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1. Čerenkov Radiation by a Neutron

A neutron has no electric charge, but it does have a magnetic moment m. Hence, we
can expect an accelerated neutron to emit radiation. Here, we ask whether a neutron
will emit Čerenkov radiation when traveling inside a dielectric medium with uniform
velocity v > c/n, where c is the speed of light and n is the index of refraction of the
medium?

Towards answering this, consider the spectrum of energy vs. angular frequency ω and
solid angle Ω of a pulse of radiation due to electric charge e with time-dependent
velocity v, p. 250, Lecture 21 of the Notes,
http://kirkmcd.princeton.edu/examples/ph501/ph501lecture21.pdf,

dUω

dΩ
=

e2ω2n

4π2c

∣∣∣∣∫ ∞

−∞
n̂× (n̂× β) ei(ωt−k·r) dt

∣∣∣∣2 =
ω2n

4π2c

∣∣∣∣∫ ∞

−∞
eβ × k̂ ei(ωt−k·r) dt

∣∣∣∣2 , (1)

where k is the wave vector with k = nω/c in case of a medium with index of refraction
n,1 and hence k̂ = n̂ is the unit vector pointing to the observer. Also, β = v/c.

A magnetic moment may be thought of as an electric-current loop, so we need a version
of eq. (1) for a current rather than an electric charge, For this we note that for a moving
charge,2

e β → J

c
dVol, (2)

and hence,3
dUω

dΩ
=

ω2n

4π2c3

∣∣∣∣∫ ∫
J × k̂ ei(ωt−k·r) dt dVol

∣∣∣∣2 . (3)

For the neutron, relate the current to the magnetic moment by J = c∇× m (Lecture
8) and suppose that m(r, t) = m0 ẑ δ(x) δ(y) δ(z − vt).4

Evaluate dUω/dΩ for a neutron moving in a medium of index of refraction n to show
that,

dUω/dΩ|moving neutron

dUω/dΩ|moving charge e
=

c2

v2

k2m2
0

e2
=

c2

v2

m2
0

e2λ2 . (4)

1Note that the index n in eq. (1) is the index of the medium in which the radiation is observed.
2For a point charge e at the origin is its rest frame we can write its charge density as

ρ� = e δ(x�) δ(y�) δ(z�), and, of course, the current density is zero, J� = 0. In a frame where the charge has
velocity v = v ẑ, the charge and current densities follow from the Lorentz transformations,
ρ = γρ� = γe δ(x�) δ(y�) δ(z�) = γe δ(x) δ(y) δ(γ(z − vt)) = e δ(x) δ(y) δ(z − vt),
and J = γρ�v ẑ = γe δ(x) δ(y) δ(γ(z − vt))v ẑ = e δ(x) δ(y) δ(z − vt)v ẑ = ρv ẑ, noting that δ(γz) = δ(z)/γ
since

∫
f(z) δ(γz) dz =

∫
(f(z)/γ) δ(γz) d(γz) = f(0)/γ . That is, while an extended charge density is en-

hanced by the Lorentz contraction in a frame where the density is in motion, a point charge is not subject
to the Lorentz contraction.

3Equation (3) also follows from p. 182, Lecture 15 of the Notes, since |n̂ × (n̂ × J)| = |J × n̂| = |J × k̂|.
4If the magnetic moment has a component perpendicular to its velocity, then it appears to have an

electric-dipole moment as well, which also contributes to Čerenkov radiation. This contribution is different
for a magnetic moment due to electric currents and one due to opposite magnetic charges (monopoles).

The earliest computations of Čerenkov radiation by neutrons assumed the latter, while it is now believed
that the former assumption is more appropriate. See, for example, G.N. Afanasiev and Y.P. Stepanovsky,
Phys. Scripta 61, 704 (2000), http://kirkmcd.princeton.edu/examples/EM/afanasiev_ps_61_704_00.pdf
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Hint: Integrate by parts to absorb the ∇.

Since mneutron ≈ eh̄/Mc = eλneutron, where λneutron is the Compton wavelength of the
neutron, the ratio is approximately λ2

neutron/λ for the Čerenkov radiation at reduced
wavelength λ = λ/2π = 1/k. That is, Čerenkov radiation by a neutron is an extremely
weak effect.
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2. Transition Radiation at a Metal-Vacuum Interface

A particle of charge e with velocity v = v ẑ passes through a metallic beam window at
z = 0 and emerges into vacuum for z > 0. What is the frequency-angle spectrum of the
radiation in the region z > 0, assuming that the beam window is perfectly conducting
and an infinite sheet?

Hint: Consider an image-charge method.

Ans: The frequency spectrum, on integrating the frequency-angle spectrum over solid
angle, is,

Uω =
e2

πc

[
1 + β2

β
ln γ(1 + β) − 1

]
, (5)

where β = v/c, and γ = 1/
√

1 − β2.
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3. a) Bremsstrahlung Revisited

A charge e with initial velocity vi experiences a brief acceleration, during time interval
Δt, which leaves it with final velocity vf . Show that the frequency-angle spectrum of
the radiation is,

dUω

dΩ
=

e2

4π2c3

[
k̂ × vi

1 − k̂ · vi/c
− k̂ × vf

1 − k̂ · vi/c

]2

, (6)

at least for angular frequencies small compared to 1/Δt.

This behavior is independent of frequency, as discussed in Lecture 20 of the Notes. As
v → c, the form (6) indicates that the angular distribution has two peaks, around the
directions of the initial and final velocities.

Dividing eq. (6) by h̄, we obtain dNω/dΩ, the frequency-angle distribution of Bremsstrahlung
photons, which result is essentially unchanged in quantum electrodynamics.

b) Neutron Decay

A free neutron decays into a proton + electron + “something else”, with a half life
of about 15 minutes. In a classical theory, the “something else” might be a kind of
Bremsstrahlung radiation. If so, what is the angle-frequency spectrum dUω/dΩ of the
radiation, and its integral Uω, approximating the final-state proton as being at rest
(for an initial neutron at rest), and the electron as ejected with velocity v?
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4. Compute the angle-frequency spectrum dUω(b, φ)/dΩ for electromagnetic radiation
emitted when an electron of charge e and velocity v = v ẑ, where v � c, makes
an elastic collision with a hard, transparent sphere of radius a (centered on the origin)
at impact parameter b and azimuthal angle φ relative to the observer (in the x-z plane,
at angle θ to the z axis).

Since Uω is the energy radiated into unit interval of angular frequency ω, dividing this
by the photon energy h̄ω gives the number spectrum, Nω, of photons per unit integral
of ω. Dividing this spectrum by h̄ gives the number spectrum, Nh̄ω, of photons per unit
interval of photon energy. Then, you can convert the differential spectrum dNh̄ω/dΩ
into a kind of differential cross section (with dimensions of area) by integrating over
impact parameter b from 0 to a, and over azimuthal angle φ (of the incoming electron),

dσ

dΩ d h̄ω
=

1

h̄2ω

∫ a

0
b db

∫ 2π

0
dφ

dUω(b, φ)

dΩ
. (7)

Integrate this over solid angle to show that,

dσ

d h̄ω
=

4αβ2a2

3h̄ω
, (8)

where α = e2/h̄c is the fine-structure constant, and β = v/c.
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5. A particle with electric charge e and rest mass m0 moves in a plane perpendicular to a
uniform magnetic field B, radiating energy and losing velocity, such that its trajectory
is an inward spiral. Suppose the spiral is nearly circular at all times, so that it is a
good approximation that a ⊥ v. Show that the energy loss dU/dt can be integrated
to give,

U

m0c2
= coth

[
2e4B2t

3m3
0c

5
+ const

]
. (9)

Thus, it takes forever for the particle’s kinetic energy to be radiated away, and U →
m0c

2.5

Note that you must give a relativistic derivation.

