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1. Baryon Magnetic Moments in SU(2)

The requirement that the interaction Hamiltonian be an isoscalar leads to the under-
standing that the magnetic moment μ of spin-1/2 baryons has the form

μ = A +BI3, (1)

for particles within an isospin multiplet, where the constants A and B differ from
multiplet to multiplet.1 Deduce the one nontrivial relation among magnetic moments
of the basic spin-1/2 baryon octet that can be made from eq. (1). Is this prediction
testable by the methods used to measure magnetic moments of short-lived baryons?

If the form (1) also holds for the spin-3/2 baryon decuplet, what relations among their
magnetic moments are implied?2 Are these predictions testable?

2. Baryon Magnetic Moments in SU(3)

If SU(3) were a good symmetry, then relations like (1) should also hold for so-called U -
spin and V -spin, which provides relations among magnetic moments in of particles in
different isospin multiplets. While SU(3) is not an exact symmetry for baryon “flavor,”
Gell-Mann3 and Okubo4 had good success in relating baryon masses by supposing the
pattern of symmetry breaking was between, but not within, U-spin multiplets.

1R. Marshak, S. Okubo and G. Sudarshan, Consequences of Charge Independence for the Magnetic
Moments and Masses of Σ Hyperons, Phys. Rev. 106, 599 (1957),
http://kirkmcd.princeton.edu/examples/EP/marshak_pr_106_599_57.pdf.

2The magnetic moment μ of a spin-3/2 particle can be in four states with respect to some z-axis,
μz = μ, μ/3, −μ/3 and −μ. Note the appearance of a fractional quantum number.

3M. Gell-Mann, The Eightfold Way: A Theory of Strong Interaction Symmetry, CTSL-20 (1961),
http://kirkmcd.princeton.edu/examples/EP/gellmann_ctsl-20_61.pdf.

4S. Okubo, Note on Unitary Symmetry in Strong Interactions, Prog. Theor. Phys. 27, 949 (1962),
http://kirkmcd.princeton.edu/examples/EP/okubo_ptp_27_949_62.pdf.
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Hence, it seems reasonable to suppose that eq. (1) holds only for I-spin, and that
magnetic moments are the same for all members of a U-spin multiplet,5 but differ for
different U-spin multiplets. Show that the magnetic moments of the spin-1/2 baryon
octet, and the so-called transition moment 〈Σ0|μ|Λ〉, can then be expressed in terms
of μp and μn.

A result from prob. 1 is needed here. Note that the U3 = 0 states corresponding to the
I3 = 0 states Λ and Σ0 can be obtained from the latter via rotation by 120◦ in SU(3)
space (I3-Y space).

The present data are, in terms of the nuclear/nucleon magneton μN = eh̄/2mpc,

〈p|μ|p〉 = μp = 2.79μN , (2)

μn = −1.91μN , (3)

μΛ = −0.613 ± 0.004μN , (4)

μΣ+ = 2.46 ± 0.01μN , (5)

〈Σ0|μ|Λ〉 = −1.61 ± 0.08μN , (6)

μΣ− = −1.16 ± 0.03μN , (7)

μΞ0 = −1.25 ± 0.02μN , (8)

μΞ− = −0.651 ± 0.003μN , (9)

3. Baryon Magnetic Moments in the SU(6) Constituent-Quark Model

Deduce the quark flavor + spin wavefunctions for the spin-up states of the spin-1/2
baryon octet, and use these to predict their magnetic moments.

In this model we suppose the quarks have Dirac magnetic moments,

μq =
Qqh̄

2mqc
, (10)

where mq is the (constituent-model) mass of the quark.6 Use the data given in prob. 2
for μp, μn and μΛ to determine mu, md and ms, and give model predictions for the re-
maining baryon-octet magnetic moments (including the transition moment 〈Σ0|μ|Λ〉).
The quarks are fermions, so the total wavefunction should be antisymmetric under
quark exchange. There is no orbital angular momentum in the quark wavefunctions
for the baryon octet, so the spatial part of the wavefunctions are symmetric under
quark exchange. In the SU(6) symmetry of quark flavor + spin it seems most natural
to consider the baryon octet and decuplet as comprising the symmetric multiplet 56
= (8,2) + (10,4), which seemed initially to contradict that quarks are fermions. Only
in the 1970’s did it become clear that quarks carry color charge that obeys an SU(3)

5The Dirac magnetic moment a spin-1/2 particle is Qh̄/2Mc, so if SU(3) is a good symmetry all baryon
octet masses are the same, and the magnetic moments should be the same within U -spin multiplets for which
the members have the same charge. And, the magnetic moments of the U = 1 and U = 0 multiplets differ
only by their sign. This factoid turns out to be equivalent to the requirement that the sum of the baryon
octet magnetic moments is zero if SU(3) is a good symmetry.

