
Princeton University

Ph501

Electrodynamics

Problem Set 10

Kirk T. McDonald

(2001)

kirkmcd@princeton.edu

http://kirkmcd.princeton.edu/examples/



Princeton University 2001 Ph501 Set 10, Problem 1 1

1. Gravity Waves

On pp. 229-233 of Lecture 19 of the Notes,
http://kirkmcd.princeton.edu/examples/ph501/ph501lecture19.pdf, we showed that (plane)
waves of the gravitational tensor potential φμν = εμν ei(kz−ωt) are transverse, and have
only two polarizations. Furthermore, φμν is symmetric and traceless.

But, what is the physical significance of φμν?

Einstein tells us to write the square of the invariant length as ds2 = gμν dxμ dxν instead
of ds2 = dxμ dxν. Then,

gμν = ημν + φμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

−1

−1

0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ εμν ei(kz−ωt), (1)

for gravity waves in “empty space”, far from any star (or planet). Then, we may say
that φμν is a wave in the structure of space and time.

Consider a plane wave εμν ei(kz−ωt) that is incident on four equal masses m in he x-y
plane. We have argued that conservation of energy and momentum restrict the simplest
gravitational wave to be a kind of quadrupole radiation.

Use you “physical intuition” to the only two distinct quadrupole oscillations that the
gravity wave could induce on the 4-mass system. Identify the forms of the polarization
tensor φμν corresponding to these two oscillations.

Show that
∑

masses Δs2 remains invariant under the oscillations induced by the (weak)
gravity wave.

A “practical” gravity-wave detector might consist of a massive sphere, so as to be
sensitive to waves from all directions. Sketch the oscillations of a sphere by waves of
the two polarizations that you found above.

Measure Δxμ from the origin at some fixed time, say t = 0. Let ε � 1 be the strength
of a component of εμν and δ � a be the amplitude of the oscillation of the masses.

It suffices to show this for only 1 of the 2 possible oscillations.



Princeton University 2001 Ph501 Set 10, Problem 2 2

2. Show that the angular distribution,

dP �

dΩ�
=

d2U�

dt� dΩ�
= f(cos θ�, φ�), (2)

of the power of electromagnetic radiation in the far zone of a system whose center of
mass/energy is instantaneously at rest in the (inertial) � frame has the form,

dPsource

dΩ
=

dU

dt dΩ
=

1

γ4(1 − β cos θ)3
f

(
cos θ − β

1 − β cos θ
, φ

)
, (3)

for radiation by the source in the (inertial) lab frame where the system has velocity v
along the polar (z, z�) axes of the spherical coordinate systems (r, θ, φ) and (r�, θ�, φ�),

β = v/c and γ = 1/
√

1 − β2, with c being the speed of light in vacuum. Comment on
the angular distribution of radiation as detected by distant, fixed observers in the lab
frame.

Since dPμ = (dU, c dP) is a 4-vector, we know that dU� = γ(dU − v · dP).

How are dU and dP related (in the far zone)?

Note that θ is an angle of a light ray, so you can transform the 4-vector (k, k sin θ, 0, k cos θ)
to find the relation between cos θ and cos θ�, etc.
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3. Use the result of Prob. 2 above to transform the Larmor formula,

f =
e2 a�2 sin2 θ�

4πc3
, (4)

to the lab frame in the two cases; a) a� ‖ v, and b) a� ⊥ v.

Use a�2 = −c2aμa
μ to eliminate a� in favor of a in the lab frame.

Ans: (with β = v/c)

a) a� ‖ v

dU

dΩ dt
=

e2 a2

4πc3

sin2 θ

(1 − β cos θ)5
. (5)

b) a� ⊥ v

dU

dΩ dt
=

e2 a2

4πc3

(1 − β cos θ)2 − (1 − β2) sin2 θ cos2 φ

(1 − β cos θ)5
. (6)
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4. Suppose the acceleration of a charge e is entirely due to external electromagnetic fields
E and B.

(a) As discussed on pp. 236-236, Lecture 20 of the Notes, the charge radiates energy
and momentum with the 4-vector,

dPμ = d(U, cP) = −2e2c

3
aνa

ν dxμ, (7)

The particle obeys F = ma in relativistic form (p. 222, Lecture 18 of the Notes),

dpμ

ds
= fμ = Fμνu

ν, (8)

where pμ = (E, cp) = m0c
2uμ is the particle’s 4-momentum, and m0 its rest mass.