5This contrasts with the case of a charge in a circular orbit about another, fixed charge, for which the
lifetime of the orbit is finite. See, for example, Prob. 8, of Ph501 Set 8,
http://kirkmcd.princeton.edu/examples/ph501set8.pdf, or http://kirkmcd.princeton.edu/examples/orbitdecay.pdf
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6. Nuclear Numerology

On p. 226, Lecture 19 of the Notes, we mentioned the (attractive) Yukawa potential,
φ = g e−μr/r, as the potential of the force field between nucleons in nuclei.

Consider a single proton, of “nuclear charge” g. Suppose we attribute all of the proton’s
rest energy, mpc

2, where c is the speed of light in vacuum and mp is the rest mass of
the proton, to the energy of its nuclear force field.6 What would this mass be if the
proton were a spherical shell of radius ap?

Hint: U =
∫

ρφ dVol/2 still holds, where ρ = density of nuclear charge.

Relate ρ to φ via an appropriate generalization of Poisson’s equation, ∇2φ = −4πρ,
where ρ is the volume density of charge.

You should find that U =
∫
[(∇φ)2 + μ2φ2] dVol/8π.

In quantum theory, the coupling constants e2/h̄c = α ≈ 1/137 and g2/h̄c play im-
portant roles. Given that mp/me = 1836, estimate the pion-nucleon coupling con-
stant g2/h̄c supposing the proton is a spherical shell of nuclear charge of radius ap =
0.86 × 10−13 cm, and the electron is a spherical shell of electric charge of radius such
that all of the electron’s rest mass, me, is electromagnetic.

This estimate agrees fairly well with experiment. Is this physics or numerology?

6The mass of the neutron is about 0.14% higher than the mass of the proton, which suggests that the
energy of the proton’s electromagnetic field does not contribute significantly to its mass.
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7. Stress and Momentum in a Capacitor That Moves with Constant Velocity

Consider a parallel-plate capacitor whose plates are held apart by a nonconducting
slab of unit (relative) dielectric constant and unit (relative) magnetic permeability.7

Discuss the energy, momentum and stress in this (isolated) system when at rest and
when moving with constant velocity parallel or perpendicular to the electric field.

Does the system contain hidden momentum, Phidden, defined for a subsystem by,

Phidden ≡ P− Mvcm −
∮
boundary

(x− xcm) (p− ρvb) · dArea, (10)

where P is the total momentum of the subsystem, M = U/c2 is its total “mass,” U
is its total energy, c is the speed of light in vacuum, xcm is its center of mass/energy,
vcm = dxcm/dt, p is its momentum density, ρ = u/c2 is its “mass” density, u is its
energy density, and vb is the velocity (field) of its boundary?8

Fringe-field effects can be ignored. The velocity can be large or small compared to the
speed of light.

7The use of unit dielectric constant and unit permeability avoids entering into the interesting controversy
as to the so-called Abraham and Minkowski forms of the energy-momentum-stress tensor,
http://kirkmcd.princeton.edu/examples/ambib.pdf.

8The definition (10) was suggested by Daniel Vanzella. See also,
http://kirkmcd.princeton.edu/examples/hiddendef.pdf.
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8. Radiation by a Superluminal Source

Exotic radiation effects of charges that move at (essentially) constant velocity but cross
boundaries between various media can be deduced from the angle-frequency spectrum
of radiation, p. 182, Lecture 15 of the Notes,9

dU

dω dΩ
=

ω2

4π2c3

[∫ ∫
dt d3r n̂× J(r, t) eiω(t−(n̂·r)/c)

]2
, (11)

where dU is the radiated energy in angular frequency interval dω emitting into solid
angle dΩ, J is the source current density, and n̂ is a unit vector towards the observer.

Consider the example of the sweeping electron beam in an (analog) oscilloscope. In the
fastest of such devices (such as the Tektronix model 7104) the speed of the beam spot
across the face of an oscilloscope can exceed the velocity of light, although of course
the velocity of the electrons does not. Associated with this possibility there should be
a kind of Čerenkov radiation, as if the oscilloscope trace were due to a charge moving
with superluminal velocity.

As a simple model, suppose a line of charge moves in the −y direction with velocity
u � c, where c is the speed of light, but has a slope such that the intercept with the
x axis moves with velocity v > c, as shown in the figure below. If the region y < 0 is
occupied by, say, a metal the charges will emit transition radiation as they disappear
into the metal’s surface. Interference among the radiation from the various charges
then leads to a strong peak in the radiation pattern at angle cos θ = c/v, which is the
Čerenkov effect of the superluminal source – all of which can be deduced from eq. (11).

a) A sloping line of charge moves in the −y direction with velocity vy = u � c
such that its intercept with the x axis moves with velocity vx = v > c. As the
charge disappears into the conductor at y < 0 it emits transition radiation.
The radiation appears to emanate from a spot moving at superluminal velocity
and is concentrated on a cone of angle cos−1(c/v).
b) The angular distribution of the radiation is discussed in a spherical coordi-
nates system about the x-axis.

9See also eq. (14.70) of http://kirkmcd.princeton.edu/examples/EM/jackson_ce2_75.pdf
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Solutions

1. Čerenkov Radiation by a Neutron

We compute the frequency-angle spectrum of Čerenkov radiation by a neutron moving
with its magnetic moment m parallel to its uniform velocity v ẑ in a medium of index
of refraction n using eq. (3), taking the current density to be,

J = c∇ ×m = c∇× m0 ẑ δ(x) δ(y) δ(z − vt). (12)

Hence,

dUω

dΩ
=

ω2n

4π2c3

∣∣∣∣∫ ∫
J × k̂ ei(ωt−k·r) dt dVol

∣∣∣∣2
=

ω2n

4π2c

∣∣∣∣∫ ∫
(∇ ×m) × k̂ ei(ωt−k·r) dt dVol

∣∣∣∣2
=

ω2n

4π2c

∣∣∣∣− ∫ ∫
(−ik×m) × k̂ ei(ωt−k·r) dt dVol

∣∣∣∣2
=

ω2k2n

4π2c

∣∣∣∣∫ ∫
(n̂ ×m) × k̂ ei(ωt−k·r) dt dVol

∣∣∣∣2
=

ω2k2n

4π2c

∣∣∣∣∫ ∫
m0 sin θ δ(x) δ(y) δ(z − vt) ei(ωt−k·r) dt dVol

∣∣∣∣2
=

ω2k2nm2
0 sin2 θ

4π2c

∣∣∣∣∫ eiωt(1−(nv/c) cos θ) dt

∣∣∣∣2 , (13)

where the third line follows from the second via integration by parts with respect to
volume, while in the sixth line we note the k = nω/c for waves in a medium of index
n, and we take θ as the angle between n̂ and the z-axis.

The remaining integral is the same as in an intermediate step of the computation for
Čerenkov radiation by electric charge e with velocity v = v ẑ, as on the top of p. 251,
Lecture 21 of the Notes, where the prefactor is e2ω2nv2 sin2 θ/4π2c3. Hence,

dUω/dΩ|neutron

dUω/dΩ|charge e
=

c2

v2

k2m2
0

e2
=

c2

v2

m2
0

e2λ2 . (14)

Since mneutron ≈ eh̄/Mc = eλneutron, where λneutron is the Compton wavelength of the
neutron, the ratio is approximately λ2

neutron/λ
2 for the Čerenkov radiation at reduced

wavelength λ = λ/2π = 1/k. That is, Čerenkov radiation by a neutron is an extremely
weak effect.