6If SU(3) were a good symmetry for quark flavor then all quarks would have the same mass mq .

2



color symmetry in which hadrons are color singlets,7 which are antisymmetric under
exchange.8 Hence, you are to construct SU(18) = SU(3)flavor×SU(2)spin× SU(3)color

wavefunctions in which the SU(3)flavor×SU(2)spin part is exchange symmetric, and the
SU(3)color part is antisymmetric (which latter part need not be displayed in your solu-
tion).

4. Show that the relative color-force amplitudes for the qq colored-quark states ψcolor =
(rr− gg)/

√
2 and (2bb− rr− gg)/

√
6 due to the exchange of a single color-octet gluon

are 1/3 (as are the related amplitudes 〈rg|color|rg〉, etc., discussed on pp. 262-265,
Lecture 14 of the Notes). The implication is that color-octet qq states are not bound.

7H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the Color Octet Gluon Picture, Phys. Lett.
47B, 365 (1973), http://kirkmcd.princeton.edu/examples/EP/fritzsch_pl_b47_365_73.pdf.

8The only antisymmetric qqq multiplet in color SU(3), 3×3×3 = 1+8+8� +10, is the 1. The r, g, b
color singlet wavefunction is ψcolor = (rgb − grb+ gbr − bgr + brg − rbg)/

√
(6).
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Solutions

1. The two constants A and B in eq. (1) provide no constraints unless the isospin is 1 or
higher. In the spin-1/2 baryon octet, we learn something nontrivial from this equation
only for the isotriplet Σ+, Σ0, Σ−,

μΣ+ = A +B, μΣ0 = A, μΣ− = A−B, (11)

and hence,

μΣ0 =
μΣ+ + μΣ−

2
. (12)

Unfortunately, this relation is not testable because the Σ0 decays rapidly to Λ + γ,
which electromagnetic decay conserves parity, and is independent of the direction of
the magnetic moment of the Σ0.

The spin-1/2 baryon decuplet include the isoquartet Δ++, Δ−, Δ0, Δ− and the
isotriplet Σ�+, Σ�0, Σ�−, for which eq. (1) implies

μΣ�0 =
μΣ�+ + μΣ�−

2
. (13)

and

μΔ++ = A +
3

2
B, μΔ+ = A+

1

2
B, μΔ0 = A− 1

2
B, μΔ− = A− 3

2
B, (14)

so we predict,

2A = μΔ++ + μΔ− = μΔ+ + μΔ0 , B =
μΔ++ − μΔ−

3
= μΔ+ − μΔ0. (15)

However, all of these baryons decay quickly by strong interactions, which conserve
parity, so their magnetic moments cannot be analyzed.

The only member of the baryon decuplet whose magnetic moment can be measured
is the Ω−, with strangeness −3, which must decay weakly (parity nonconserving) to
violate strangeness. Its magnetic moment has been measured9 to be μΩ− = 2.02 ±
0.06μN , where μN = eh̄/mpc is the so-called nuclear/nucleon magneton.

2. From the diagram on p. 1 we see that p and Σ+ are members of a U-spin doublet, as
also are Σ− and Ξ−. Hence, two predictions of the slightly broken SU(3) model are

μp = μΣ+ , μΣ− = μΞ−. (16)

We also predict that the moments are the same within the U-spin triplet,

μn = μΞ0 = μ|U=1,U3=0〉. (17)

9N.B. Wallace et al., Precision Measurement of the Ω− Magnetic Moment, Phys. Rev. Lett. 74, 3732
(1995), http://kirkmcd.princeton.edu/examples/EP/wallace_prl_74_3732_95.pdf.
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The U-spin states can be obtained from the I-spin states by a rotation by 120◦ keeping
the axes fixed, which is equivalent to a rotation by −120◦ of the axes keeping the states
fixed. Hence,