Use these facts to show that in an arbitrary inertial frame,

dU

dt
=

2e4γ2

3m2
0c

3

[(
E +

v

c
×B

)2

−
(
E · v

c

)2
]
. (9)

(b) Reconsider part (a) from another point of view, noting that the radiated power
dU/dt is a Lorentz invariant,

dU

dt
=

dU�

dt�
=

2e2a�2

3c3
. (10)

It then suffices to relate a� to the lab-frame Lorentz force F on charge e due to
E and B. Show that,

dU

dt
=

2e2

3m2
0c

3

⎧⎪⎨
⎪⎩

F2 if a ‖ v,

γ2F2 if a ⊥ v.
(11)

(c) The maximum laboratory electric field that can be applied to a relativistic charged
particle is about 108 V/m, while the maximum (static) magnetic field is about
10 T = 100 kG. For an electron with γ = 105, as at the Stanford Linear Accelerator
Center, what is the energy radiated per cm for E ‖ v, E ⊥ v, and B ⊥ v?
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5. A relativistic particle of charge e passes a fixed charge Ze such that b is the dis-
tance of closet approach (impact parameter). What is the total energy radiated,
U =

∫
(dU/dt) dt, assuming that the deflections of the charges are negligible?

Ans:

U =
πZ2e6

12c3m0 b3v

4 − (v/c)2

1 − (v/c)2
. (12)

As a check, make a quick estimate for v ≈ c in the spirit of the “short-cut” method
used for Rutherford scattering on p. 134, Ph205 Lecture 12,
http://kirkmcd.princeton.edu/examples/Ph205/ph205l12.pdf
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6. Charge e1 with mass m1 passes by charge e2 with mass m2 on parallel trajectories,
initially separated by distance b in their center-of-mass frame, such that the relative
velocity obeys v � c. However, v is large enough that we can approximate the motion
of the charges as along straight lines at all times. Supposing that the motion lies in the
x-y plane, with v = v x̂, show that the angular distribution of the emitted radiation
in the center of mass frame, far from the charges, is,

dU

dΩ
=
∫

d2U

dΩ dt
=

e2
1e

2
2

32c3b3v

(
e1

m1
− e2

m2

)2

(4 − n2
x − 3n2

y), (13)

where unit vector n̂ is in the direction of the radiation at the distant observer.

Recall that for v � c, the radiation is well approximated as that associated with the
2nd time derivative of the electric-dipole moment p of the system, described by the
Larmor formula (p. 186, Lecture 16 of the Notes),

d2U

dΩ dt
=

(n̂× p̈)2

4πc3
. (14)

As discussed on p. 187 of the notes, electric-dipole radiation vanishes for a system in
which all particles have the same charge-to-mass ratio.

Integrate over dΩ supposing charge 1 is an electron, e2 = Ze, and m2 → ∞ to find the
result of Prob. 5 above for v � c.
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7. Colliding Bunches

At the Stanford Linear Collider, two “bunches” of electrons and positrons of 46-GeV
energy collide head on. Each bunch has N particles, of charge e in one bunch and
charge −e in the other. Approximate the bunches as (coaxial) cylinders of radius R
and length L � R, with uniform charge density.

Estimate the transverse-momentum “kick” given to an electron as it passes through the
positron bunch. In a “thin-lens” approximation, the “kick” is applied at the (circular)
midplane of the bunch, and the trajectories are straight before and after this. Note
that all electrons are deflected so as to cross the axis of the bunch at the same place.
Each bunch acts as a lens for the particles in the other bunch!

Show that the focal length of this lens is,

f ≈ γm0c
2R2

2Ne2
=

γR2

2Nr0
, where γ =

1√
1 − v2/c2

, r0 =
e2

m0c2
(15)

Due to the deflection, the particles emit radiation (sometimes called beamstrahlung.
Estimate the total energy dU radiated by a particle at the outer radius R of a bunch.

Ans:

dU

U
≈ 16γN2r3

0

3LR3
. (16)

What is dU/U for the typical operating parameters of the SLC, N = 1010, L = 1 mm,
R = 1mum, γ = 105?
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8. Synchrotron Radiation

A particle of charge e moves in a circle of radius R about the origin in the x-y plane,
with angular velocity ω0: x = R cos ω0t, y = R sinω0t. An observer is at (x, y) = (r0, 0
where r0 � R.

