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1. The spin-1 vector mesons can be taken to have quark content: ρ0 = (uū−dd̄)/√2, ω0 =
(uū+ dd̄)/

√
2, φ = ss̄, J/ψ = cc̄, Υ = bb̄ (Vtop = tt̄ will not exist).

The decays V → e+e− proceed via a single intermediate photon, where V is a vector
meson. In the quark model, this corresponds to the reaction qq → γ → e+e−, whose
cross section was discussed on p. 108, Lecture 7 of the Notes. Deduce the decay rate
Γ for this by recalling (p. 13, Lecture 1 of the Notes) that

Rate = Γa+b→c+d = Nvrel σa+b→c+d, (1)

where N is the number of candidate scatters per second per unit volume, and vrel is the
relative velocity of the initial-state particles a and b. In case of a two-particle bound
state, N = |ψ(0)|2 is the probability that both particles are at the origin.

Predict the decay rates to e+e− for the five vector mesons in the model that the
strong interaction between (colored) quarks at short distances can be described by the
Coulomb-like potential V (r) ≈ −4αS/3r.

Compare with data summarized at http://pdg.lbl.gov/2013/tables/contents_tables_mesons.html.

What do we learn from this about possible energy dependence of αS?

2. In the vector-meson decays V → π0γ, ηγ, the meson spin changes from 1 to 0. Hence,
this must be an M1 (magnetic dipole) transition. In the quark model the M1 electro-
magnetic transition flips a single quark spin, but does not change quark flavor, with
matrix element proportional to the relevant quark magnetic moment(s). Suppose the
quarks have Dirac moments Qq/2mq where mu ≈ md ≈ 2

3
ms. Predict the relative

decay rates (not just matrix elements) to π0γ and ηγ for the ρ0, ω0, φ and J/ψ vector
mesons.

Recall that in the quark model the spin-0-octet neutral mesons have quark wavefunction
π0 = (uu−dd)/√2 and η(548) = (2ss−uu−dd)/√6. Compare with data summarized
at http://pdg.lbl.gov/2013/tables/contents_tables_mesons.html.

3. The ψ′(3685) vector meson can decay to χ(3415) + γ. The χ particle is believed to
be a 3P0 cc̄ state. If so, predict the angular distribution of the γ relative to the
direction of the electron supposing the ψ′ is produced in a colliding-beam experiment
e+e− → ψ′ → χγ. Recall that at high energies the one-photon annihilation of e+e−

proceeds entirely via transversely polarized photons (Sz = ±1).
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Crossing Symmetry

We have previously noted that the inverse processes a+b↔ c+d have common matrix
elements, and that these process may proceed via single-particle exchange in any of
the s-, t- or u-channels with related matrix elements. Such relations among matrix
elements for related processes are sometimes called crossing symmetry.

In the next 3 problems you will use crossing symmetry to convert the matrix element
for muon decay, μ → eνeνμ to results for 3 related processes.

The square of the matrix element for the 4-particle vertex μνμeνe of unpolarized par-
ticles in the Fermi theory of the weak interaction is, in terms of the particle 4-vectors
p,

|M |2 = 32G2
F (pμ · pνe)(pe · pνμ), (2)

where GF is Fermi’s constant, and the average over initial spins and sum over final
spins is the same for all variants of the vertex.

4. Deduce the cross section for the neutrino-scattering reaction νμ + e− → μ− + νe.

Recall that the differential cross section for 2-particle scattering a+ b→ c+ d can be
written in the center of mass frame as (p. 80, Lecture 5 of the Notes)

dσ

dΩ�
=

|M |2 Pf
64π2sPi

, (3)

where Pf is the momentum of the final-state particles c and d, Pi is the momentum of
the initial-state particles a and b, and s = (pa + pb)

2 = (pc + pd)
2 is the square of the

total energy in the center of mass frame. Express the cross section in terms of s, and
then evaluate this in the lab frame where the electron is at rest and the muon neutrino
has energy E.

5. The process μ+e− → μ−e+ was considered by Pontecorvo in 1957 as a possible example
of quantum oscillations of a two-particle system,1 as this reaction could proceed via a
two-neutrino intermediate state.

While the reaction μ+e− → νμνe is unlikely ever to be observed, it is now understood
that the related reaction e+e− → νeνe is the main source of neutrino production in
supernovae, and a key process in their history.

