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1. Two Body Decay

Consider the decay of the neutral π meson of (total) energy Eπ to two photons, π0 →
γγ.

(a) If the two photons are observed in the laboratory with energies E1 and E2 and
angle α between them, what is their invariant mass?

(b) If the decay of the π0 is isotropic in its rest frame, what is the laboratory distri-
bution dN/dEγ of the energies of the decay photons?

(c) What is the minimum opening angle, αmin, between the two photons in the lab
frame?

(d) What is the distribution dN/dα of the opening angle between the two photons in
the lab frame?

(e) If the two photons are detected at positions x1 and x2 in a plane perpendicular
to the direction of the π0 at a distance D, what is the projected impact point x
of the π0 had it not decayed? You may assume that |x1 − x2| � D, which is true
for most, but not quite all, decays if Eπ/mπ � 1.

(f) What is the maximum laboratory angle θmax between the direction of a photon
from π0 decay and the direction of the π0, supposing the photon is observed to
have energy Eγ � mπ?

(g) Suppose π0’s are produced in some scattering process with distribution Nπ(Eπ, θπ),
where angle θπ is measured with respect to the beam direction. That is,
Nπ(Eπ, θπ) dEπ dΩπ is the number of π0’s in energy interval dEπ centered about
energy Eπ that point towards solid angle dΩπ centered about angles (θπ, φπ).

A detector is placed at angle θ to the beam and records the energy spectrum
Nγ(Eγ , θ) of the photons that strike it. Show that the π0 spectrum can be related
to the photon spectrum by

Nπ(Eπ, θ) = −Eπ

2

dNγ(Eγ = Eπ, θ)

dEγ
, (1)

if Eπ � mπ.
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2. Neutrino Beam from Pion Decay

A typical high-energy neutrino beam is made from the decay of π mesons that have
been produced in proton interactions on a target, as sketched in the figure below.

Suppose that only positively charged particles are collected by the “horn.” The main
source of neutrinos is then the decay π+ → μ+νμ.

(a) Give a simple estimate of the relative number of other types of neutrinos than νμ

in the beam (due to decays in the decay pipe).

(b) If the decay pions have energy Eπ � mπ, what is the characteristic angle θC of
the decay neutrinos with respect to the direction of the π+?

(c) If a neutrino is produced with energy Eν � mπ, what is the maximum angle
θmax(Eν) between it and the direction of its parent pion (which can have any
energy)? What is the maximum energy Eν at which a neutrino can be produced
in the decay of a pion if it appears at a given angle θ with respect to the pion’s
direction?

Parts (d) and (f) explore consequences of the existence of these maxima.

(d) Deduce an analytic expression for the energy-angle spectrum d2N/dEνdΩ for neu-
trinos produced at angle θ ≤ θC to the proton beam. You may suppose that Eν �
mπ, that the pions are produced with an energy spectrum dN/dEπ ∝ (Ep −Eπ)

5,
where Ep is the energy of the proton beam, and that the “horn” makes all pion
momenta parallel to that of the proton beam.

(e) At what energy Eν,peak does the neutrino spectrum peak for θ = 0?

(f) Compare the characteristics of a neutrino beam at θ = 0 with an off-axis beam
at angle θ such that Eν,max(θ) is less than Eν,peak(θ = 0).

Facts: mπ = 139.6 MeV/c2, τπ = 26 ns, mμ = 105.7 MeV/c2, τμ = 2.2 μs. In this
problem, neutrinos can be taken as massless.
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3. Pseudorapidity Ridge

An unexpected feature in recent data from high energy pp collisions is the appearance of
a “ridge” along Δφ = 0 in Δη-Δφ space in 2-particle correlations in events that contain
at least 2 particles at moderately high transverse momentum, where η = − ln tan(θ/2)
and φ are the pseudorapidity and azimuthal angle of a particle relative to the pp axis.
See, for example, CMS Collaboration, Observation of long-range, near-side angular
correlations in proton-proton collisions at the LHC, JHEP09, 091 (2010),
http://kirkmcd.princeton.edu/examples/EP/cms_jhep09_091_10.pdf.