The electric field seen by the observer is, in the dipole approximation,

E ≈
[
(p̈× n̂) × n̂

c2r

]
≈ − e

c2r0

d2

dt2
y(t′ = t − r(t′)/c)̂ , (17)

where t′ is the retarded time.

Evaluate ÿ(t′) to show this is,

ω2
0R

cpsω0t
′ − β

(1 − β cosω0t′)3
, (18)

where β = v/c. This is big only for cosω0t
′ ≈ 2nπ. For the pulse of radiation around

t′ = 0, eliminate t′ in favor of T = t − r0/c to show that,

E(T ) ∝ 1 − 4γ6ω2
0T

2

1 + 12γ6 cos ω2
0T

2
, (19)

for β → 1, T ≈ 0, and γ = 1/
√

1 − β2.

Consider the frequency spectrum Eω of this pulse, i.e.,

Ey(T ) =
∫ ∞

−∞
Eω e−iωt dt. (20)

Show that Eω ∝ e−ω/2ωC , where the “critical frequency” is ωC =
√

3γ3 ω0.

Note that the pulse energy has Fourier analysis U =
∫∞
−∞ Uω dω with Uω ∝ E2

ω ∝
e−ω/ωC .

This approximation breaks down at large T , and so we misestimate the low-frequency
part of the spectrum. But, this analysis provides a good understanding of the high-
frequency tail of the synchrotron radiation spectrum.

“Exact” calculation indicates that Uω ∝ √
ω e−ω/ωC with ωC = 3γ3 ω0/2. J. Schwinger,

Phys. Rev. 75, 1912 (1949), http://kirkmcd.princeton.edu/examples/EM/schwinger_pr_75_1912_49.pdf

A more sophisticated, but still fairly simple, analysis (following a suggestion by Fermi)
is reviewed at http://kirkmcd.princeton.edu/examples/weizsacker.pdf
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9. Charge e1 of mass m makes a head-on collision with charge e2, of the same sign as
e1, where charge 2 is fixed at the origin. Show that the total energy radiated in the
collision is,

ΔU =
16

45

e1

e2

(
v0

c

)3 mv2
0

2
, (21)

if the initial velocity v0 of charge 1 is small compared to c.

Note that the expression for dU/dt contains the force F = ma on charge 1, which
permits integration over time to be replaced by integration over velocity.

That ΔU/U0 ∝ (v0/c)
3 is characteristic of electric dipole radiation for v0 � c, as seen

in Prob. 8b, Set 8, http://kirkmcd.princeton.edu/examples/ph501set8.pdf
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Solutions

1. Gravity Waves

For (tranverse) gravity waves of potential φμν = εμν ei(kz−ωt) incident on 4 masses in
the x-y plane as shown on the left below, one polarization leads to the motion sketched
in the center figure, and the other polarization leads to that shown in the right figure.

For these two modes, A and B, which lead to quadrupole deformations, the polarization
tensors are,

ε(A)
μν = ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

1 0

0 −1

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ε(B)
μν = ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 1

1 0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

For mode A at time t = 0 the displacements of the four masses relative to the origin
are,

Δx(1) = (0, a + δ, 0, 0), Δx(2) = (0, 0, a − δ, 0),

Δx(3) = (0,−a − δ, 0, 0), Δx(4) = (0, 0,−a + δ, 0), (23)

The Δs2 = gμν Δxμ Δxν = (ημν + εμν)Δxμ Δxν associated with these four displace-
ments at time t = 0 are, recalling that η00 = 1, η11 = η22 = η33 = −1,

Δs2
(1) = (−1 + ε)(a + δ)2, Δs2

(2) = (−1 − ε)(a − δ)2,

Δs2
(3) = (−1 + ε)(−a − δ)2, Δs2

(4) = (−1 − ε)(−a + δ)2, (24)

The sum of these four terms is,

∑
Δs2

(i) = −4a2 − 4δ2 + 4εδ ≈ −4a2, (25)

ignoring the terms of second order of smallness. The sum is invariant under the defor-
mations induced by the gravity wave to first order.
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For a spherical gravity-wave detector, the deformations induced by gravity-wave modes
A and B would have the forms sketched below, which differ by a rotation of 45◦ about
the z-axis (in contrast to the response of a single electric charge to plane electromag-
netic waves of the two independent linear polarizations, which differ by a rotation of
90◦).
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2. The solution to this problem is in sec. 2.2.1 of
http://kirkmcd.princeton.edu/examples/moving_far.pdf
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3. The solution to this problem is in secs. 2.2.3-4 of
http://kirkmcd.princeton.edu/examples/moving_far.pdf
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4. (a) Part (a) of this problem is the topic of §73 of
http://kirkmcd.princeton.edu/examples/EM/landau_ctf_71.pdf.