Use a suitable variant of the matrix element (2) to deduce the cross section for e+e− →
νeνe. Work in the center-of-mass frame, and express the result in terms of the invariant
s.

1B. Pontecorvo, Mesonium and Antimesonium, Sov. Phys. JETP 6, 429 (1957),
http://kirkmcd.princeton.edu/examples/EP/pontecorvo_spjetp_6_429_57.pdf.
This landmark paper introduced the term mesonium, raised the possibility that νe and νµ are different
particles, made the first speculations about neutrino oscillations, and led to the notion of conservation of
lepton number, as developed by G. Feinberg and S. Weinberg, Law of Conservation of Muons, Phys. Rev.
Lett. 6, 381 (1961), http://kirkmcd.princeton.edu/examples/EP/feinberg_prl_6_381_61.pdf.
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The divergence of this cross section at low energy is avoided by Nature in that the
electron and positron would not scatter but rather would bind into a positronium
atom.

6. Some positronium atoms (which of the ortho- and para- states?) can decay to two
neutrinos. Deduce the decay rate Γ for this by recalling (p. 13, Lecture 1 of the Notes)
that

Rate = Γa+b→c+d = Nvrelσa+b→c+d, (4)

where N is the number of candidate scatters per second per unit volume, and vrel is the
relative velocity of the initial-state particles a and b. In case of a two-particle bound
state, N = |ψ(0)|2 is the probability that both particles are at the origin.
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Solutions

1. Vector mesons decay to e+e− via qq annihilation at the origin (in the rest frame of the
mason) to a single photon, which materializes as an e+e− pair. The decay rate is then
dependent on the square of the relevant quark charge(s), as well as on the square of

the wavefunction at the origin,
∣∣∣ψqq(0)∣∣∣2.

In more detail, the decay rate ΓV→e+e− can be written in terms of the scattering cross
section σqq→e+e− as

ΓV→e+e− = Nvrel σqq→e+e− , (5)

where N is the number of “scatters” (in which the quark and antiquark meet at the
center of the vector meson “atom”) per unit volume, which can be taken as equal to

the probability
∣∣∣ψqq(0)∣∣∣2 of the atomic wave function at the origin, which for a 1/r

potential (4αS/3)/r is

ψ(S wave, r) =
e−r/a0

√
πa

3/2
0

, where a0 =
1

(4αS/3)mreduced

=
3

2αSmq

, (6)

recalling the Bohr atom, and the relative velocity vrel of the quark and antiquark can
be written as

vrel = 2vq =
2P �

i

E�
i

= 2

√
1 − 4m2

q

s
, (7)

where E�
i =

√
s/2 = mV /2. The velocity of the quarks inside the vector meson “atom”

is low, so we need to recall the full form of the cross section, given on the bottom of
p. 108, Lecture 7 of the Notes,

σqq→e+e− =
4πα2Q2

q

3s

√√√√1 − 4m2
e/s

1 − 4m2
q/s

(1 + 2m2
e/s)(1 + 2m2

q/s). (8)

We can neglect the terms m2
e/s for the vector mesons, but not the terms m2

q/s. From
eq. (7) we have that 2m2

q/s = (1 − v2
q)/2, so the cross section can be written as

σqq→e+e− ≈ 4πα2Q2
q

3svq

3 − v2
q

2
≈ 2πα2Q2

q

m2
V vq

, (9)

as vq � 1. Before using eq. (9) in (5), we recall that the cross section for unpolarized
quarks contains an intial-state spin factor 1/(2sq + 1)1 = 1/4, while the decay rate ΓV
contains a spin factor 1/(2sV + 1) = 1/3, so we need to include a factor 4/3 in eq. (5),

ΓV→e+e− ≈ 4

3
2vq

2πα2Q2
q

m2
V vq

∣∣∣ψqq(0)∣∣∣2 =
16πα2Q2

q

3m2
V

8α3
Sm

3
q

27π
≈ 16α2Q2

qα
2
SmV

81
, (10)

where we take mq ≈ mV /2 in the last step.
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In the case of three colors for each quark, the probability
∣∣∣ψqq(0)∣∣∣2 for each colored

quark is 1/3 that for the case of no color, so on summing over color the result (10) is
unchanged.