For another exotic Čerenkov effect, see U. Leonhardt and Y. Rosenberg, Cherenkov
radiation of light bullets, Phys. Rev. A 100, 063802 (2019),
http://kirkmcd.princeton.edu/examples/EM/leonhardt_pra_100_063802_19.pdf

The author has made an experimental demonstration of the interference between
Čerenkov radiation and synchrotron radiation by a relativistic electron moving on
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a circular path in a gas, K.D. Bonin et al., Phys. Rev. Lett. 57, 2264 (1986),
http://kirkmcd.princeton.edu/examples/EM/bonin_prl_57_2264_86.pdf

Addendum 1: Charge and Current Densities for General p0 and m0

As reviewed in http://kirkmcd.princeton.edu/examples/movingdipole.pdf, the Lorentz
transformation of electric and magnetic polarization densities, P and M, from their
rest frame (the � frame) to a frame in which they have velocity v is,

P = γ
(
P� +

v

c
× M�

)
− (γ − 1)(v̂ · P�) v̂, (15)

M = γ
(
M� − v

c
× P�

)
− (γ − 1)(v̂ · P�) v̂, (16)

where c is the speed of light and γ = 1/
√

1 − v2/c2.

For a “point” particle at the origin in its rest frame, with rest-frame electric and
magnetic dipole moments p0 and m0, we write its electric and magnetic polarization
densities as,

P� = p0 δ3r�, and M� = m0 δ3r�, (17)

and the associated charge and current densities as,

ρ� = −∇� ·P� = −(p0 · ∇�) δ3r�, and J� = c∇� × M� = −cm0 × ∇� δ3r�.(18)

In a frame where the particle has velocity v = v ẑ, the charge and current densities
are,

ρ = γ
(
ρ� + (J� · v̂)

v

c2

)
, J = J� + (γ − 1)(J� · v̂) v̂ + γρ�v. (19)

We note that the Lorentz transformation of the 4-gradient ∂μ = (∂t/c,−∇) tells us
that −∂�

x = −∂x, −∂�
y = −∂y and −∂�

z = γ(−∂z − (v/c)∂t/c), i.e.,

∇� = ∇ + (γ − 1) v̂(v̂ · ∇) + γβ v̂
∂

∂ct
. (20)

Hence, eqs. (18) and (19) combine to give,

ρ = γ

(
−p0 ·

[
∇ + (γ − 1) v̂(v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(γ(z − vt))

−v

c
v̂ · m0 ×

[
∇ + (γ − 1) v̂(v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(γ(z − vt))

)

= −p0 ·
[
∇ + (γ − 1) v̂(v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(z − vt)

−v

c
v̂ · m0 ×

[
∇ + (γ − 1) v̂(v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(z − vt), (21)



Princeton University 2001 Ph501 Set 11, Solution 1 12

and,

J = −cm0 ×
[
∇ + (γ − 1) v̂ (v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(γ(z − vt))

−(γ − 1)c v̂

(
v̂ · m0 ×

[
∇ + (γ − 1) v̂ (v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(γ(z − vt))

)

−γv

(
p0 ·

[
∇ + (γ − 1) v̂ (v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(γ(z − vt))

)

= −cm0 ×
[∇

γ
+

γ − 1

γ
v̂ (v̂ · ∇) + β v̂

∂

∂ct

]
δ(x) δ(y) δ(z − vt)

−γ − 1

γ
c v̂

(
v̂ · m0 ×

[
∇ + (γ − 1) v̂ (v̂ ·∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(z − vt)

)

−v

(
p0 ·

[
∇ + (γ − 1) v̂ (v̂ · ∇) + γβ v̂

∂

∂ct

]
δ(x) δ(y) δ(z − vt)

)
.(22)

These expressions are somewhat simpler for the special cases that p0 ⊥ v and m0 ‖ v,

ρ = −
(
(p0 · ∇) +

v

c
v̂ · m0 × ∇

)
δ(x) δ(y) δ(z − vt), (23)

J = −
(
v (p0 · ∇) + cm0 × ∇

)
δ(x) δ(y) δ(z − vt). (24)

Equation (12) then follows from eq. (24) when p0 = 0, and eq. (25) follows when
m0 = 0.

Addendum 2: Čerenkov Radiation by a Moving Point Electric Dipole

We now consider an electrically neutral particle with electric-dipole moment p0 in its
rest frame, and zero magnetic moment there. For simplicity, we also suppose p0 to be
perpendicular to the lab-frame velocity v, where v > c/n in the medium of index of
refraction n. Then, from eq. (24), the lab-frame current density is,

J = −v (p0 · ∇) δ(x) δ(y) δ(z − vt) = ρv, (25)

and the frequency-angle spectrum of the radiation is given by,

dUω

dΩ
=

ω2n

4πc3

∣∣∣∣∫ ∫
J × k̂ ei(ωt−k·r) dt dVol

∣∣∣∣2
=

ω2n

4π2c3

∣∣∣∣∫ ∫
v × k̂ ei(ωt−k·r)(p0 · ∇) δ(x) δ(y) δ(z − vt) dt dVol

∣∣∣∣2
=

ω2n

4π2c3

∣∣∣∣− ∫ ∫ v × k̂ ei(ωt−k·r) (p0 · −ik) δ(x) δ(y) δ(z − vt) dt dVol

∣∣∣∣2
=

ω2k2np2
0v

2 sin4 θ

4π2c3

∣∣∣∣∫ δ(x) δ(y) δ(z − vt) ei(ωt−k·r) dt dVol

∣∣∣∣2
=

ω2k2np2
0v

2 sin4 θ

4π2c3

∣∣∣∣∫ eiωt(1−(nv/c) cos θ) dt

∣∣∣∣2 , (26)



Princeton University 2001 Ph501 Set 11, Solution 1 13

where the third line follows from the second via integration by parts with respect to
volume, and we take θ as the angle between n̂ and the z-axis.

The remaining integral is the same as in an intermediate step of the computation for
Čerenkov radiation by electric charge e with velocity v = v ẑ, as on the top of p. 251,
Lecture 21 of the Notes, where the prefactor is e2ω2nv2 sin2 θ/4π2c3. Hence,

dUω/dΩ|moving electric dipole

dUω/dΩ|moving charge e
=

k2p2
0 sin2 θ

e2
<

p2
0

e2λ2 , (27)

where the Čerenkov angle θ is related by cos θ = c/nv.