As discussed on pp. 236-236, Lecture 20 of the Notes, the charge radiates energy
and momentum with the 4-vector,

dPμ = d(U, cP) = −2e2c

3
aνa

ν dxμ, (26)

The particle obeys F = ma in relativistic form (p. 222, Lecture 18 of the Notes),

aμ =
1

m0c2

dpμ

ds
=

1

m0c2
Fμνu

ν =
fμ

m0c2
=

eγ

m0c2

(
E · v

c
,E +

v

c
× B

)
, (27)

where pμ = (E, cp) = m0c
2uμ is the particle’s 4-momentum, m0 its rest mass and

c is the speed of light in vacuum. Then,

dU

dt
= c

dP0

dx0

= c
2e2c

3

2γ2

m2
0c

4

[(
E +

v

c
× B

)2

−
(
E · v

c

)2
]

=
2e4γ2

3m2
0c

3

[(
E +

v

c
×B

)2

−
(
E · v

c

)2
]
. (28)

(b) We also recall that,

dU

dt
=

dU�

dt�
=

2e2a�2

3c3
, (29)

using the Larmor formula in the instantaneous rest frame of the charge, where
(p. 221, Lecture 18) aμ = (0, a�/c2).

We also have that (p. 222, Lecture 18),

aμ =
1

m0c2
fμ =

1

m0c2

(
γF · v

c
, γF

)
, (30)

where F is the lab-frame Lorentz force on charge e due to E and B. The Lorentz
transformation of the 4-acceleration from the rest frame to the lab frame then
gives,

a = γa�, a� =
a

γ
=

F

m0c2
(a ‖ v), (31)

a = a�, a� = a =
γF

m0c2
(a ⊥ v), (32)

Then, CEQ. (29) gives,

dU

dt
=

2e2

3m2
0c

3

⎧⎪⎨
⎪⎩

F2 if a ‖ v,

γ2F2 if a ⊥ v.
(33)
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(c) The maximum laboratory electric field that can be applied to a relativistic charged
particle is about 108 V/m = 104/3 statvolt/cm, while the maximum (static) mag-
netic field is about 10 T = 105 G. For an electron with γ = 105, v ≈ c, as at the
Stanford Linear Accelerator Center, the energy radiated per cm for E ‖ v is, from
eq. (33),

dU(E ‖ v)

vdt
=

2e2

3m2
0vc3

e2E2 ≈ 2r2
eE

2

3

≈ 2

3
(3 × 10−13 cm)2(3.3 × 103 statvolt/cm)2

≈ 7 × 10−19 erg/cm ≈ 4 × 10−7 eV/cm, (34)

where re = e2/m0c
2 = 2.8 × 10−13 cm is the classical electron radius, and 1 eV

= 1.6 × 10−12 erg. The radiation here is negligible compared to the final energy
of the electrons of 50 GeV (γ ≈ 105), even over the total length (2 miles) of the
accelerator.

The energy radiated per cm for E ⊥ v is,

dU(E ⊥ v)

vdt
=

2e2

3m2
0vc3

e2γ2E2 ≈ 2r2
eγ

2E2

3

≈ 2

3
(3 × 10−13 cm)2(1010)(3.3 × 103 statvolt/cm)2

≈ 7 × 10−9 erg/cm ≈ 4 × 103 eV/cm = 4 keV/cm. (35)

The energy radiated per cm for 50-GeV electrons deflected by a 10-T magnetic
field is,

dU(B ⊥ v)

vdt
=

2e2

3m2
0vc3

e2γ2B2 ≈ 2r2
eγ

2B2

3

≈ 2

3
(3 × 10−13 cm)2(1010)(1010)

≈ 6 × 10−5 erg/cm ≈ 4 × 107 eV/cm = 40 MeV/cm. (36)

If the electrons were in a circular ring of magnets with 10-T field (parallel to the
axis of the ring), the radius r of the ring would be related by,

F =
evB

c
=

γmv2

r
, r ≈ γmc2

eB
≈ 105 · 10−27 g · (3 × 1010 cm/s)2

5 × 10−10 statcoulomb · 105 G
≈ 2 × 103 cm,(37)

so the radiated energy per turn would be about 500 GeV. In a practical storage
ring, the radiated energy must be replenished (by azimuthally accelerating electric
fields). For 50-GeV electrons such a ring could have a magnetic field of only a
fraction of 1 Tesla, to avoid excessive power bills.
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5. This problem is Prob. 1, §73, p. 196 of
http://kirkmcd.princeton.edu/examples/EM/landau_ctf_71.pdf

A relativistic particle of charge e passes a fixed charge Ze such that b is the distance
of closet approach (impact parameter).