For the ρ0 and ω, the effective quark charge is the quark charge weighted by the
amplitudes for the uu and dd in the wavefunction. Thus, we predict,2

ρ0 =
uu− dd√

2
⇒ Γρ0→e+e− ∝

∣∣∣∣∣qu − qd√
2

∣∣∣∣∣
2

α3
Smρ =

1

2
α3
Smρ, (11)

ω =
uu+ dd√

2
⇒ Γω→e+e− ∝

∣∣∣∣∣qu + qd√
2

∣∣∣∣∣
2

α3
Smω =

1/9

2
α3
Smω =

1

18
α3
Smω, (12)

φ = ss̄ ⇒ Γφ→e+e− ∝ q2
sα

3
Smφ =

1

9
α3
Smφ, (13)

J/ψ = cc ⇒ ΓJ/ψ→e+e− ∝ q2
cα

3
SmJ/ψ =

4

9
α3
SmJ/ψ, (14)

Υ = bb ⇒ ΓΥ→e+e− ∝ q2
bα

3
SmΥ =

1

9
α3
SmΥ. (15)

From http://pdg.lbl.gov/2013/tables/contents_tables_mesons.html we learn that

Γρ0→e+e− = 7.04 ± 0.06 keV, (16)

Γω→e+e− = 0.60 ± 0.02 keV, (17)

Γφ = 4.26 ± 0.04 MeV,
Γφ→e+e−

Γφ
= 2.95 ± 0.03 × 10−4,

Γφ→e+e− = 1.27 ± 0.02 keV, (18)

ΓJ/ψ→e+e− = 5.55 ± 0.14 keV, (19)

ΓΥ→e+e− = 1.34 ± 0.02 keV. (20)

The predictions for the relative decay widths are remarkably consistent with α3
SmV =

const., i.e., that the strong interaction becomes weaker at higher energy scales.

Certain considerations of broken SU(3) have led3 to the additional prediction that

mρ

3
Γρ0→e+e− = mωΓω→e+e− +mφΓφ→e+e−, (21)

2Predictions of this type were first made by Y. Nambu and J.J. Sakurai, Rare Decay Modes of the ω (η)
Meson, Phys. Rev. Lett. 8, 79 (1962), http://kirkmcd.princeton.edu/examples/EP/nambu_prl_8_79_62.pdf.
The first quark-model version was by R. Van Royen and V. Weisskopf, Hadron Decay Processes and the
Quark Model, Nuovo Cim. 50, 617 (1967),
http://kirkmcd.princeton.edu/examples/EP/vanroyen_nc_50_617_67.pdf.
The color-force wavefunction was added by T. Appelquist and H.D. Politzer, Heavy Quarks and e+e−

Annihilation, Phys. Rev. Lett. 34, 43 (1975),
http://kirkmcd.princeton.edu/examples/EP/appelquist_prl_34_43_75.pdf.

3T. Das, V.L. Mathur and S. Okubo, Asymptotic SU(3) and Vector Meson Decays, Phys. Rev. Lett. 19,
470 (1967), http://kirkmcd.princeton.edu/examples/EP/das_prl_19_470_67.pdf,
J.J. Sakuari, Vector Currents and Spectral-Function Sum Rules, Phys. Rev. Lett. 19, 803 (1967),
http://kirkmcd.princeton.edu/examples/EP/sakurai_prl_19_803_67.pdf.
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which is better satisfied by the data than the combination (for constant α3
SmV ) of

eqs.(11)-(13),

Γρ0→e+e−

3
= Γω→e+e− + Γφ→e+e−. (22)

2. V → π0γ, ηγ

Since the M1 transition flips quark spin but does not change quark flavor, we immedi-
ately predict that

Γφ→π0γ = ΓJ/ψ→π0γ = ΓJ/ψ→ηγ = 0. (23)

The matrix elements for the decays ρ0, ω → π0γ have the form

Mρ0→π0γ = 〈(uu− dd)/
√

2|μ|(uu− dd)/
√

2〉 =
〈uu|μ|uu〉 + 〈dd|μ|dd〉

2
. (24)