The peak at Δη = 0 = Δφ is due to ρ → ππ decay (although this is also attributed to
Bose-Einstein correlations among pions), and the “ridge” at Δφ ≈ π is attributed to
pairs of particles with transverse momentum opposite to that of the ρ → ππ.

The (open-ended) problem is to explain the “same-side ridge.”

The answer to this is not considered to be clear yet. You may, of course, consult recent
literature on this topic.
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Solutions

1. (a) Since a (real) photon has no mass, its energy and momentum are the same:
Eγ = Pγ .

In this part we suppose that photon 1 propagates along the +z axis, so its energy-
momentum 4-vector can be written (in units where c = 1) as

q1 = (E, Px, Py, Pz) = (E1, 0, 0, E1). (2)

We can define photon 2 to be moving in the x-z plane, so its 4-vector is

q2 = (E2, E1 sinα, , 0, E1 cos α). (3)

The invariant mass of the two photons is related by

m2 = (q1 + q2)
2 = q2

1 + q2
2 + 2q1 · q2 = 0 + 0 + 2E1E2(1 − cos α)

= 4E1E2 sin2 α/2. (4)

If we had defined the π0 to propagate along the +z axis, we could still define the
decay plane to be the x-z plane and write

q1 = (E1, E1 sin θ1, 0, E1 cos θ1), q2 = (E2,−E2 sin θ2, 0, E1 cos θ2), (5)

so that

m2 = (q1 + q2)
2 = 2E1E2(1 − cos(θ1 + θ2)) = 4E1E2 sin2 α/2, (6)

where the opening angle is α = θ1 + θ2.

(b) In this part we suppose the π0 propagates along the +z axis, and we define θ� as
the angle of photon 1 to the z axis in the rest frame of the π0.

The decay is isotropic in the rest frame, so the distribution is flat as a function
of cos θ�. We write

dN

d cos θ� =
1

2
, (7)

normalized to unity over the interval −1 ≤ cos θ� ≤ 1. The desired distribution
of photon energies can be related to this via

dN

dEγ
=

dN

d cos θ�

d cos θ�

dEγ
=

1

2

d cos θ�

dEγ
. (8)

To relate Eγ to cos θ�, we examine the transformation between the lab frame and
the rest frame of the π0, for which the boost is described by the Lorentz factors
γ = Eπ/mπ and β = vπ/c = Pπc/Eπ (although we use units where c = 1).

Of course, the energy and momentum of the photons in the π0 rest frame is
E�

γ = P �
γ = mπ/2. The 4-vector of photon i, for 1 = 1, 2, in the π0 rest frame is

therefore,

(E�
i , P

�
i,x, P

�
i,y, P

�
ı,z) =

mπ

2
(1,± sin θ�, 0,± cos θ�). (9)
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Then, the lab-frame energy of photon i is given by

Ei = γE�
i + γβP �

i,z = γ
mπ

2
(1 ± β cos θ�). (10)

Thus,
dEγ

d cos θ� = γβ
mπ

2
=

Pπ

2
, (11)

and the energy distribution follows from eq. (8) as

dN

dEγ
=

1

Pπ
. (12)

The distribution is flat, with limiting values of (Eπ ±Pπ)/2, according to eq. (10).

(c) Since the two decay products have equal mass (zero), the minimum decay angle
in the lab occurs at either cos θ� = 1 or 0. If cos θ� = 1, one of the photons goes
forward, and the other goes backwards. Since the mass of the photon is zero, its
backwards velocity is c, and the boost of the pion to the lab frame cannot overcome
this. The opening angle between the two photons is then π, a maximum rather
than a minimum. (If the decay products have mass, it is possible that the velocity
of the backward going particles is less than that of the parent, and both particles
go forward in the lab, with minimum opening angle of zero.)

We conclude that the minimum opening angle αmin occurs for the symmetric
decay, cos θ� = 0. In this case, the transverse momentum of the photons is mπ/2,
both in lab frame and the π0 rest frame. In the lab frame, the photons’ total
momentum equals their total energy, which is just Eπ/2 for the symmetric decay.
Hence,

sin
αmin

2
=

mπ

Eπ
=

1

γ
. (13)

(d) The distribution of decays in opening angle α can be written as

dN

dα
=

dN

d cos θ�

d cos θ�

dα
=

1

2

d cos θ�

dα
, (14)

recalling eq. (7).