We take charge ze to be at the origin, and charge e at (vt, b, 0), assuming that the
deflection of the charge is negligible. At time t it experiences electric field,

E =
Ze

v2t2 + b2

(
vt x̂ + b ŷ√
v2t2 + b2

)
, (38)

and zero magnetic field. Using eq. (28) of Prob. 4 above, we have,

dU

dt
=

2Z2e6γ2

3m2
0c

3

(
1

(v2t2 + b2)2
− v2t2(v2/c2)

(v2t2 + b2)3

)
, (39)

dU =
2Z2e6γ2

3m2
0c

3v

∫ ∞

−∞
v dt

(
1

(v2t2 + b2)2
− v2t2(v2/c2)

(v2t2 + b2)3

)

U =
2Z2e6γ2

3m2
0c

3v

∫ ∞

−∞
v dt

[
1

2b3
tan−1 vt

b
− v2

c2

1

8b3
tan−1 vt

b

]∞
−∞

=
πZ2e6γ2

3m2
0c

3vb3

(
1 − v2

4c2

)
=

πZ2e6

12c3m2
0 b3v

4 − (v/c)2

1 − (v/c)2
≈ πZ2e6γ2

4c4m2
0 b3

, (40)

using Dwight 120.1 and 122.3, http://kirkmcd.princeton.edu/examples/EM/dwight_57.pdf,

and the approximation follows for v ≈ c. As usual, γ = 1/
√

1 − v2/c2.

As a check, we make a quick estimate in the spirit of the “short-cut” method used for
Rutherford scattering on p. 134, Ph205 Lecture 12,
http://kirkmcd.princeton.edu/examples/Ph205/ph205l12.pdf.
That is, we estimate that, noting that v ≈ c, and dU/dt|max occurs at t = 0, with
Δt ≈ 2b/c,

U ≈ dU

dt

∣∣∣∣∣
max

Δt =
2Z2e6γ2

3m2
0c

3b4

2b

c
=

4Z2e6γ2

3m2
0c

4b3
, (41)

which agrees with eq. (40) to within a factor of 16/3π = 1.7. The agreement would be
even better taking Δt = b/c.
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6. This problem is Prob. 4, p. 376 of W.K.H. Panofsky and M. Phillips, Classical Elec-
tricity and Magnetism, 2nd ed. (Addison-Wesley, 1962),
kirkmcd.princeton.edu/examples/EM/panofsky-phillips.pdf

Charge e1 with mass m1 passes by charge e2 with mass m2 on parallel trajectories,
initially separated by distance b, such that the relative velocity obeys v � c. However,
v is large enough that we can approximate the motion of the charges as along straight
lines at all times. We suppose that the motion lies in the x-y plane, with v = v x̂.
Then, the radiation is well approximated as that associated with the 2nd time derivative
of the electric-dipole moment p of the system, described by the Larmor formula (for
v � c),

d2U

dΩ dt
=

(n̂× p̈)2

4πc3
, (42)

where unit vector n̂ is the direction of the radiation at the distant observer.

Denoting the locations in their center-of-mass frame of the two charges as x1 and x2

at any time t, their electric-dipole moment at that time is,

p = e1x1 + e2x2, p̈ = e1ẍ1 + e2ẍ2 =
e1

m1
m1ẍ1 +

e2

m2
m2ẍ2, (43)

For v � c, we can approximate the forces on the charges as the instantaneous Coulomb
forces,

= m1ẍ1 =
e1e2(x1 − x2)

|x1 − x2|3
≡ e1e2 d

d3
= −m2ẍ2. (44)

Taking the origin to be at the center of mass, and t = 0 to be the time of their closest
approach, at separation b, we have that,

d = (vt, b, 0), d2 = (vt)2 + b2. (45)