The electric dipole p0 might be that of an atom, in which case p0 ≈ eRBohr, where the
Bohr radius is RBohr ≈ 5×10−11 m, and the ratio (27) would be ≈ (RBohr/λ)2 ≈ 2×10−7

for λ = 600 nm, i.e., λ ≈ 10−7 m. While the Čerenkov radiation by such an electric
dipole is strong compare to that of a neutron, it is very weak compared to that of an
electron.
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2. Transition Radiation at a Metal-Vacuum Interface

A particle of charge e with velocity v = v ẑ passes through a metallic beam window at
z = 0 and emerges into vacuum at, say, time t = 0. Assuming that the beam window
is perfectly conducting and an infinite sheet, the electromagnetic fields for z > 0 can
be thought of as due to the charge e (at z− vt), plus an image charge −e at z = −vt.10

We seek to apply eq. (1) for the frequency-angle spectrum of radiation by a moving
charge e with velocity v in vacuum (setting index n to 1). In the present problem,
where the fields are due to both the charge e and its image charge −e, this formula
becomes,11

dUω

dΩ
=

ω2

4π2c

∣∣∣∣∫ ∞

0
e βe × k̂ ei(ωt−k·re) dt +

∫ ∞

0
(−e)β−e × k̂ ei(ωt−k·r−e) dt

∣∣∣∣2
=

e2ω2β2 sin2 θ

4π2c

∣∣∣∣∫ ∞

0
eiωt(1−β cos θ) dt +

∫ ∞

0
eiωt(1+β cos θ) dt

∣∣∣∣2 (28)

=
e2ω2β2 sin2 θ

4π2c

∣∣∣∣∣e
iω∞(1−β cos θ) − 1

iω(1 − β cos θ)
+

eiω∞(1+β cos θ) − 1

iω(1 + β cos θ)

∣∣∣∣∣
2

=
e2β2

π2c

sin2 θ

1 − β2 cos2 θ
,

where k = ω k̂/c = ω(sin θ, 0, cos θ)/c is in the direction of the radiation to the observer
(located at large z > 0), k̂ = n̂, βe,−e = ±v ẑ/c = ±β ẑ, and re,−e = ±vt ẑ = ±βct ẑ,

and we take eiω∞(1±β cos θ) = 0, as representing the time-average of the oscillatory
behavior at large times.

The frequency spectrum of the transition radiation is, noting that 0 < θ < π/2 for an
observer with z > 0,

Uω =
∫

dUω

dΩ
dΩ =

2e2

πcβ2

∫ 1

0

1 − cos2 θ

(1/β2 − cos2 θ)2
d cos θ

=
2e2

πcβ2

[
β2 cos θ

2(1/β2 − cos2 θ)
+

β3

4
ln

1/β + cos θ

1/β − cos θ
− cos θ

2(1/β2 − cos2 θ)
+

β

4
ln

1/β + cos θ

1/β − cos θ

]1

0

=
2e2

πcβ2

[
β4

2(1 − β4)
+

β3

4
ln

1 + β

1 − β
− β2

2(1 − β4)
+

β

4
ln

1 + β

1 − β

]

=
2e2

πcβ2

[
−β2

2
+

β(1 + β2)

4
ln(γ2(1 + β)2)

]
=

e2

πc

[
1 + β2

β
lnγ(1 + β) − 1

]
, (29)

using Dwight 140.2 and 142.2, http://kirkmcd.princeton.edu/examples/EM/dwight_57.pdf,

and γ = 1/
√

1 − β2.

10The concept of images charges is from electrostatics, where they are a representation of the effect of
induced charges on the surfaces of conductors. The induced, static surface charge density on an infinite
conducting sheet at z = 0 associated with fixed charge at (0, 0, z) extends to infinity, but is significant only
for r =

√
x2 + y2 <∼ z on the sheet. For a moving charge that emerges from the metal surface at z = 0 at

time t = 0, with subsequent motion z = vt, the induced surface charge at time t is restricted to r < ct, which
is not strictly equivalent to the static surface charge induced by a charge at rest at z = vt. However, use of
an image charge −e at z = −vt for t > 0 also leads to fields at time t within a radius ct of the origin, so this
usage seem to be a reasonable approximation, even as v → c.

11The result (28) was first obtained by I. Frank and V. Ginsburg, J. Phys. (USSR) 9, 353 (1945),
http://kirkmcd.princeton.edu/examples/EM/frank_jpussr_9_353_45.pdf
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In the relativistic limit, β → 1,

Uω → 2e2 ln 2γ

πc
(β → 1). (30)

If we had neglected the image charge in eq. (28), the result would have been,

dUω

dΩ
=

e2β2 sin2 θ

4π2c(1 − β cos θ)2
(no image charge). (31)

Uω =
∫

dUω

dΩ
dΩ =

e2β2

2πc

∫ 1

0

1 − cos2 θ

(1 − β cos θ)2
d cos θ

=
e2β2

2πc

[
1

β(1 − β cos θ)
+

1

β3

(
1 − β cos θ − 2 ln(1 − β cos θ) − 1

1 − β cos θ

)]1

0

=
e2β2

2πc

[
1

1 − β2 +
1

β3

(
−β − ln

1 − β

1 + β
− β

1 − β2

)]

=
e2β2

2πc

[
1

1 − β2

(
1 − 1

β2

)
− 1

β2 +
1

β3 ln
1 + β

1 − β

]
=

e2

2πc

[
2

β
lnγ(1 + β) − 1

]
, (32)

using Dwight 90.2 and 92.2. While this is significantly different from eq. (29) for small
β, the transition radiation there is so weak that this hardly matters. In the relativistic
limit, β → 1, where most observations of transition radiation have been made,

Uω → e2 ln 2γ

πc
(no image charge, β → 1), (33)

which is one half of eq. (30), so consideration of the image charge does make a notable
difference.

Addendum: Transition Radiation at the Interface between Two Dielectrics

The discussion on pp. 253-256, Lecture 21 of the Notes should be modified to represent
better the effects of time-dependent polarization charges near the interface (z = 0)
between the two semi-infinite dielectric media with (relative) dielectric constants
ε1(z < 0) and ε2(z > 0). For this, we recall the image method for dielectrics,12 that
when charge e is at (0, 0, z) in medium 2, the electric field for z > 0 is that in vacuum
due to effective charge e/ε2 at (0, 0, z) and an image charge −(e/ε2)(ε1 − ε2)/(ε1 + ε2),
while the field for z < 0 is that due to effective charge 2e/(ε1+ε2) at (0, 0, z) in vacuum.

We consider the case of an observer with z > 0 (i.e., forward radiation), such that a
ray with angle θ2 to the z-axis at the observer, if it originates with z < 0, makes angle
θ1 to the z-axis related by Snell’s law, n1 sin θ1 = n2 sin θ2, i.e.,

√
ε1 sin θ1 =

√
ε2 sin θ2.

Then, the frequency-angle spectrum of Čerenkov radiation by charge e with position
x = vt ẑ and v > c/n1,2 follows from eq. (1) as,

12See, for example, sec. 2.1.1 of http://kirkmcd.princeton.edu/examples/image.pdf. Conventions
differ in the dielectric image method. Sec. 4.4 of http://kirkmcd.princeton.edu/examples/EM/jackson_ce3_99.pdf

supposes that the image charge is not in vacuum, but in a medium with dielectric constant ε2, while sec. 5.05 of
http://kirkmcd.princeton.edu/examples/EM/smythe_50.pdf supposes the image charge is in a medium
of dielectric constant ε1.
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dUω

dΩ
=

ω2n2

4π2c

∣∣∣∣∫ ∞

0

e

ε2
β × k̂2 eiωt(1−n2β cos θ2) dt +

∫ ∞

0
− e

ε2

ε1 − ε2

ε1 + ε2
(−β) × k̂2 eiωt(1+n2β cos θ2) dt

+
∫ 0

−∞
2e

ε1 + ε2

β × k̂1 eiωt(1−n1β cos θ1) dt
∣∣∣∣2

=
e2ω2n2v

2

4π2c3

∣∣∣∣∣ 1ε2
sin θ2

−1

iω(1 − n2β cos θ2)
+

1

ε2

ε1 − ε2

ε1 + ε2
sin θ2

−1

iω(1 + n2β cos θ2)