One way to relate α = θ1 + θ2 and cos θ� is to combine eqs. (4) and (10) in the
form

sin2 α/2 =
m2

π

4E1E2
=

1

γ2(1 − β2 cos2 θ�)
, (15)

or

cos θ� =
1

β

√
1 − 1

γ2 sin2 α/2
=

√
γ2 sin2 α/2 − 1

γβ sinα/2
. (16)

Taking the derivative, we use eq. (14) to find

dN

dα
=

1

4γβ

cos α/2

sin2 α/2

1√
γ2 sin2 α/2 − 1

. (17)
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This distribution is peaked at αmin where sinαmin/2 = 1/γ, and vanishes at
αmax = π.

A subtle issue is revealed on integration of eq. (17), letting x = γ sinα/2, so that

∫ π

αmin

dN

dα
dα =

1

2β

∫ γ

1

dx

x2
√

x2 − 1
=

1

2β

√
γ2 − 1

γ
=

1

2
, (18)

using Dwight 282.01. The integral is only 1/2, rather than 1, because as the decay
angle θ� in the pion rest frame varies from 0 to π, the lab-frame opening angle
varies from αrm at θ� = 0 up to π (for θ� = π/2) and then back down to αmin at
θ� = π. That is, θ� is a double-valued function of α, so integration (once) over α
includes only half of the total decays.

If it is desired that the distribution dN/dα be normalized to unity, eq. (17) should
be multiplied by 2.

(e) The transverse momenta of the two decay photons (with respect to the lab di-
rection of the π0) are equal and opposite. When the observed separation of the
two photons obeys |x1 − x2| � D, the angles of the photons with respect to the
direction of the π0 are small, and the transverse momenta can be written as

Pi
xi − x

D
= Ei

xi − x

D
, (19)

Hence,
E1(x1 − x) = E2(x − x2), (20)

and the virtual impact point of the π0 is

x =
x1E1 + x2E2

E1 + E2
=

x1E1 + x2E2

Eπ
. (21)

(f) The transverse momentum of a decay photon with respect to the direction of the
π0 is

P⊥ = Pγ sin θ = Eγ sin θ, (22)

where θ is the angle between the direction of the photon and the π0. This quantity
is invariant with respect to the boost to the rest frame of the π0, so

P⊥ = P �
⊥ = P �

γ sin θ� =
mπ

2
sin θ�. (23)

Comparing eqs. (22) and (23) we see that

sin θ =
mπ

2Eγ
sin θ�. (24)

So long as θ ≤ π/2, we find that

sin θmax =
mπ

2Eγ
, (25)

6



and for Eγ � mπ,

θmax ≈ mπ

2Eγ
. (26)

However, there are cases when θ > π/2, for which P‖ = Pγ cos θ < 0. Recalling
the boost formalism of part (b),

P‖ = γπ(P
�
‖ + βπE

�) =
γπmπ

2
(cos θ� + βπ), (27)

we see that P‖ = 0 and θ = π/2 when cos θ� = −βπ. In this case,

Eγ = P⊥ =
mπ

2

√
1 − β2

π =
mπ

2γπ

=
m2

π

2Eπ

<
mπ

2
, (28)

since Eπ ≥ mπ. Thus, the result (25) holds for Eγ > mπ/2.

(g) We will use information about the photon spectrum for energies Eγ � mπ, so
the maximum angle between the photon and its parent π0 is negligibly small,
according to the result of part (f). Then, the probability that a photon hits a
detector of a fixed solid angle is the same as the probability that its parent π0

would have hit the detector, had the π0 not decayed. That is, we can ignore any
possible complication due to solid angle transformation between the π0 and the
photon.

According to eq. (12), the number Nγ(Eγ) of photons that appear in energy
interval dEγ due to the decay of a single π0 is

Nγ =
2

Pπ
≈ 2

Eπ
, (29)

where the factor of 2 occurs because two photon are produced in each decay,
and the approximation holds when Eπ � mπ so that it certainly applies when
Eγ � mπ.