To evaluate the matrix element 〈uu|μ|uu〉 we must note the spin structure of the quark
states. In the final state π0γ the spin component along the direction of the photon is
only Sz = ±1, so the vector meson only decays to this final state if it has Sz = ±1.
It suffices (since parity is conserved in this electromagnetic decay) to consider the
quark state of the vector meson to be |u↑u↑〉. The π0 is spinless, so its uu quark state
(|u↑u↓〉 − |u↓u↑〉)/√2. Thus, the spin-flip matrix element is

〈uu|μ|uu〉 = 〈(|u↑u↓〉 − |u↓u↑〉)/
√

2|μ|u↑u↑〉 ∝ μu − μu√
2

= −
√

2μu ∝ μu. (25)

That is, in the decay of a vector meson to a scalar meson plus photon, 〈qq|μ|qq〉 ∝ μq.
Then,

Mρ0→π0γ ∝ μu + μd
2

≈ e

6mu
, (26)

Mω→π0γ = 〈(uu− dd)/
√

2|μ|(uu+ dd)/
√

2〉 ∝ μu − μd
2

≈ e

2mu
, (27)

supposing that mu ≈ md and that μq = Qq/2mq. Recall from p. 193, Lecture 11 of the

Notes that a two-body decay rate is proportional to |M |2 Pf/m2
i . To determine Pf we

note the 4-vector relation pπ = pi − pγ , whose square is

m2
π = m2

i +m2
γ − 2pi · pγ = m2

i − 2miEγ = m2
i − 2miPf , (28)

Pf =
mi

2

(
1 − m2

π

m2
i

)
≈ mi

2
. (29)

Since mρ is very close to mω, we predict that

Γω0→π0γ = 9Γρ0→π0γ ∝ e2

8m2
umρ

, (30)
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using mρ = 772 MeV and mφ = 1020 MeV.

The matrix elements for the decays ρ0, ω, φ→ ηγ have the form

Mρ0→ηγ = 〈(2ss − uu− dd)/
√

6|μ|(uu− dd)/
√

2〉 ∝ −μu + μd√
12

≈ −
√

3e

12mu
, (31)

Mω→ηγ = 〈(2ss − uu− dd)/
√

6|μ|(uu+ dd)/
√

2〉 ∝ −μu − μd
2

≈ −
√

3e

36mu
, (32)

Mφ→ηγ = 〈(2ss− uu− dd)/
√

6|μ|ss〉 ∝ 2μs√
6
≈ −

√
6e

18mu
, (33)

supposing that ms ≈ 3ms/2. For the decays ρ0, ω → ηγ, eq (29) indicates that Pf =
mρ(1 −m2

η/m
2
ρ)/2 ≈ mρ/4, while for φ→ ηγ we have that Pf = mφ(1 −m2

η/m
2
φ)/2 ≈

3mφ/8, so the decay rates are predicted to be

Γρ0→ηγ ∝ e2

192m2
umρ

=
3

8
Γρ0→π0γ, (34)

Γω→ηγ ∝ e2

1728m2
umρ

=
1

24
Γρ0→π0γ, (35)

Γφ→ηγ ∝ e2

144m2
umφ

≈ e2

192m2
umρ

=
3

8
Γρ0→π0γ, (36)

using mρ ≈ 3mφ/4.

Referring to http://pdg.lbl.gov/2013/tables/rpp2013-tab-mesons-light.pdf, the data are

Γρ0 = 149 ± 0.8 MeV,
Γρ0→π0γ

Γρ
= 6.0 ± 0.8 × 10−4, ⇒ Γρ0→π0γ = 90 ± 12 keV,

Γρ0→ηγ

Γρ
= 3.0 ± 0.2 × 10−4, ⇒ Γρ0→ηγ = 45 ± 6 keV,

Γω = 8.49 ± 0.08 MeV,
Γω→π0γ

Γω
= 8.3 ± 0.3 × 10−2, ⇒ Γω→π0γ = 705 ± 30 keV,

Γω→ηγ

Γω
= 4.6 ± 0.4 × 10−4, ⇒ Γω→ηγ = 3.9 ± 0.4 keV,

Γφ = 4.26 ± 0.4 MeV,
Γφ→π0γ

Γφ
= 1.27 ± 0.06 × 10−3, ⇒ Γφ→π0γ = 5.4 ± 0.3 keV,

Γφ→ηγ

Γφ
= 1.31 ± 0.03 × 10−2, ⇒ Γφ→ηγ = 56 ± 1.3 keV,

ΓJ = 92.9 ± 2.8 keV,
ΓJ→π0γ

Γφ
= 3.5 ± 0.3 × 10−5, ⇒ ΓJ→π0γ = 0.33 ± 0.03 keV.