+
2

ε1 + ε2
sin θ1

1

iω(1 − n1β cos θ1)

∣∣∣∣∣
2

=
e2√ε2v

2 sin2 θ2

4π2c3ε2
2(ε1 + ε2)2

∣∣∣∣∣∣2ε1 + 2ε2
√

ε2β cos θ2

1 − ε2β
2 cos2 θ2

−
√

ε2

ε1

2ε2

1 −√
ε1β

√
1 − (ε2/ε1) sin2 θ2

∣∣∣∣∣∣
2

=
e2v2√ε2 sin2 θ2

π2c3

∣∣∣∣∣∣∣∣
√

ε1

(
ε1 + ε

3/2
2 β cos θ2

)(
1 − β

√
ε1 − ε2 sin2 θ2

)
− ε

3/2
2

(
1 − ε2β

2 cos2 θ2

)
√

ε1ε2(ε1 + ε2)
(
1 − ε2β

2 cos2 θ2

)(
1 − β

√
ε1 − ε2 sin2 θ2

)
∣∣∣∣∣∣∣∣
2

. (34)

This does vanish if ε1 = ε2, but is not quite the same as the Ginzburg-Frank result,13

dUω

dΩ
=

e2v2√ε2 sin2 θ2 cos2 θ2

π2c3

∣∣∣∣∣∣∣∣
ε1 − ε2(

1 − ε2β
2 cos2 θ2

)(
1 − β

√
ε1 − ε2 sin2 θ2

)

×

(
1 − β2ε2 − β

√
ε1 − ε2 sin2 θ2

)
(
ε1 cos θ2 +

√
ε1ε2 − ε2

2 sin2 θ2

)
∣∣∣∣∣∣∣∣
2

. (35)

Transition radiation is a weak effect, significant only for high frequencies and for rel-
ativistic charges, such that the even cruder approximation presented in Lecture 21 of
the Notes yields the “correct” results in these limits. See also,
http://kirkmcd.princeton.edu/examples/transition_rad.pdf

13See eq. (24.22) of M.I. Ter-Mikaelian, High-Energy Electromagnetic Processes in Condensed Media (In-
terscience, 1972), and eq. (2.41) of V.I. Ginzburg and V.N. Tsytovich, Transition Radiation and Transition
Scattering (Adam Hilger, 1990). Section 28b of Ter-Mikaelian develops a quasi-classical approximation, and
applies it to transition radiation on pp. 283-284. See also,
http://kirkmcd.princeton.edu/examples/EM/ter-mikaelian_np_24_43_61.pdf
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3. a) Bremsstrahlung Revisited

A charge e travels in vacuum with initial velocity vi experiences a brief acceleration,
during time interval Δt, which leaves it with final velocity vf . The frequency-angle
spectrum of the radiation can be obtained via eq. (1) (setting index n to 1),

dUω

dΩ
=

e2ω2

4π2c

∣∣∣∣∫ ∞

−∞
k̂× β ei(ωt−k·r) dt

∣∣∣∣2 , (36)

We approximate β(t) by,

β(t) =

⎧⎪⎨⎪⎩
vi

c
(−∞ < t < o

vf

c
(0 < t < ∞),

(37)

which omits detailed consideration of the interval −Δt/2 < t < Δt/2 in the compu-
tation of eq. (36), which mainly affects frequencies of order 1/Δt and higher. Then,
noting that r(t < 0) = vi t and r(t > 0) = vf t and k = ω k̂/c, we find,

dUω

dΩ
≈ e2ω2

4π2c3

∣∣∣∣∫ 0

−∞
k̂ × vi e

iωt(1−k̂·vi/c) dt +
∫ ∞

0
k̂ × vf eiωt(1−k̂·vf /c) dt

∣∣∣∣2

=
e2ω2

4π2c3

∣∣∣∣∣ k̂ × vi

iω(1 − k̂ · vi/c)
(1 − e−iω∞(1−k̂·vi/c)) +

k̂× vf

iω(1 − k̂ · vi/c)
(eiω∞(1−k̂·vi/c) − 1)

∣∣∣∣∣
2

=
e2

4π2c3

[
k̂ × vi

1 − k̂ · vi/c
− k̂× vf

1 − k̂ · vi/c

]2

, (38)

where, as usual, we take eiAt for t = ±∞ to be zero, i.e., the time-average of the
oscillatory exponential function.

b) Neutron Decay

In neutron decay from rest, we can approximate the final-state proton as being at rest,
since mn = 936.965 MeV/c2, mp = 938.272 MeV/c2, and me = 0.511 MeV/c2, in which
case the angle-frequency spectrum follows from eq. (38), with vi = 0 and vf = v = β c,
as,

dUω

dΩ
≈ e2β2 sin2 θ

4π2c3

[
1

1 − β cos θ

]2

, (39)

where v is the velocity of the final-state electron, and θ is the angle between v and the
direction to the observer.

Note that eq. (39) is the same as eq. (31), the crudest approximation to transition
radiation at a metal-vacuum interface. Hence, the frequency spectrum is that found
in eq. (32),

Uω =
∫

dUω

dΩ
dΩ ≈ e2

2πc

[
2

β
ln γ(1 + β) − 1

]
, (40)
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Experimentally, the kinetic energy of the ejected electron and the energy of electro-
magnetic radiation did not equal (mn−mp−me)c

2, so if energy is conserved in neutron
decay, there must be “something else” emitted as well. This led Pauli in 1930 to pos-
tulate the existence of the neutrino,
http://kirkmcd.princeton.edu/examples/neutrinos/pauli_300430_english.pdf
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4. This is Prob. 7, p. 376 of W.K.H. Panofsky and M. Phillips, Classical Electricity and
Magnetism, 2nd ed. (Addison-Wesley, 1962),
kirkmcd.princeton.edu/examples/EM/panofsky-phillips.pdf

The angle-frequency spectrum for electromagnetic radiation emitted when an electron
of charge e and velocity v = v ẑ, where v � c, makes an elastic collision with a hard,
transparent sphere of radius a (centered on the origin) at impact parameter b and
azimuthal angle φ follows from eq. (6) as,

dUω(b, φ)

dΩ
=

e2

4π2c3

[
k̂ × vi

1 − k̂ · vi/c
− k̂× vf

1 − k̂ · vi/c

]2

≈ e2v2

4π2c3

[
k̂ × (v̂i − v̂f )

]2
(41)

where for an observer in the x-z plane at ro = r(sin θ, 0, cos θ) for large r,

k̂ = sin θ cosφ, sin θ sin φ, cos θ), v̂i = (0, 0, 1), v̂f = (sinα, 0, cos α), (42)

and,

δ + 2ε = π, sin ε = b/a = cos
(

π

2
− ε

)
= cos

δ

2
, (43)

with δ being the polar scattering angle.