⎛
⎜⎝ |U = 1, U3 = 0〉

|U = 0, U3 = 0〉

⎞
⎟⎠ =

⎛
⎜⎝ cos 120◦ − sin 12◦

sin 120◦ cos 120◦

⎞
⎟⎠

⎛
⎜⎝ Σ0

Λ

⎞
⎟⎠ =

1

2

⎛
⎜⎝ Σ0 −√

3Λ
√

3Σ0 + Λ

⎞
⎟⎠ (18)

and so,

μ|U=1,U3=0〉 = 〈(Σ0 −√
3Λ)/2|μ|(Σ0 −√

3Λ)/2〉 =
μΣ0

4
−

√
3〈Σ0|μ|Λ〉

2
+

3μΛ

4
. (19)

μ|U=0,U3=0〉 = 〈(
√

3Σ0 + Λ)/2|μ|(
√

3Σ0 + Λ)/2〉 =
3μΣ0

4
+

√
3〈Σ0|μ|Λ〉

2
+
μΛ

4
. (20)

0 = 〈U = 1, U3 = 0|μ|U = 0, U3 = 0〉 = 〈(Σ0 −√
3Λ)/2|μ|(√3Σ0 + Λ)/2〉

=

√
3μΣ0

4
− 〈Σ0|μ|Λ〉

2
−

√
3μΛ

4
. (21)

From eq. (21) we have

〈Σ0|μ|Λ〉 =

√
3(μΣ0 − μΛ)

2
, (22)

so eqs. (17) and (19)-(21) can be rewritten as

μn = μΞ0 = μ|U=1,U3=0〉 =
3μΛ

2
− μΣ0

2
, μ|U=0,U3=0〉 =

3μΣ0

2
− μΛ

2
. (23)

The auxiliary requirements that the baryon octet moments sum to zero and that
μ|U=1,U3=0〉 = −μ|U=0,U3=0〉 both imply that

μΛ = −μΣ0

(
=
μn

2

)
, (24)

and we should recall eq. (12) from prob. 1 that

μΣ− = 2μΣ0 − μΣ+ (= −μp − μn). (25)

We now have relations for the baryon octet magnetic moments in terms of μp and μn,

μΛ =
μn

2
, μΣ+ = μp, μΣ0 = −μn

2
, μΣ− = −μp − μn, (26)

〈Σ0|μ|Λ〉 = −
√

3μn

2
, μΞ0 = μn, μΞ− = −μp − μn. (27)

As noted in prob. 1, μΣ0 cannot be measured, so the predictions μΣ0 = −μn/2 and
(22) cannot be tested (although, perhaps surprisingly, 〈Σ0|μ|Λ〉 can be measured).10

10P.C. Peterson et al., Measurement of the Σ0-Λ Transition Magnetic Moment, Phys. Rev. Lett. 57, 949
(1986), http://kirkmcd.princeton.edu/examples/EP/peterson_prl_57_949_86.pdf.
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These SU(3) predictions were first made in 1961 (shortly after Gell-Mann’s landmark
paper) by a more abstract argument.11

The present data are

〈p|μ|p〉 = μp = 2.79μN , (28)

μn = −1.91μN , (29)

μΛ = −0.613 ± 0.004μN , (30)

μΣ+ = 2.46 ± 0.01μN , (31)

〈Σ0|μ|Λ〉 = −1.61 ± 0.08μN , (32)

μΣ− = −1.16 ± 0.03μN , (33)

μΞ0 = −1.25 ± 0.02μN , (34)

μΞ− = −0.651 ± 0.003μN , (35)

which indicate that the SU(3) predictions (26)-(27) for the baryon magnetic moments
are only roughly correct.

Note also that SU(3) makes no prediction as to the relation between μp and μn.

3. We start to construct the spin-1/2 baryon octet states in the quark model beginning
with p = uud. We display wavefunctions only for the spin up states.

Recall that SU(3) octets have mixed (exchange) symmetry, so we do not expect the
flavor and spin parts of the wavefunction to factorize. Since isospin should remain
a good subsymmetry, we note that the uu combination has I = 1, I3 = 1, which is
part of a flavor symmetric isotriplet.12 If we accept that physical quark states must
have a symmetric flavor-spin wavefunction, with overall antisymmetry being associated
with their color-singlet wavefunction, then the flavor symmetric uu state must have
a symmetric spin state, and hence S = 1 (rather than S = 0 as also possible for a
spin-1/2 pair).