If π0’s are produced with an energy spectrum Nπ(Eπ, θπ), then the energy spec-
trum of the decay photons observed in a detector centered on θπ is related by

Nγ(Eγ, θγ = θπ) =
∫ ∞

Eγ

2

Eπ
Nπ(Eπ, θπ) dEπ. (30)

Taking the derivative, we find

Nπ(Eπ, θπ) = −Eπ

2

dNγ(Eγ = Eπ, θγ = θπ)

dEγ
. (31)

A more detailed discussion of this problem has been given by R.M. Sternheimer, Energy
Distribution of γ Rays from π0 Decay, Phys. Rev. 99, 277 (1955),
http://kirkmcd.princeton.edu/examples/detectors/sternheimer_pr_99_277_55.pdf

For a discussion of the slightly more complicated case of π± decay, see
http://kirkmcd.princeton.edu/examples/offaxisbeam.pdf
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2. In this solution we use units where c = 1.

(a) Besides the νμ from the decay π+ → μ+νμ, the beam will also contain ν̄ν and νe

from the subsequent decay μ+ → e+νeν̄μ. Both of these decays occur (primarily)
in the “decay pipe” shown in the figure. As both the pions and muons of relevance
are relativistic in this problem, they both have about the same amount of time
to decay before they are absorbed in the “dump.” Hence, the ratio of number of
muon decays to pion decays is roughly the inverse of the ratio of their lifetimes,
i.e., about 0.01. Our simple estimate is therefore,

Nνe

Nνμ

=
Nν̄μ

Nνμ

≈ 0.01. (32)

Experts may note that an additional source of νe is the decay π+ → e+νe at the
level of 10−4. Also, K+ mesons will be produced by the primary proton interaction
at a rate about 10% that of π+. About 65% of K+ decays are to μ+νμ, which add
to the main νμ beam, but about 5% of the decays are to π+π0νe, which increases
the νe component of the neutrino beam by about 0.1 × 0.05 = 0.005.

(b) Parts (b)-(f) of this problem are based on the kinematics of charged-pion decay,
which are closely related to kinematic features of neutral-piondecay, π0 → γγ
(Prob. 1).

Experts may guess that the characteristic angle of the decay neutrinos with respect
to the parent pion is θC = 1/γπ = mπ/Eπ. The details of the derivation are needed
in part (c).

We consider the decay π → μν in the rest frame of the pion (in which quantities
will be labeled with the superscript �) and transform the results to the lab frame.

Energy-momentum conservation can be written as the 4-vector relation,

π = μ + ν, (33)

where the squares of the 4-vectors are the particle masses, π2 = m2
π, μ2 = m2

μ

and ν2 = 0. As we are not concerned with details of the muon, it is convenient
to rewrite eq. (33) as

μ = π − ν, (34)

and square this to find
m2

μ = m2
π − 2(π · ν). (35)

In the rest frame of the pion, its 4-vector can be written

π = (mπ, 0, 0, 0). (36)

Taking the z axis to be the direction of the pion in the lab frame, the 4-vector of
the (massless) neutrino in the pion rest frame can be written as

ν = (E�
ν , E

�
ν sin θ�, 0, E�

ν cos θ�), (37)
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since the energy and momentum of a massless particle are equal. The 4-vector
product (π · ν) = π0ν0 − πiνi is therefore

(π · ν) = mπE�
ν . (38)

Hence, from eq. (35) the energy of the neutrino in the pion rest frame is

E�
ν =

m2
π − m2

μ

2mπ
= 29.8 MeV, (39)

using the stated facts.