Then,

k̂× (v̂i − v̂f) =

(−(1 − cos δ) sin θ sinφ,−(1 − cos δ) sin θ cosφ − sin δ cos θ, sin δ sin θ sinφ), (44)

and,

dUω(b, φ)

dΩ
=

dUω(δ, φ)

dΩ
≈ e2v2

4π2c3
[(1 − cos δ)2 sin2 θ + 2(1 − cos δ) sin δ sin θ cos θ cos φ

+sin2 δ cos2 θ + sin2 δ sin2 θ sin2 φ]. (45)

Since Uω is the energy radiated into unit interval of angular frequency ω, dividing this
by the photon energy h̄ω gives the number spectrum, Nω, of photons per unit integral
of ω. Dividing this spectrum by h̄ gives the number spectrum, Nh̄ω, of photons per unit
interval of photon energy. Then, we can convert the differential spectrum dNh̄ω/dΩ
into a kind of differential cross section (with dimensions of area) by integrating over
impact parameter b from 0 to a, and over azimuthal angle φ (of the incoming electron),

dσ

dΩ d h̄ω
=

1

h̄2ω

∫ a

0
b db

∫ 2π

0
dφ

dUω(b, φ)

dΩ
=

1

h̄2ω

∫ π

0

a2

2
cos

δ

2
sin

δ

2
dδ
∫ 2π

0
dφ

dUω(δ, φ)

dΩ
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=
a2

4h̄2ω

∫ π

0
sin δ dδ

∫ 2π

0
dφ

dUω(δ, φ)

dΩ

≈ a2e2v2

16π2h̄2ωc3

∫ 1

−1
d cos δ

∫ 2π

0
dφ [(1 − cos δ)2 sin2 θ + 2(1 − cos δ) sin δ sin θ cos θ cos φ

+sin2 δ cos2 θ + sin2 δ sin2 θ sin2 φ]

=
a2e2v2

16πh̄2ωc3

∫ 1

−1
d cos δ [2(1 − cos δ)2 sin2 θ + 2 sin2 δ cos2 θ + sin2 δ sin2 θ]

=
a2e2v2

16πh̄2ωc3

[
2
(
2 +

2

3

)
sin2 θ + 2

(
2 − 2

3

)
(1 − sin2 θ) +

(
2 − 2

3

)
sin2 θ

]
=

a2e2v2

12πh̄2ωc3
(2 + 3 sin2 θ) =

αβ2a2

12πh̄ω
(2 + 3 sin2 θ), (46)

where α = e2/h̄c = 1/137 is the fine-structure constant of quantum theory, and β =
v/c.

It follows that,

dσ

d h̄ω
=
∫

dσ

dΩ d h̄ω
dΩ =

αβ2a2

6h̄ω

∫ 1

−1
d cos θ (5 − 3 cos2 θ) =

4αβ2a2

3h̄ω
. (47)

The 1/h̄ω dependence reminds us that the radiation process is a form of Bremsstrahlung.
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5. This is Prob. 1, §74, p. 203 of L.D. Landau and E.M. Lifshitz, The Classical Theory of
Fields, 4th ed. (Butterworth-Heinemann, 1975),
http://kirkmcd.princeton.edu/examples/EM/landau_ctf_75.pdf

A particle with electric charge e and rest mass m0 moves in a plane perpendicular to a
uniform magnetic field B, radiating energy and losing velocity, such that its trajectory
is an inward spiral. Suppose the spiral is nearly circular at all times, so that it is a
good approximation that a ⊥ v.

Recall that the total radiated power, dUrad/dt, is a Lorentz invariant,14 and hence, we
can use the Larmor formula in the instantaneous rest frame of the charge, together
with the Lorentz transformation of acceleration between the rest frame and the lab
frame, a�2 = γ6(a2 − (v/c× a)2),15 i.e., a� = γ2a for a ⊥ v,

dUrad

dt
=

dU�
rad

dt�
=

2e2a�2

3c3
=

2γ4e2a2

3c3
, (48)

where c is the speed of light in vacuum, and γ = 1/
√

1 = v2/c2. The acceleration of the

charge in the uniform magnetic field B is given by the Lorentz force, γm0a = evB/c
(for v ⊥ B), so,

dUrad

dt
=

2γ2v2e4B2

3m2
0c

5
. (49)

We now consider the energy U = γm0c
2 =

√
P 2 + m2

0c
4 of the particle, whose momen-

tum is P = γm0v, such that,

dU

dt
= −dUrad

dt
= −2P 2e4B2

3m4
0c

5
= −2(U2 − m2

0c
4)e4B2

3m4
0c

5
, (50)

dU

U2 −m2
0c

4
= −2e4B2

3m4
0c

5
dt, (51)

1

m0c2
coth−1 U

m0c2
= −2e4B2

3m4
0c

5
t + const , (52)

U

m0c2
= γ = coth

[
2e4B2t

3m3
0c

5
+ const

]
. (53)

using Dwight 140.1. Thus, it takes forever for the particle’s kinetic energy to be
radiated away, and U → m0c

2 (γ → 1).

14See, for example, p. 243, Lecture 20 of the Notes.
15See, for example, p. 221, Lecture 18 of the Notes.
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6. Nuclear Numerology

Poisson’s equation in electrostatics, for the potential φe due to a static density ρe of
electric charge, is (pp. 10-10a, Lecture 1 of the Notes),

∇2φe = −4πρe. (54)

As discussed on p. 226, Lecture 19 of the Notes, Yukawa’s equation16 for the static
nuclear potential φg is (∇2 − μ2)φg = 0, away from a point source of nuclear charge g
at the origin, for which,

φg = g
e−μr

r
, (55)

for some constant μ (with dimensions of inverse length). Away from the origin,

∇2φg =
1

r

∂

∂r2
(rφg) = μ2φg, (56)

while close to the origin, φg ≈ g/r, for which,

∇2φg ≈ g∇2(1/r) = −4πg δ3(r) (57)

recalling that ∇2(1/r) = −4π δ3(r).

This suggests that in case of a (static) volume density ρg of nuclear charge, the Yukawa
potential is,

φg(r) =
∫ ρg(r

′) e−μ|r−r′|

|r − r′| dVol′, (58)

and Poisson’s equation becomes,17

(∇2 − μ2)φg = −4πρg. (59)

The concept of the potential is that the interaction energy of two (point) charges g1

and g2 is,

U12 = g1φg,12 = g2φg,21. (60)

For a collection of particles, this leads to the interaction energy,

U =
1

2

∑
i,j

giφg,ij →
1

2

∫
ρg(r)φg(r) dVol. (61)

16H. Yukawa, On the Interaction of Elementary Particles. I, Proc. Phys.-Math. Soc. Japan 17, 48 (1935),
http://kirkmcd.princeton.edu/examples/EP/yukawa_ppmsj_17_48_35.pdf.

17Equation (59) is sometimes called the screened Poisson equation.
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Then, with ρg from eq. (59), we have, recalling that φg∇2φg = ∇(φg∇φg) − (∇φg)
2,

and using Gauss’ theorem,

U = − 1

8π

∫
φg(∇2 − μ2)φg dVol =

1

8π

∫ [
−∇(φg∇φg) + (∇φg)

2 + μ2φ2
g

]
dVol

=
1

8π

∫ [
(∇φg)

2 + μ2φ2
g

]
dVol, (62)

for a charge distribution that is nonzero only within a bounded volume, such that
φg∇φg ∝ 1/r3 for large r.

We now consider a nuclear charge g that is uniformly distributed over a spherical shell
(about the origin) of radius a. At a point on the z-axis at distance r from the origin,

φg(r) =
∫ 1

−1
d cos θ

g

2

e−μR

R
, (63)

where,

R2 = a2 + r2 − 2ar cos θ, 2R dR = −2ar d cos θ, (64)

and when cos θ = ±1, R = a + r, |a − r|. Hence,

φg(r > a) =
g

2ar

∫ r+a

r−a
dR e−μR =

g

2μar
(e−μ(r−a) − e−μ(r+a)) = μg

sinhμa

μa

e−μr

μr
, (65)

φg(r < a) =
g

2ar

∫ a+r

a−r
dR e−μR =

g

2μar
(e−μ(a−r) − e−μ(a+r)) = μg

e−μa

μa

sinhμr

μr
. (66)

For μ = 0 we recover the form for ordinary electrostatics of a spherical shell of electric
charge q, φ(r > a) = q/r, while φ(r < a) = q/a.

