rotations. I follow the notation of Barenco et al.,3 who appear to write
eq. (7) simply as,

R(α, β, γ) = Rz(γ)Ry(β)Rz(α). (11)

Occasionally one needs to remember that in eq. (11) the axes of the second and third
rotations are the results of the previous rotation(s).

Note that according to eqs. (8)-(10),

σx = σ1 = −iRx(180
◦), σy = σ2 = −iRy(180

◦), σz = σ3 = −iRz(180
◦),
(12)

and also,

σx = iRx(−180◦), σy = iRy(−180◦), σz = iRz(−180◦), (13)

so that the Pauli spin matrices are equivalent to the formal matrices for 180◦ rotations
only up to a phase factor i.

2The order of operations is that the rightmost rotation in eq. (7) is to be performed first.
3http://kirkmcd.princeton.edu/examples/QM/barenco_pra_52_3457_95.pdf
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Show that a more systematic relation between the Pauli spin matrices and the rotation
matrices is that eqs. (8)-(10) can be written as,

Ru(φ) = ei φ
2
û·σ, (14)

which describes a rotation of the coordinate axes in Bloch space by angle φ about the
û axis (in a right-handed convention).

Rather than rotating the coordinate axes, we may wish to rotate vectors in
Bloch space by an angle φ about a given axis û, while leaving the coordinate
axes fixed. The operator,

Ru(−φ) = e−i φ
2
û·σ (15)

performs this type of rotation. With this in mind, you can finally solve the main
problem posed on p. 2.

2. Helicity Conservation in High-Energy Electromagnetic Interactions of point-
like spin-1/2 particles.

Recalling pp. 86 and 88 of Lecture 6 of the Notes, general (spin-1/2) particle 4-spinors
u for plane-wave states,

ψ = u e−ipx = u e−ipμxμ

, (16)

with rest mass m, 3-momentum p and energy E =
√
p2 +m2, can be written as,

u =
√
E +m

⎛
⎜⎝ χ

p·σ
E+m

χ

⎞
⎟⎠ =

⎛
⎜⎝

√
E +mχ

p√
E+m

p̂ · σ χ

⎞
⎟⎠ =

⎛
⎜⎝

√
E +mχ

√
E +m p̂ · σ χ

⎞
⎟⎠ , (17)

where the 2-spinor χ obeys χ†χ = 1. Similarly, antiparticle 4-spinors v are associated
with plane-wave states,4,5

ψ̃ = v eipx, (18)

(note the sign change with respect to the form (16)), that can be written as,

v =
√
E +m

⎛
⎜⎝

p·σ
E+m

χ̃

χ̃

⎞
⎟⎠ =

⎛
⎜⎝

p√
E+m

p̂ · σ χ̃
√
E +mχ̃

⎞
⎟⎠ =

⎛
⎜⎝

√
E −m p̂ · σ χ̃
√
E +mχ̃

⎞
⎟⎠ , (19)

where χ̃ is a 2-spinor with χ̃†χ̃ = 1.

These states obey the Dirac equations i∂μγμψ = /pψ = mψ and i∂μγμψ̃ = −/pψ̃ = mψ̃,
which imply the 4-spinor equations /pu = mu and −/pv = mv.

4The antiparticle of particle a is often denoted as ā, but as ū is the adjoint of a Dirac 4-spinor u, we
write ã for the antiparticle of state a.

5Dirac interpreted his negative-energy solutions as related to “anti-electrons” on p. 52 of Quantised
Singularities in the Electromagnetic Field, Proc. Roy. Soc. London A 133, 60 (1931),
http://kirkmcd.princeton.edu/examples/QED/dirac_prsla_133_60_31.pdf.
That paper is also noteworthy for relating the possible existence of a magnetic monopole of pole strength p
to the electric charge e by ep = h̄/2.
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The positive and negative helicity spinor states for a particle with 3-momentum p
in direction (θ, φ) are χ+ = | + (θ, φ)〉 and χ− = | − (θ, φ)〉, respectively, recalling
eq. (6), while the helicity states of an antiparticle are χ̃+ = | − (θ, φ)〉 = χ− and
χ̃− = −| + (θ, φ)〉 = −χ+. In all cases, positive helicity means spin in the direction of
momentum p.