Then,

p̈ =
(

e1

m1
− e2

m2

)
e1e2 d

d3
=
(

e1

m1
− e2

m2

)
e1e2 (vt, b, 0)

((vt)2 + b2)3/2
, (46)

n̂× p̈ =
(

e1

m1
− e2

m2

)
e1e2 (−n̂zb, n̂zvt, n̂xb− n̂yvt)

(v2t2 + b2)3/2
, (47)

(n̂× p̈)2 =
(

e1

m1
− e2

m2

)2 e2
1e

2
2 [n̂z(b

2 + v2t2) + n̂2
xb

2 − 2n̂x n̂y bvt + n̂2
yv

2t2]

(v2t2 + b2)3
, (48)

dU

dΩ
=
∫ ∞

−∞
d2U

dΩ dt
dt =

∫ ∞

−∞
(n̂× p̈)2

4πc3v
d(vt)

=
e2
1e

2
2

4πc3v

(
e1

m1
− e2

m2

)2 ∫ ∞

−∞
d(vt)

n̂z(b
2 + v2t2) + n̂2

xb
2 − 2n̂x n̂y bvt + n̂2

yv
2t2

(v2t2 + b2)3

=
e2
1e

2
2

4πc3v

(
e1

m1
− e2

m2

)2
(

πn2
z

2b3
+

3πn2
x

8b3
+

πn2
y

8b3

)

=
e2
1e

2
2

32c3b3v

(
e1

m1
− e2

m2

)2

(4 − n2
x − 3n2

y), (49)
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using Dwight 120.1, 120.3 and 122.3.

For the case that charge 1 is an electron, e1 = e, m1 = m0, and charge 2 is Ze with
m2 = ∞ (i.e., fixed in place), eq. (49) becomes, in spherical coordinates (r, θ, φ),

dU

dΩ
=

Z2e6

32c3m2
0 b3v

(4 − sin2 θ cos2 φ − 3 sin2 θ sin2 φ), (50)

U =
∫

dU

dΩ
dΩ =

Z2e6

32c3m2
0 b3v

∫ 1

−1
d cos θ

∫ 2π

0
dφ (4 − sin2 θ cos2 φ − 3 sin2 θ sin2 φ)

=
Z2e6

32c3m2
0 b3v

(
16π − 4π

3
− 12π

3

)
=

πZ2e6

3c3m2
0 b3v

, (51)

which is the same as eq. (40) when v � c.
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7. Colliding Bunches

At the Stanford Linear Collider, two “bunches” of electrons and positrons of 46-GeV
energy collide head on. Each bunch has N particles, of charge e in one bunch and

charge −e in the other. The particles have v ≈ c, Lorentz factor γ = 1/
√

1 − v2/c2

and momentum P ≈ γm0 c.

We approximate the bunches as (coaxial) cylinders of radius R and length L � R in
the lab frame, with uniform charge density, such theat the (radial) electric field inside
a bunch at radius r < R is independent of the axial position, and has magnitude,

E� = 4π
Ner2

R2

1

2πrL�
=

2Ner

L�R2
, (52)

in the rest frame of a bunch, where L� = γL. The lab-frame fields are, since E� is
transverse to v,

E = γE� =
2Ner

LR2
, B ≈ γE� = E. (53)

The directions of E and B for the fields inside the two bunches are sketched above.

Assuming that the deflection of a particle is negligible during the time Δt = L/2c that
it is inside the oncoming bunch, the transverse momentum kick on an electron is,

ΔP = FΔt ≈ e−
(
E− +

v

c
× B− + E+ +

v

c
× B+

)
L

2c
≈ e−

(
E− − E− + E+ + E+

) L

2c

= −4Ne2r

LR2
r̂

L

2c
= −2Ne2r

cR2
r̂, (54)

noting that the force on an electron due the electric and magnetic fields of the electron
bunch cancel, while they add for the positron bunch. The resulting deflection angle is,

Δθ =
ΔP

P
=

2Ne2r

γm0 c2R2
=

2Nr0r

γR2
, (55)

where r0 = e2/m0 c2 = 2.8 × 10−15 m is the classical electron radius (and is the same
for both charges e and −e).

Approximating the deflection as occuring at the (circular) midplane of the oncoming
bunch, the particle crosses the bunch axis at distance,

f ≈ r

Δθ
=

γR2

2Nr0
, (56)
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from the centers of the two bunches at the moment they coincide (often call the (bunch)
crossing point or intersection point). The distance f can be called the focal length of
the effective lens formed by the oncoming bunch.