The gradient of the potential (65)-(66) is purely radial,

∇φg,r(r > a) = μ
∂φg(r > a)

∂μr
= −μg sinh μa

a

(
e−μr

μ2r2
+

e−μr

μr

)
, (67)

∇φg,r(r < a) = μ
∂φg(r < a)

∂μr
= −μg e−μa

a

(
sinh μr

μ2r2
− cosh μr

μr

)
, (68)

and the field energy (62) is, noting that sinh2 x = (cosh 2x − 1)/2, 2 sinh x coshx =
sinh 2x, and cosh2 x = (cosh 2x + 1)/2,

U =
g2 sinh2 μa

2μa2

∫ ∞

μa
(μr)2 d(μr) e−2μr

(
1

μ4r4
+

2

μ3r3
+

2

μ2r2

)
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+
g2 e−2μa

2μa2

∫ μa

0
(μr)2 d(μr)

(
cosh 2μr − 1

2μ4r4
− sinh 2μr

μ3r3
+

cosh 2μr

μ2r2

)

=
g2

2μa2

cosh 2μa − 1

2
e−2μa

(
1 +

1

μa

)
+

g2 e−2μa

2μa2

(
1 − cosh 2μa

2μa
+

sinh 2μa

2

)

=
g2 e−2μa

2μa2

(
cosh 2μa − 1 + sinh 2μa

2

)
=

g2(1 − e−2μa)

4μa2
, (69)

using Dwight 568.2 and 678.12. If μ → 0, this goes to g2/2a, as expected from
electrostatics.

Applying this model to a proton, its rest mass would be,

mp =
Up

c2
=

g2(1 − e−2μap)

4μa2
pc

2
, (70)

where ap is the radius of the proton (taken to be a spherical shell of nuclear charge).

In nuclear interactions, the range of the Yukawa interaction is about the same as the
radius of the proton, ap ≈ 0.86 × 10−13 cm,18 i.e., μap ≈ 1, in which case Up ≈ g2/4ap

for our model of a proton as a spherical shell of nuclear charge.

For an electron modeled as a spherical shell of electric charge e of radius ae, the
electric-field energy Ue = e2/2ae equals the electron rest mass (times c2) for ae =
re/2 = 1.4 × 10−13 cm, where re = mec

2/e2 is the so-called classical election radius.19

Experimentally, mp/me = 1836, so our models imply that,

mp

me
≈ g2/4ap

e2/2ae
,

g2

h̄c
≈ e2

h̄c

mp

me

2ap

ae
≈ 1

137
· 1836 · 2 · 0.86

1.4
≈ 16.5. (71)

This compares fairly well with the experimental value of ≈ 14.2.20

However, the above discussion was for a repulsive Yukawa potential, which doesn’t
explain why nucleons stick together. If we change the sign in eqs. (55) and (58) to
have an attractive potential, then the field energy (62) would be negative, which seems
unphysical. Hence, the model presented in this problem cannot be taken too seriously.

18https://en.wikipedia.org/wiki/Proton_radius_puzzle
19https://en.wikipedia.org/wiki/Classical_electron_radius
20See, for example, https://arxiv.org/pdf/hep-ph/0009312.pdf, where our coupling constant g2/h̄c

is their g2/4π.
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7. The solution to this problem is at http://kirkmcd.princeton.edu/examples/cap_stress.pdf.
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8. The solution to this problem also appears at
http://kirkmcd.princeton.edu/examples/superluminal.pdf

The possibility of radiation from superluminal sources was first considered by Heaviside
in 1888. He considered this topic many times over the next 20 years, deriving most
of the formalism of what is now called Čerenkov radiation. However, despite being an
early proponent of the concept of a velocity-dependent electromagnetic mass, Heaviside
never acknowledged the limitation that massive particles must have velocities less than
that of light. Consequently many of his pioneering efforts (and those of his immediate
followers, Des Coudres and Sommerfeld), were largely ignored, and the realizable case
of radiation from a charge with velocity greater than the speed of light in a dielectric
medium was discovered independently in an experiment by Čerenkov in 1934.21

An insightful discussion of the theory of Čerenkov radiation by Tamm (J. Phys. U.S.S.R.
1, 439 (1939), in English!)22 revealed its close connection with what is now called tran-
sition radiation, i.e., radiation emitted by a charge in uniform motion that crosses a
boundary between metallic or dielectric media. The present problem was inspired by
a work of Bolotovskii and Ginzburg, Sov. Phys. Uspekhi 15, 184 (1972),23 on how ag-
gregates of particles can act to produce motion that has superluminal aspects and that
there should be corresponding Čerenkov-like radiation in the case of charged particles.
The classic example of aggregate superluminal motion is the velocity of the point of
intersection of a pair of scissors whose tips approach one another at a velocity close to
that of light.

Here we consider the example of a “sweeping” electron beam in a high-speed analog
oscilloscope such as the Tektronix 7104. In this device the “writing speed”, the velocity
of the beam spot across the faceplate of the oscilloscope, can exceed the speed of light.
The transition radiation emitted by the beam electrons just before they disappear into
the faceplate has the character of Čerenkov radiation from the superluminal beam spot,
according to the inverse of the argument of Tamm.

Referring to the figure above, the line of charge has equation,

y =
u

v
x − ut, z = 0, (72)

21http://kirkmcd.princeton.edu/examples/EM/cerenkov_pr_52_378_37.pdf
22http://kirkmcd.princeton.edu/examples/EM/tamm_jpussr_1_439_39.pdf
23http://kirkmcd.princeton.edu/examples/EM/bolotovskii_spu_15_184_72.pdf
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so the current density is,

J = −ŷNe δ(z) δ
(
t− x

v
+

y

u

)
, (73)

where N is the number of electrons per unit length intercepting the x axis, and e < 0
is the electron’s charge.

We also consider the effect of the image current,

Jimage = +ŷ(−Ne) δ(z) δ
(
t − x

v
− y

u

)
. (74)

We will find that to a good approximation the image current just doubles the amplitude
of the radiation. For u ≈ c the image current would be related to the retarded fields
of the electron beam, but we avoid this complication when u � c. Note that the true
current exists only for y > 0, while the image current applies only for y < 0.

We insert the current densities (73) and (74) into eq. (11) and integrate using rectan-
gular coordinates, with components of the unit vector n̂ given by,

nx = cos θ, ny = sin θ cosφ, and nz = sin θ sinφ, (75)

as indicated in part b) of the figure. The current impinges only on a length L along
the x-axis. The integrals are elementary and we find, noting ω/c = 2π/λ,

dU

dω dΩ
=

e2N2L2

π2c

u2

c2

cos2 θ + sin2 θ sin2 φ

(1 − u2

c2
sin2 θ cos2 φ)2

⎛⎝sin
[

πL
λ

( c
v
− cos θ)

]
πL
λ

( c
v
− cos θ)

⎞⎠2

. (76)

The factor of form sin2 χ/χ2 appears from the x integration, and indicates that this
leads to a single-slit interference pattern.