A spin-up proton can then consist of a uu with Sz = 1, i.e., u↑u↑ and d with Sz = −1/2,
i.e., d↓, as well as a uu with Sz = 0, i.e., (u↑u↓+u↓u↑)/√2, and d with Sz = 1/2, i.e.,
d↑. Using the appropriate Clebsch-Gordon coefficients, we have

p↑ =

√
2

3
|1, 1〉|1/2,−1/2〉 −

√
1/3|1, 0〉|1/2, 1/2〉 =

√
2

3
u↑u↑d↓ −

√
1/3

u↑u↓ + u↓u↑√
2

d↑

=
2u↑u↑d↓ − u↑u↓d↑ − u↓u↑d↑√

6
. (36)

To have full symmetry under quark flavor exchange the wave function has 6 more terms
that are permutations of the above form,

p↑ = (37)

2u↑u↑d↓ − u↑u↓d↑ − u↓u↑d↑ + 2u↑d↑u↓ − u↑d↓u↑ − u↓d↑u↑ + 2d↑u↑u↓ − d↑u↓u↑ − d↓u↑u↑√
18

.

11S. Coleman and S.L. Glashow, Electrodynamic Properties of Baryons in the Unitary Symmetry Scheme,
Phys. Rev. Lett. 6, 423 (1961), http://kirkmcd.princeton.edu/examples/EP/coleman_prl_6_423_61.pdf.

12In SU(3) language, we are considering (3 × 3) × 3 = (3� + 6) × 3 = 1 + 8 + 8′ + 10, and noting the
that uu diquark is part of the symmetric 6 multiplet.
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For the rest of this problem, it suffices to consider the abbreviated form (36), with the
understanding that permutations are included in the full form. This abbreviated form
can be written in a factorized form (although the full form is not factorizable),

p↑ = uud
2↑↑↓ − ↑↓↑ − ↓↑↑√

6
. (38)

The 6 states on the perimeter of the octet all have two like quarks, so their wavefunc-
tions are all of the form (38).

n↑ = ddu
2↑↑↓ − ↑↓↑ − ↓↑↑√

6
, (39)

Σ+↑ = uus
2↑↑↓ − ↑↓↑ − ↓↑↑√

6
, (40)

Σ−↑ = dds
2↑↑↓ − ↑↓↑ − ↓↑↑√

6
, (41)

Ξ0↑ = ssu
2↑↑↓ − ↑↓↑ − ↓↑↑√

6
, (42)

Ξ−↑ = ssd
2↑↑↓ − ↑↓↑ − ↓↑↑√

6
. (43)

Of the two sates at the center of the octet, the Σ0 is the isospin partner of the Σ+ and
Σ−, so its wavefunction can be obtained from that of the Σ+ by lowering the u quarks
to d quarks,

Σ0↑ = (uds+ dus)
2↑↑↓ − ↑↓↑ − ↓↑↑√

12
. (44)

The λ is orthogonal to the Σ0, so the ud pair in the Λ has I = 0 and S = 0 so as to be
overall exchange symmetric,

Λ↑ = (uds− dus)
↑↓↑ − ↓↑↑

2
. (45)

The magnetic moment of (spin-up) baryons in the constituent quark model is just the
sum of the magnetic moments of the (constituent) quarks, taking into account whether
the quarks have spin up or down.

μp = 〈p↑|μ|p↑〉 =
〈2↑↑↓ − ↑↓↑ − ↓↑↑|√

6
(μu + μu + μd)

|2↑↑↓ − ↑↓↑ − ↓↑↑〉√
6

=
4(μu + μu − μd) + (μu − μu + μd) + (−μu + μu + μd)

6

=
4

3
μu − 1

3
μd, (46)

μn =
4

3
μd −

1

3
μu, (47)

μΛ = μs, (48)
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μΣ+ =
4

3
μu − 1

3
μs, (49)

μΣ0 =
2

3
μu +

2

3
μd −

1

3
μs, (50)

〈Σ0|μ|Λ〉 =

√
1

3
μd −

√
1

3
μu, (51)

μΣ− =
4

3
μd −

1

3
μs, (52)

μΞ0 =
4

3
μs −

1

3
μu, (53)

μΞ− =
4

3
μs −

1

3
μd, (54)