We can now transform the neutrino 4-vector (37) to the lab frame, using the
Lorentz boost γπ = Eπ/mπ,

ν = (Eν, Eν sin θ, 0, Eν cos θ)

= (γπE�
ν(1 + βπ cos θ�), E�

ν sin θ�, 0, γπE
�
ν(βπ + cos θ�)). (40)

The pion has spin zero, so the decay is isotropic in the pion rest frame. A relation
for the angle θ between the neutrino and its parent pion can be obtained from
the 1 and 3 components of eq. (40),

tan θ =
E�

ν sin θ�

γπE�
ν(βπ + cos θ�)

. (41)

The characteristic angle of the decay in the lab frame is usefully associated with
decays at θ� = 90◦ in the pion rest frame. Thus,

tan θC =
1

γπβπ

. (42)

When Eπ � mπ then γπ � 1, βπ ≈ 1, and

θC ≈ 1

γπ

=
mπ

Eπ
� 1. (43)

(c) We now consider the lab angle (41) between the neutrino and its parent pion with
emphasis on the neutrino energy rather than the pion energy. If Eν � mπ, then
Eπ � mπ also, so γπ � 1 and βπ ≈ 1. Then, we can write

tan θ ≈ E�
ν sin θ�

γπE
�
ν(1 + cos θ�)

≈ E�
ν sin θ�

Eν
, (44)

using the time component of eq. (40). Since sin θ� cannot exceed unity, we see
that there is a maximum lab angle θ relative to the direction of the pion at which
a neutrino of energy Eν can appear, namely

θmax ≈ E�
ν

Eν
≈ 30 MeV

Eν
, (45)

which is small for mπ � Eν.

If instead, the angle θ is given, eq. (44) also tells us that

Eν ≈ E�
ν sin θ�

tan θ
≤ E�

ν

tan θ
. (46)
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(d) We desire the neutrino spectrum in terms of the laboratory quantities Eν, θ and
φ. We expect that the spectrum is uniform in the azimuthal angle φ. We are
given the energy spectrum dN/dEπ ∝ (Ep − Eπ)5 of the parent pions, and we
have deduced that the spectrum is isotropic in the pion rest frame, i.e., flat in
cos θ�. Hence, we seek the transformation

d2N

dEνdΩ
∝ d2N

dEνd cos θ
=

d2N

dEπd cos θ�J(Eπ, cos θ�; Eν, cos θ) ∝ (Ep − Eπ)5J, (47)

where the Jacobian is given by

J(Eπ, cos θ�; Eν , cos θ) =

∣∣∣∣∣∣∣
∂Eπ

∂Eν

∂ cos θ�

∂Eν

∂Eπ

∂ cos θ
∂ cos θ�

∂ cos θ

∣∣∣∣∣∣∣ . (48)

The “exact” form of the Jacobian is somewhat lengthy, so we will simplify to the
extent we can by noting that when Eν � mπ, the parent pion has Eπ � mπ also,
and so βπ ≈ 1. Also, part (c) tells us that θ is very small for any value of θ�.

We already have relation (44) between Eν, tan θ and sin θ�, so we can write

cos θ� =
√

1 − sin2 θ� ≈
√√√√1 − E2

ν

E�2
ν

tan2 θ =

√√√√1 − E2
ν

E�2
ν

(
1

cos2 θ
− 1

)
. (49)

Thus,

∂ cos θ�

∂Eν
≈ −

Eν

E�2
ν

tan2 θ√
1 − E2

ν

E�2
ν

tan2 θ
≈ − Eνθ

2

E�2
ν cos θ� , (50)

for small θ, and

∂ cos θ�

∂ cos θ
≈

E2
ν

E�2
ν cos3 θ√

1 − E2
ν

E�2
ν

tan2 θ
≈ E2

ν

E�2
ν cos θ� . (51)

We can also use time components of eq. (40) to write

γπ =
Eπ

mπ
=

Eν

E�
ν(1 + βπ cos θ�)

≈ Eν

E�
ν(1 + cos θ�)

(52)

Hence,

∂Eπ

∂Eν
≈ mπ

E�
ν(1 + cos θ�)

− mπEν

E�
ν(1 + cos θ�)2

∂ cos θ�

∂Eν
≈ Eπ

Eν
+

E2
πθ

2

mπE�
ν cos θ� , (53)

and
∂Eπ

∂ cos θ
≈ − mπEν

E�
ν(1 + cos θ�)2

∂ cos θ�

∂ cos θ
≈ − E2

πEν

mπE�
ν cos θ� . (54)
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The Jacobian (48) is therefore