We will only consider the case that u � c, so from now on we approximate the factor
1 − u2

c2
sin2 θ cos2 φ by 1.

Upon integration over the azimuthal angle φ from −π/2 to π/2 the factor cos2 θ +
sin2 θ sin2 φ becomes π

2
(1 + cos2 θ).

It is instructive to replace the radiated energy by the number of radiated photons:
dU = h̄ω dNω. Thus,

dNω

d cos θ
=

α

2π

dω

ω
N2L2 u2

c2
(1 + cos2 θ)

⎛⎝sin
[

πL
λ

( c
v
− cos θ)

]
πL
λ

( c
v
− cos θ)

⎞⎠2

, (77)

where α = e2/h̄c ≈ 1/137. This result applies whether v < c or v > c. But for v < c,
the argument χ = πL

λ
( c

v
− cos θ) can never become zero, and the diffraction pattern

never achieves a principal maximum. The radiation pattern remains a slightly skewed
type of transition radiation. However, for v > c we can have χ = 0, and the radiation
pattern has a large spike at angle θČ such that

cos θČ =
c

v
, (78)
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which we identify with Čerenkov radiation. Of course the side lobes are still present,
but not very prominent.

Discussion

The present analysis suggests that Čerenkov radiation is not really distinct from tran-
sition radiation, but is rather a special feature of the transition radiation pattern which
emerges under certain circumstances. This viewpoint actually is relevant to Čerenkov
radiation in any real device which has a finite path length for the radiating charge.
The walls which define the path length are sources of transition radiation which is
always present even when the Čerenkov condition is not satisfied. When the Čerenkov
condition is satisfied, the so-called formation length for transition radiation becomes
longer than the device, and the Čerenkov radiation can be thought of as an interference
effect.

If L/λ  1, then the radiation pattern is very sharply peaked about the Čerenkov
angle, and we may integrate over θ, noting that,

dχ =
π, L

λ
d cos θ and

∫ ∞

−∞
dχ

sin2 χ

χ2
= π, (79)

to find,

dNω ≈ α

2π
(Nλ)2dω

ω

L

λ

u2

c2

(
1 +

c2

v2

)
. (80)

In this we have replaced cos2 θ by c2/v2 in the vicinity of the Čerenkov angle. We
have also extended the limits of integration on χ to [−∞,∞]. This is not a good
approximation for v < c, in which case χ > 0 always and dNω is much less than stated.
For v = c the radiation rate is still about one half of the above estimate.

For comparison, the expression for the number of photons radiated in the ordinary
Čerenkov effect is,

dNω ≈ 2πα
dω

ω

L

λ
sin2 θČ. (81)

The ordinary Čerenkov effect vanishes as θ2
Č near the threshold, but the superluminal

effect does not. This is related to the fact that at threshold ordinary Čerenkov radiation
is emitted at small angles to the electron’s direction, while in the superluminal case
the radiation is at right angles to the electron’s motion. In this respect the moving
spot on an oscilloscope is not fully equivalent to a single charge as the source of the
Čerenkov radiation.

In the discussion thus far we have assumed that the electron beam is well described by a
uniform line of charge. In practice the beam is discrete, with fluctuations in the spacing
and energy of the electrons. If these fluctuations are too large we cannot expect the
transition radiation from the various electrons to superimpose coherently to produce
the Čerenkov radiation. Roughly, there will be almost no coherence for wavelengths
smaller than the actual spot size of the electron beam at the metal surface. Thus, there
will be a cutoff at high frequencies which serves to limit the total radiated energy to
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a finite amount, whereas the expression derived above is formally divergent. Similarly
the effect will be quite weak unless the beam current is large enough that Nλ  1.

We close with a numerical example inspired by possible experiment. A realistic spot
size for the beam is 0.3 mm, so we must detect radiation at longer wavelengths. A
convenient choice is λ = 3 mm, for which commercial microwave receivers exist. The
bandwidth of a candidate receiver is dω/ω = 0.02 centered at 88 GHz. We take L = 3
cm, so L/λ = 10 and the Čerenkov “cone” will actually be about 5◦ wide, which
happens to match the angular resolution of the microwave receiver. Supposing the
electron-beam energy to be 2.5 keV, we would have u2/c2 = 0.01. The velocity of the
moving spot is taken as v = 1.33c = 4 × 1010 cm/sec, so the observation angle is 41◦.
If the electron beam current is 1 μA then the number of electrons deposited per cm
along the metal surface is N ≈ 150, and Nλ ≈ 45.

Inserting these parameters into the rate formula (80), we expect about 7 × 10−3 de-
tected photons from a single sweep of the electron beam. This supposes we can collect
over all azimuth φ which would require some suitable optics. The electron beam will
actually be swept at about 1 GHz, so we can collect about 7×106 photons per second.
The corresponding signal power is 2.6 × 10−25 Watts/Hz, whose equivalent noise tem-
perature is about 20 mK. This must be distinguished from the background of thermal
radiation, the main source of which is in the receiver itself, whose noise temperature
is about 100◦K. A lock-in amplifier could be used to extract the weak periodic signal;
an integration time of a few minutes of the 1-GHz-repetition-rate signal would suffice
assuming 100% collection efficiency.

Realization of such an experiment with a Tektronix 7104 oscilloscope would require
a custom cathode ray tube that permits collection of microwave radiation through a
portion of the wall not coated with the usual metallic shielding layer.

Bremsstrahlung

Early reports of observation of transition radiation were considered by skeptics to be
due to Bremsstrahlung instead. The distinction in principle is that transition radiation
is due to acceleration of charges in a medium in response to the far field of a uniformly
moving charge, while Bremsstrahlung is due to the acceleration of the moving charge
in the near field of atomic nuclei. In practice both effects exist and can be separated
by careful experiment.

Is Bremsstrahlung stronger than transition radiation in the example considered here?
As shown below the answer is no, but even if it were we would then expect a Čerenkov-
like effect arising from the coherent bremsstrahlung of the electron beam as it hits the
oscilloscope faceplate.

The angular distribution of Bremsstrahlung from a nonrelativistic electron will be
sin2 θ with θ defined with respect to the direction of motion. The range of a 2.5-keV
electron in, say, copper is about 5 × 10−6 (as extrapolated from the table on p. 240 of
Studies in Penetration of Charged Particles in Matter, National Academy of Sciences
– National Research Council, PuB-1133 (1964)),24 while the skin depth at 88 GHz is

24http://kirkmcd.princeton.edu/examples/detectors/nas-1133_64.pdf
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about 2.5 × 10−5 cm. Hence, the copper is essentially transparent to the backward
hemisphere of bremsstrahlung radiation, which will emerge into the same half space as
the transition radiation.

The amount of Bremsstrahlung energy dUB emitted into energy interval dU is just
Y dU where Y is the so-called bremsstrahlung yield factor. For 2.5-keV electrons in
copper, Y = 3 × 10−4. The number dN of bremsstrahlung photons of energy h̄ω in
a bandwidth dω/ω is then dN = dUB/h̄ω = Y dω/ω. For the 2% bandwidth of our
example, dN = 6×10−6 per beam electron. For a 3-cm-long target region there will be
500 beam electrons per sweep of the oscilloscope, for a total of 3×10−4 bremsstrahlung
photons into a 2% bandwidth about 88 GHz. Half of these emerge from the faceplate
as a background to 7 × 10−3 transition-radiation photons per sweep. Altogether, the
Bremsstrahlung contribution would be about 1/50 of the transition-radiation signal in
the proposed experiment.