If quark-flavor SU(3) were an exact symmetry then all quark masses would be the
same, and the Dirac magnetic moments of the quarks would be

μu =
2eh̄

6mq

, μd = − eh̄

6mq

, μs = − eh̄

6mq

, (55)

and the moments (47)-(54) would given in terms of μp = eh̄/2mq (= 2.79μN ) as

μn = μΣ0 = −2

3
μp = −1.86μN , μΛ = −1

3
μp = −0.93μN , μΣ+ = μp = 2.79μN ,

μΣ− = μΞ− = −2

9
μp = −0.62μN , μΞ0 = −μp = −2.79μN ,

〈Σ0|μ|Λ〉 = −
√

3

3
μp = −1.61μN . (56)

Of these predictions, the data given in prob. 2 are in reasonable agreement with μn,
μΣ+ , μΞ− and 〈Σ0|μ|Λ〉.
In a model of broken flavor symmetry, we suppose that the masses of the u, d and s
quarks are different, such that the magnetic moments of the p, n and Λ are fit exactly.
From eqs. (46)-(48) and the data from prob. 2, we have that

μu =
4μp + μn

5
= 1.85μN ,

2

3mu
=

1.85

mp
, mu = 339 MeV, (57)

μd =
μp + 4μn

5
= −0.97μN ,

1

3md
=

0.97

mp
, md = 323 MeV, (58)

μs = μΛ = −0.613μN ,
1

3ms

=
0.613

mp

, ms = 511 MeV, (59)

and the moments (49)-(54) are now predicted to be μΣ+ = 2.67μN , μΣ− = −1.09μN ,
〈Σ0|μ|Λ〉 = −1.63μN , μΞ0 = −1.75μN , μΞ− = −0.49μN . Except for μΞ−, these predic-
tions (based on more fitted parameters) are better than those of eq. (56). However,
with time the successes of the constituent quark model have come to be regarded as
somewhat accidental, with the “bare” masses of the u and d quarks being near zero.
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4. The color-force amplitude for the qq state ψcolor = (rr−gg)/√2 has contributions from
the six single-gluon-exchange graphs (in which time flows upwards),

where the factors at the bottom and top of each graph are the amplitudes of the
initial and final states of the graphs in the state (rr − gg)/

√
2, and the vertex factors

can be read off from the color content of the exchanged gluon with the convention
that the vertex factor for rquark → rquark + rrgluon has the opposite sign to that for
rrgluon + rquark → rquark. Then,

〈(rr − gg)/
√

2|gluon|(rr − gg)/
√

2〉 = −1

4
− 1

12
+

1

2
− 1

4
− 1

12
+

1

2
=

1

3
. (60)

Similarly, the color-force amplitude for the qq state ψcolor = (2bb − rr − gg)/
√

6 has
contributions from the 12 single-gluon-exchange graphs (one of which is null),
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Thus,

〈(2bb − rr − gg)/
√

6|gluon|(2b−̄rr − gg)/
√

6〉
= 0 − 16

36
+

2

6
+

2

6
− 1

12
− 1

36
− 1

6
+

2

6
− 1

12
− 1

36
− 1

6
+

2

6
=

1

3
. (61)

This problem has been a “brute force” approach, via consideration of all relevant
diagrams. More compact approaches are available, along the lines of prob. 4, set
5. See, for example, sec. 8.1 of C. Quigg, Gauge Theories of the Strong, Weak, and
Electromagnetic Interactions, 2nd ed. (Princeton U. Press, 2013). Not being a theorist,
I have found the “brute force” approach more instructive.

A technicality is that for diagrams with a gluon like, say, rg the same coupling would
hold if that gluon were replaced by its antigluon gr. Strictly, in the top-right diagram
on p. 9, the gluon should be rg if the left vertex occurs at earlier time than the right,
while it should be gr if the right vertex occurs earlier. Since the diagram method
should not be dependent on the time ordering of the two vertices, we infer that a gluon
and antigluon, such as rg and gr should be re-expressed as the states (rg + gr)/

√
2

and (rg− gr)/
√

2. Then, the symmetric combination of these gluons leads to the same
amplitude for a diagram as reported on p. 9, while the antisymmetric combination
leads to zero amplitude. That is, the conclusions based on the diagrams on p. 9 are
valid, although they were a bit näıve in their use of gluons like rg.
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