In the high-energy limit, these 4-spinors simplify to,

u→
√
E

⎛
⎜⎝ χ

p̂ · σ χ

⎞
⎟⎠ , v →

√
E

⎛
⎜⎝ p̂ · σ χ̃

χ̃

⎞
⎟⎠ , (20)

Give explicit forms of the helicity spinors u+(θ, φ), u−(θ, φ), v+(θ, φ) and v−(θ, φ)for
(anti)particles moving and at angles (θ, φ) to the +z-axis, and also their simplification
to u+(0), u−(0), v+(0) and v−(0) for motion along the z-axis in the high-energy limit.

If these are pointlike particles of charge e, their electromagnetic interaction is described
by the 4-current jμ = e γμ. Verify that the matrix elements 〈ū−(θ)|γμ|u+(0)〉 vanish
for μ = 0, 1, 2, 3, and similarly that 〈v̄+(θ)|γμ|u+(0)〉 = 0. Remember that v̄ = v†γ0,
etc.

Digression: Electric Charge Conjugation. The above claim that the antiparticle
helicity 2-spinors χ̃± are related to the particle helicity 2-spinors χ± by χ̃± = ±χ∓
can be justified by considerations of a transformation, called electric charge conjugation
with symbol C , between particles and their antiparticles (with respect to their elec-
tromagnetic interactions), such that ψ̃ = Cψ	 is the antiparticle state of a spin-1/2
particle ψ.6

6That ψ̃ = Cψ� and not ψ̃ = Cψ follows from the sign change in the spacetime waveform between
eqs. (16) and (18).

Charge conjugation leaves mass unchanged, such that a particle and its antiparticle have the same rest
mass m. This was not initially understood by Dirac, who first speculated that the antiparticle of an electron
is a proton, A Theory of Electrons and Protons, Proc. Roy. Soc. London A 126, 360 (1930),
http://kirkmcd.princeton.edu/examples/QED/dirac_prsla_126_360_30.pdf.
The charge-conjugation operator C was discussed (in a different representation, and not given a name) on
p. 130 of W. Pauli, Contributions mathématique à la théorie des matrices de Dirac, Ann. Inst. H. Poincaré
6, 109 (1936), http://kirkmcd.princeton.edu/examples/QED/pauli_aihp_6_109_36.pdf.
The term “charge conjugation” (but with the symbol L) may have been first used in H.A. Kramers, The use
of charge conjugated wavefunctions in the hole theory of the electron, Proc. Roy. Neder. Acad. Sci. 40, 814
(1937), http://kirkmcd.princeton.edu/examples/neutrinos/kramers_pknaw_40_814_37.pdf.
The term antimatter was introduced by Schuster in 1898, but in his vision antimatter had negative mass;
Potential Matter—A Holiday Dream, Nature 58, 367, 618 (1898),
http://kirkmcd.princeton.edu/examples/GR/schuster_nature_58_367_98.pdf
http://kirkmcd.princeton.edu/examples/GR/schuster_nature_58_618_98.pdf.
The present vision of antiparticles via electric charge conjugation of particles is perhaps closer to Kelvin’s
image method for a planar conductor, p. 288 of W. Thomson, Effects of Electrical Influence on Internal
Spherical and on Plane Conducting Surfaces, Camb. Dublin Math. J. 4, 276 (1849),
http://kirkmcd.princeton.edu/examples/EM/thomson_cdmj_4_276_49.pdf.
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One way to do this starts with the Dirac equation for a spin-1/2 particle state ψ,7

i∂μγμψ = mψ. (21)

We expect that the antiparticle state ψ̃ also satisfies the Dirac equation,

i∂μγμψ̃ = mψ̃. (22)

A clever step is to take the complex conjugate of eq. (21),

− i∂μγ∗μψ
∗ = mψ∗. (23)

Applying the desired charge-conjugation operator C to this, we have,

− i∂μCγ∗μψ
∗ = mCψ∗ = mψ̃. (24)

For this to be the Dirac equation (22),8 we require that,

− Cγ∗μ = γμC. (25)

You can verify that this implies the electric-charge-conjugation matrix operator to be,9

C = iγ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝ 0 iσ2

−iσ2 0

⎞
⎟⎠ . (26)

Then, applying the electric-charge-conjugation transformation to the particle 4-spinor
u of eq. (17), we obtain (on suppression of the overall factor

√
E +m) the antiparticle

spinor,

ũ = iγ2

⎛
⎜⎝ χ	

p·σ�

E+m
χ	

⎞
⎟⎠ =

⎛
⎜⎝ iσ2

p·σ�

E+m
χ	

−iσ2χ
	

⎞
⎟⎠ =

⎛
⎜⎝

p·σ
E+m

(−iσ2χ
	)