The data are in fairly good agreement with the predictions, although the nonzero value
Γφ→π0γ suggests that the φ is not quite a pure ss state.

3. The reaction e+e− → ψ′ → χγ proceeds, to the first approximation, via e+e− an-
nihilation into a single photon, which materializes as the ψ′(3685) that then decays
to χ(3415)γ . The electron/positron beam energy of 3685/2 MeV is large compared
to the electron mass, so the reaction takes place in the high-energy limit where the
annihilation occurs only for Sz = ±1 (transverse photons).

Since the χ(3415) has zero spin, the final state χ(3415)γ (with a real photon) can only
have Sz′ = ±1 along the axis of the final state momenta at angle θ to the beam (z)
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axis. The angular dependence of the matrix element in the center-of-mass frame is
then the sum of the projections of Sz = ±1 onto Sz′ = ±1, as described by the spin-1
rotation matrix (the d functions summarized at
http://pdg.lbl.gov/2013/reviews/rpp2012-rev-clebsch-gordan-coefs.pdf). That is,

dσ

dΩ
∝ (d1

1,1)
2 + (d1

1,−1)
2 + (d1

−1,1)
2 + (d1

−1,−1)
2

=

(
1 + cos θ

2

)2

+

(
1 − cos θ

2

)2

+

(
1 − cos θ

2

)2

+

(
1 + cos θ

2

)2

= 1 + cos2 θ. (37)

This result is, of course, the same as that for the reaction e+e− → μ+μ−.

4. The square of the matrix element for the 4-particle vertex μνμeνe of unpolarized par-
ticles in the Fermi theory of the weak interaction is, in terms of the particle 4-vectors
p,

|M |2 = 32G2
F (pμ · pνe)(pe · pνμ), (38)

where GF is Fermi’s constant, and the average over initial spins and sum over final
spins is the same for all variants of the vertex.

σνμ+e−→μ−+νe

Since the center of mass energy must be at least
√
s = mμ for this reaction to proceed,

it suffices to approximate the electron as relativistic in the center of mass frame. Then,
E�
e ≈ E�

νμ
≈ √

s/2 = E�
i in this frame, and we can write the 4-vectors as

pνμ ≈ E�
i (1, 0, 0, 1), pe ≈ E�

i (1, 0, 0,−1),

pμ = (E�
μ, P

�
f sin θ�, 0, P �

f cos θ�), pνe = P �
f (1,− sin θ�, 0,− cos θ�), (39)

approximating the neutrinos as massless.

Conservation of energy implies that 2E�
i = E�

μ + E�
νe

= E�
ν + P �

f , such that

E�
ν = 2E�

i − P �
f =

√
P �2
f +m2

μ, ⇒ P �
f = E�

i

(
1 − m2

μ

4E�2
i

)
= E�

i

(
1 − m2

μ

s

)
.(40)

Hence,

pe · pνμ ≈ 2E�2
i ,

pμ · pνe = P �
f (E�

μ + P �
f sin2 θ� + P �

f cos2 θ�) = P �(E�
μ + P �) = 2E�

i P
�
f , (41)

using energy conservation in the last step. The square of the matrix element, eq. (38),
is independent of angle,

|M |2 ≈ 128G2
FE

�3
i P

�
f , (42)
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so the total cross section is, noting that in the center of mass frame P �
i ≈ E�

i (and that
the cross section is isotropic),

σνμ+e−→μ−+νe =
∫ dσ

dΩ�
dΩ� = 4π

dσ

dΩ�
= 4π

|M |2 P �
f

64π2sP �
i

≈ 4π · 128G2
FE

�3
i P

�2
f

64π2(2E�
i )

2E�
i

=
2G2

FE
�2
i

π

(
1 − m2

μ

4E�
i

)2

=
G2
Fs

2π

(
1 − m2

μ

s

)2

. (43)

using s = (pe + pνμ)2 = 4E�2
i in the last step.