J ≈
∣∣∣∣∣∣∣

Eπ

Eν
+ E2

πθ2

mπE�
ν cos θ� − Eνθ2

E�2
ν cos θ�

− E2
πEν

mπE�
ν cos θ�

E2
ν

E�2
ν cos θ�

∣∣∣∣∣∣∣ =
EπEν

E�2
ν cos θ� , (55)

and hence the neutrino spectrum can be written from eq. (47) as

d2N

dEνd cos θ
∝ (Ep − Eπ)5EπEν

cos θ� . (56)

Because the factor cos θ� in the denominator of the Jacobian can go to zero, it is
possible that the neutrino flux is higher for nonzero values of the lab angle θ.

(e) On the axis, θ = 0, θ� = 0, and Eπ = mπEν/2E
�
ν ≈ 2Eν according to eq. (52). In

this case, the neutrino spectrum (56) is

d2N(θ = 0)

dEνd cos θ
∝
(
Ep − mπEν

2E�
ν

)5

E2
ν . (57)

The peak of the spectrum occurs at

Eν,peak =
4E�

ν

7mπ
Ep ≈ Ep

8
. (58)

(f) For an off-axis neutrino beam (at a nonzero value of angle θ) we must evaluate
the spectrum (56) using relations (49) and (52). This is readily done numerically.
For example, a plot of the pion energy Eπ needed to produce a neutrino of energy
Eν at various angles θ is shown below.

121086420
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As expected from part (c), we see that for a given angle θ, there is a maximum
possible neutrino energy, and as the neutrino energy approaches this value, a large
range of pion energies contributes to a small range of neutrino energies. This will
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result in an enhancement of the neutrino spectrum. If we desire the enhancement
at a particular neutrino energy, we should look for the neutrinos close to the angle
θmax given in eq. (45), which is independent of the proton/pion energy.

A numerical evaluation of the neutrino spectrum (56) for several values of angle
θ with respect to the proton/pion beam is shown below.
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We see that the spectrum of neutrinos at a nonzero angle is peaked at a lower
energy, and is narrower, than that at zero degrees, due to the existence of a
maximum possible neutrino energy (46) in decays at a given angle to the direction
of the parent pion. This effect is especially prominent when Eν,max(θ) ≈ (30
MeV)/θ is less than Eν,peak(θ = 0), as then there is a substantial rate of higher
energy pions all of which decay into a narrow band of neutrino energies at this
angle.

The spectral narrowing of an off-axis neutrino beam remains in more complete
calculations1 that include the nonzero transverse momenta of the pions before and
after passing through the “horn,” although the spectrum will not have such hard
edges, and the favored angle-energy combination is θ ≈ (50 MeV)/Eν.

In sum, the existence of a maximum energy for neutrinos that decay at a given
angle to their parent pions implies that many different pion energies contribute
to the this neutrino energy, which enhances the neutrino spectrum at this angle-
energy combination, θ ≈ (30-50 MeV)/Eν.

1D. Beavis et al., Long Baseline Neutrino Oscillation Experiment, E889, Physics Design Report, BNL
52459 (April 1995), Chap. 3, http://kirkmcd.princeton.edu/nufact/e889/chapter3a.pdf,
Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019,
http://arxiv.org/abs/hep-ex/0106019.
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3. The pseudorapidity “ridge” does not yet have a standard explanation. I am intrigued
by the comments of J.D. Bjorken, S.J. Brodsky and A.S. Goldhaber, Possible multi-
particle ridge-like correlations in very high multiplicity protonproton collisions, Phys.
Lett. B726, 344 (1013), http://kirkmcd.princeton.edu/examples/EP/bjorken_pl_b726_344_13.pdf.
A somewhat related suggestion is made by C.-Y. Wong, Momentum-kick model de-
scription of the ridge in Δφ-Δη correlations in pp collisions at 7 TeV, Phys. Rev. C
84, 024901 (2011), http://kirkmcd.princeton.edu/examples/EP/wong_prc_84_024901_11.pdf, which has
references to 37 other suggestions.
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