−iσ2χ
	

⎞
⎟⎠ =

⎛
⎜⎝

p·σ
E+m

χ̃

χ̃

⎞
⎟⎠ = v, (27)

using that fact (verify it!) that σ2σ
∗ = −σσ2. Hence, the antiparticle 2-spinor χ̃ is

related to its corresponding particle 2-spinor χ by,

χ̃ = −iσ2χ
	, χ = iσ2χ̃

∗. (28)

7This argument follows sec. 5.4, p. 107 of F. Halzen and A.D. Martin, Quarks and Leptons (Wiley, 1984),
http://kirkmcd.princeton.edu/examples/EP/halzen_martin_84.pdf.

8For ψ̃ = v eipx, eqs. (24)-(25) lead to the spinor form of the Dirac equation for antiparticles, −/pv = mv.
9Warning: Many people write Cγ0 for the matrix C of eq. (26).
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In particular, the helicity 2-spinors of eq. (6) transform under electric-charge conjuga-
tion as,

χ+ =

⎛
⎜⎝ cos θ

2
e−iφ/2

sin θ
2
eiφ/2

⎞
⎟⎠ → χ̃+ = −iσ2χ

∗
+ =

⎛
⎜⎝ − sin θ

2
e−iφ/2

cos θ
2
eiφ/2

⎞
⎟⎠ = χ−, (29)

χ− =

⎛
⎜⎝ − sin θ

2
e−iφ/2

cos θ
2
eiφ/2

⎞
⎟⎠ → χ̃− = −iσ2χ

∗
− =

⎛
⎜⎝ − cos θ

2
e−iφ/2

− sin θ
2
eiφ/2

⎞
⎟⎠ = −χ+, (30)

as claimed above.

3. The cross section for inelastic scattering of electrons off some target can be expressed
in terms of two generalized structure functions W1,2(q

2, ν) where q = pei − pef and
ν = q0 = Ei − Ef , as on p. 131, Lecture 8 of the Notes. If the inelastic scattering is
due to the interaction of the virtual photon emitted by the incident electron with a
spin-1/2, charge Q, mass m constituent of the target, such that the rest of the target is
a “spectator” to this interaction, then the cross section is that given on p. 99, Lecture
6 of the Notes, and we infer that,10

W1(q ∗ 2, ν) =
−q2

4m2
Q2 δ

(
ν +

q2

2m

)
, W2(q

2, ν) = Q2 δ

(
ν +

q2

2m

)
. (31)

An argument of Bjorken11 is that the lab-frame energy difference between the initial
and final electron can be written as,

Ei − Ef = ν = q0 =
qP

M
, (32)

where P is the energy-momentum 4-vector of the target (of rest mass M), which is
just P = (M, 0, 0, 0) in the lab frame. Then, in a frame in which the target has very
high momentum, the 4-vector p of a constituent which carries (scalar) fraction x of the
target’s 3-momentum can be written approximately as p ≈ xP . A consequence of this
approximation is that the constituent mass m is related by m2 = p2 ≈ x2P 2 = x2M2,
i.e., that m ≈ xM (as appropriate for consideration of very high-energy scattering).
This permits us to rewrite eq. (31) as12

W1 =
−q2

4M2x2
Q2 δ

(
ν +

q2

2Mx

)
, W2 = Q2 δ

(
ν +

q2

2Mx

)
. (33)

Supposing the constituents are distributed with the target (as viewed from a frame
in which the target has high speed) with probability f(x) dx, give expressions for the
generalized structure functions W1 and W2 in terms of a single variable x.

10C.G. Callan, Jr and D.J. Gross, High-Energy Electroproduction and the Constitution of the Electric
Current, Phys. Rev. Lett. 22, 156 (1969),
http://kirkmcd.princeton.edu/examples/EP/callan_prl_22_156_69.pdf.

11J.D. Bjorken and E.A. Paschos, Inelastic Electron-Proton and γ-Proton Scattering and the Structure
of the Nucleon, Phys. Rev. 185, 1975 (1969),
http://kirkmcd.princeton.edu/examples/EP/bjorken_pr_185_1975_69.pdf.

12A different version of this argument is given on p. 139, Lecture 8 of the Notes, where a Breit frame is
used.
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