In the lab frame, pe = (me, 0, 0, 0) and pνμ = E(1, 0, 0, 1), so s = (pe + pνμ)2 =
2meE + m2

e ≈ 2meE, so the cross section rises linearly with the energy E of the
neutrino beam,

σνμ+e−→μ−+νe ≈
G2
FmeE

π

(
1 − m2

μ

2meE

)2

. (44)

Can this cross section really grow infinitely large at high energy?

5. σe+e−→νeνe

In the Fermi theory this process has the squared matrix element (38) on replacing the
symbol μ by e.

In the center of mass frame we define the 4-vectors to be (for massless neutrinos)

pe+ = (E�, 0, 0, P �), pe− = (E�, 0, 0,−P �),

pνe = E�
ν(1, sin θ

�, 0, cos θ�), pνe = E�
ν(1,− sin θ�, 0,− cos θ�), (45)

Conservation of energy can be expressed as s = (pe+ + pe−)2 = 4E�2

= (pνe + pνe)
2 = 4E�2

ν such that E�
ν = E�. Of course, P � =

√
E�2 −m2

e.

Then,

pe− · pνe = E�(E� − P � cos θ�),

pe+ · pνe = E�(E� − P � cos θ�), (46)

|M |2 = 32G2
FE

�2(E�2 − 4E�P � cos θ� + P �2 cos2 θ�), (47)

and the cross section in the center-of-mass frame (where Pf = E� and Pi = P �) is

σe+e−→νeνe =
∫

dσ

dΩ�
dΩ� = 2π

∫ 1

−1

|M |2 Pf
64π2sPi

d cos θ�

=
2π · 32G2

FE
�3(2E�2 + 2P �2/3)

64π2(2E�)2P �

=
G2
FE

�(4E�2 −m2
e)

6πP �
=
G2
F s

6π

1 −m2
e/s√

1 − 4m2
e/s

. (48)
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The cross section diverges near threshold, where the electron and positron would form
a positronium “atom” rather than scatter.

This result was first obtained by H.-Y. Chiu and P. Morrison, Neutrino Emission form
Black-Body Radiation at High Stellar Temperatures, Phys. Rev. Lett. 5, 573 (1960),
http://kirkmcd.princeton.edu/examples/EP/chiu_prl_5_573_60.pdf , and in slightly more detail in
H.Y. Chiu, Annihilation Process of Neutrino Production in Stars, Phys. Rev. 123,
1040 (1961), http://kirkmcd.princeton.edu/examples/EP/chiu_pr_123_1040_61.pdf .
The cross section as modified by the Weinberg-Salam model was first discussed by
D.A. Dicus, Stellar Energy-Loss Rates in a Convergent Theory of Weak and Electro-
magnetic Interactions, Phys. Rev. D 6, 941 (1972),
http://kirkmcd.princeton.edu/examples/EP/dicus_prd_6_941_72.pdf .

6. Decay of positronium, e+e− → νeνe

If a positronium atom at rest decays to νeνe, the neutrinos are collinear, and have total
spin 1 along the decay axis. Hence, the 1S0 (para-positronium) state cannot decay to
two neutrinos, but the 3S1 (ortho-positronium) state can.

The decay rate Γe+e−→νeνe can be written in terms of the scattering cross section as

Γe+e−→νeνe = Nσe+e−→νeνevrel, (49)

where N is the number of “scatters” (in which the electron and positron meet at the
center of the positronium atom) per unit volume, which can be taken as equal to the
probability |ψ(0)|2 of the atomic wave function at the origin,

ψ(S wave, r) =
e−r/a0

√
πa

3/2
0

, where a0 =
1

αmreduced
=

2

αme
, (50)

and the relative velocity vrel can be written as

vrel = 2ve =
2P �

E�
, (51)

where E� ≈ me. Thus, recalling eq. (48),

Γe+e−→νeνe =
α3m3

e

8π

G2
FE

�(4E�2 −m2
e)

6πP �

2P �

E�
≈ α3G2

Fm
5
e

8π2
. (52)

The decay rate μ+e− → νeνμ was first computed by P.-J. Li, Z.-Q. Tan and C.-E. Wu,
Weak decays of polarised muonium and polarised pionium, J. Phys. G: Nucl. Phys. 14,
525 (1988), http://kirkmcd.princeton.edu/examples/EP/li_jpg_14_525_88.pdf .
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