Due to the deflection, the particles emit radiation (sometimes called beamstrahlung.
The radiated power is given by eq. (9) of Prob. 4 above,

dU

dt
=

2e4γ2

3m2
0c

3

[(
E +

v

c
× B

)2

−
(
E · v

c

)2
]
≈ 2e4γ2

3m2
0c

3
(2E+2)2 ≈ 32γ2N2e6r2

3m2
0c

3L2R2
(57)

The total radiated energy is,

dU ≈ dU

dt
Δt ≈ 32γ2N2e6r2

3m2
0c

3L2R2

L

2c
=

16γ2N2e6r2

3m2
0c

4LR2
, (58)

and the fraction of the particle’s energy, U = γm0 c2, that is radiated away during the
bunch crossing is, for a particle at the outer radius r = R of the bunch,

dU

U
≈ 16γN2e6r2

3m3
0c

6LR4
=

16γN2r3
0

3LR2
. (59)

For the typical operating parameters of the SLC, N = 1010, L = 1 mm, R = 1μm,
γ = 105, then dU/U ≈ 1.5 × 10−3 for particles at r = R.
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8. Synchrotron Radiation

This problem elaborates on discussion by Feynman in
https://www.feynmanlectures.caltech.edu/I_34.html

See also sec. 5.1 of http://kirkmcd.princeton.edu/examples/synchrad.pdf

A charge e moves in a circle of radius R about the origin in the x-y plane,

x = R sin ω0t,

y = R cos ω0t. (60)

We observe the radiation at (x, y) = (r0, 0) where r0 � R.

Feynman tells us that the radiation field has y-component,

Ey = − e

c2r0

d2y(t′)
dt2

, (61)

where t′ = t − r(t′)/c ≈ t − r0/c + (R/c) sin ω0t
′ is the retarded time. Then, noting

that,

t ≈ t′ − R

c
sinω0t

′ +
r0

c
,

dt

dt′
≈ 1 − β cosω0t

′, (62)

where β = Rω0/c is the particle’s velocity, we find,

dy(t′)
dt

=
dy(t′)
dt′

dt′

dt
= −ω0R sinω0t

′dt′

dt
= − ω0R sinω0t

′

1 − β cos ω0t′
, (63)

d2y(t′)
dt2

=
d

dt′

(
dy(t′)

dt

)
dt′

dt
= − ω2

0R cosω0t
′

1 − β cos ω0t′
dt′

dt
− +

ω0R sin ω0t
′

(1 − β cos ω0t′)2
β ω0 sinω0t

′dt′

dt

=
ω2

0R

(1 − β cos ω0t′)3

[
− cosω0t

′(1 − β cos ω0t
′) + β(1 − cos2 ω0t

′)
]

= ω2
0R

β − cosω0t
′

(1 − β cos ω0t′)3
. (64)

The radiation is big only for ω0t
′ ≈ 2nπ. We will make a Fourier analysis of only the

pulse near t′ = 0. For this, we eliminate t′ in favor of T = t− r0/c. For β ≈ 1 we find,

t′ ≈ T +
R

c
sinω0t

′ ≈ T +
R

c
ω0t

′ = T + βt′, t′ ≈ T

1 − β
= T

1 + β

1 − β2 ≈ 2γ2T, (65)

cosω0t
′ − β ≈ 1 − ω2

0(2γ
2T )2

2
− β =

1 − β2

1 + β
− 4ω2γ4T 2

2
≈ 1 − 4γ6ω2

0T
2

2γ2
, (66)

1 − β cos ω0t
′ ≈ 1 − β

(
1 − ω2

0(2γ
2T )2

2

)
=

1 − β2

1 + β
+

4ω2γ4T 2

2
≈ 1 + 4γ6ω2

0T
2

2γ2
, (67)
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and hence,

Ey(T ) ∝ β − cos ω0t
′

(1 − β cos ω0t′)3
∝ 1 − 4γ6ω2

0T
2

1 + 12γ6ω2
0T

2
. (68)

Using 3.767.1-2, p. 423 of http://kirkmcd.princeton.edu/examples/EM/gradshteyn_80.pdf, the Fourier
transform of this varies as,

Ey(ω) ∝ e−ω/2
√

3γ3ω0, (69)

noting that Gradshteyn’s a is our ω, and his γ is our 1/
√

12 γ3 ω0. The power spectrum
of the pulse, Uω, goes as,

Uω ∝ E2
y(ω) ∝ e−ω/

√
3γ3ω0 ≡ e−ω/ωC , (70)

where the critical frequency is,
ωC =

√
3γ3ω0. (71)

The critical frequency (71) can be anticipated by a simpler argument.

First, we note that the acceleration is perpendicular to the velocity, so the angular
distribution of the radiation follows from Prob. 2 above as

dU

dt dΩ
=

e2γ4β2c

4πρ2

(1 − β cos θ)2 − (1 − β2) sin2 θ cos2 φ

(1 − β cos θ)5
, (72)

where β = v/c and angles (θ, φ) are measured with respect to the direction of the
electron’s motion and with the x-axis towards the center of the electron’s orbit.

For highly relativistic motion, γ � 1, the radiation is peaked forward with character-
istic angle θ ≈ 1/γ. Then, 1 − β cos θ ≈ (θ2 + 1/γ2)/2. In the plane of the orbit we
have,

dU

dt dΩ
≈ 2e2γ10c

πρ2

[1 − (γθ)2]2

[1 + (γθ)2]5
. (73)

The “cone” of synchrotron radiation passes over a fixed angle θ in (retarded) time,

Δt′ ≈ Δθ

ω0
=

1

γω0
, (74)

where for γ � 1 the width of the angular distribution is Δθ ≈ 1/γ.

For a distant observer, the corresponding time interval Δt is related by the usual
transformation for retarded time,

Δt = Δt′(1 − β · r̂) ≈ Δt′(1 − β) ≈ Δt′

2γ2
=

1

2γ3ω0

. (75)

Then, a Fourier analysis of the pulse of width Δt will have spectral width Δω ≈ 1/Δt =
2γ3ω0. The spectrum peaks near ω = γ3ω0, which provides an estimate of the critical
frequency.
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The radiation is strong at high harmonics of the orbital frequency and can be regarded
as a continuum spectrum.

Detailed analysis of the frequency spectrum leads one to define the “critical frequency”
as (eq. II.17 of http://kirkmcd.princeton.edu/examples/EM/schwinger_pr_75_1912_49.pdf),

ωC ≡ 3

2
γ3ω0 =

3

2

γ3c

R
, (76)

although the spectrum peaks very close to ω = γ3c/R.

Fourier analysis of the pulse train, rather than only a single pulse as above, show
that at low frequencies Uω ∝ ω1/3 while at high frequencies Uω ∝ √

ω e−ω/
√

3γ3ω0.
These limiting features of the frequency spectrum can also be deduced via the so-
called method of virtual quanta (pioneered by Fermi, Weizsäcker and Williams), as
reviewed in sec. 2 of http://kirkmcd.princeton.edu/examples/weizsacker.pdf.
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9. Charge e1 of mass m and initial velocity v0 � c makes a head-on collision with charge
e2, of the same sign as e1, where charge 2 is fixed at the origin. According to eq. (9),
the power radiated by charge 1 due to its interaction with charge 2 is,

dU

dt
=

2e4
1γ

2

3m2c3

[(
E2 +

v

c
×B2

)2

−
(
E2 · v

c

)2
]
≈ 2e4

1e
2
2

3m2c3r4
, (77)

since v < v0 � c, where r is the distance between the two charges.

Conservation of energy tells us that,

mv2
0

2
=

mv(r)2

2
+

e1e2

r
. (78)

Then, the total energy radiated is, noting that the force on charge 1 is F = e1e2/r
2 =

ma,

ΔU =
∫

dU

dt
dt =

∫
2e4

1e
2
2

3m2c3r4
dt =

∫
2e3

1e2

3m2c3r2
F dt =

∫
2e3

1e2

3m2c3r2
ma dt

= 2
∫ v0

0

2e3
1e2

3mc3

(
m(v2

0 − v2)

2e1e2

)2

dv =
m

3c3

e1

e2

(
v5

0 −
2v5

0

3
+

v5
0

5

)
=

16

45

e1

e2

(
v0

c

)3 mv2
0

2
. (79)

ΔU

U0
=

16

45

e1

e2

(
v0

c

)3

. (80)

That ΔU/U0 ∝ (v0/c)
3 is characteristic of electric dipole radiation for v0 � c, as seen

in Prob. 8b, Set 8, http://kirkmcd.princeton.edu/examples/ph501set8.pdf


