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1. Show that the electromagnetic energy of a dielectric subject to fields E and D = εE is

U =
1

8π

∫
E · D dVol, (1)

by considering the model of atoms as springs (Problem 8b, set 1). The energy U then
has two parts:

U1 =
1

8π

∫
E2 dVol, (2)

stored in the electric field, and

U2 =
∫
n
kx2

2
dVol, (3)

stored in the spring-like atoms (n is the number of atoms per unit volume). Assume n
is small so that the dielectric constant ε is nearly 1.
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2. (a) Show that the energy of a quadrupole in an external electric field E,

Uquad = −1

6
Qij

∂Ej

∂xi
, (4)

in terms of its quadrupole tensor Qij, can be rewritten as

Uquad = −Qxx

4

∂Ex

∂x
, (5)

if the quadrupole is rotationally symmetric about the x axis. Give an expression
for the force F on the quadrupole.

(b) A rotationally symmetric quadrupole of strength Qxx (zero net charge, zero dipole
moment) is located at distance r from a point charge q. What is the force on the
quadrupole if:

i. The x axis is along the line joining Qxx and q?

ii. The x axis is perpendicular to the line joining Qxx and q?

For your own edification, confirm your answer by considering the simple quadrupole:

�

−q1
�

2q1

�

−q1
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3. The principle of an electrostatic accelerator is that when a charge e escapes from a
conducting plane that supports a uniform electric field of strength E0, then the charge
gains energy eE0d as it moves distance d from the plane. Where does this energy come
from?

Show that the mechanical energy gain of the electron is balanced by the decrease in
the electrostatic field energy of the system.
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4. (a) Two point dipoles of strength p are aligned along their line of centers, and distance
2d apart. Calculate the force between the dipoles via F = (p ·∇)E, and by means
of the Maxwell stress tensor.

(b) A spherical conducting shell of radius a carries charge q. It is in a region of zero
external field. Calculate the force between two hemispheres in two different ways.
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5. (a) Two coaxial pipes of radii a and b (a < b) are lowered vertically into an oil bath:

If a voltage V is applied between the pipes, show that the oil rises to height

h =
(ε− 1)V 2

4πρg ln
(

b
a

)
(b2 − a2)

, (6)

where g is the acceleration due to gravity.

(b) Recalling prob. 1(c) of set 1, discuss qualitatively how the force arises the pulls
the liquid up into the capacitor.
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6. According to a theorem of Green, the potential φ(x) in the interior of a volume V
can be deduced from a knowledge of the charge density ρ(x) inside that volume plus
knowledge of the potential and the normal derivative ∂φ/∂n of the potential on the
surface S that bounds the volume,

φ(x) =
∫

V

ρ(x′)
R

dVol′ +
1

4π

∫
S

[
φ(x′)

∂

∂n′

(
1

R

)
− 1

R

∂φ(x′)
∂n′

]
dS ′, (7)

where R = |x− x′| is the distance between the point of observation and the element
of the integrand. However, further insights of Green indicate that it suffices to specify
only one of φ or ∂φ/∂n on the bounding surface to determine the potential within. As
a particular example, show that the potential within a charge-free sphere of radius a,
centered on the origin, can be determined from knowledge of only the potential φ on
its surface according to (Poisson, 1820)

φ(x) =
a2 − x2

4πa

∫
S

φ(x′)
R3

dS ′. (8)

Green (1828) gave a derivation of Poisson’s integral (8) that can be generalized to
many other problems in electrostatics. Recall that a key step towards eq. (7) is the
identity

∫
V

∇ · (ψ∇φ− φ∇ψ) dVol =
∫

V
(ψ∇2φ− φ∇2ψ) dVol

=
∫

S
(ψ∇φ− φ∇ψ) · dS =

∫
S

(
ψ
∂φ

∂n
− φ

∂ψ

∂n

)
dS. (9)

For problems in which the interior of volume V is charge free the potential obeys
∇2φ = 0 there. To have a nonzero potential φ inside V there must, of course, be
charges on the surface of or exterior to volume V . If function ψ also obeys ∇2ψ = 0
inside V (and so might be the potential for some other distribution of charges exterior
to V ), then the identity (9) reduces to

0 =
∫

S

(
ψ
∂φ

∂n
− φ

∂ψ

∂n

)
dS. (10)

Hence, we could combine eqs. (7) and (10) to yield the relation

φ(x) =
1

4π

∫
S

[
φ(x′)

∂

∂n′

(
1

R
+ ψ

)
−
(

1

R
+ ψ

)
∂φ(x′)
∂n′

]
dS ′

=
1

4π

∫
S

[
φ(x′)

∂G(x,x′)
∂n′ −G(x,x′)

∂φ(x′)
∂n′

]
dS ′, (11)

where

G(x,x′) =
1

R
+ ψ. (12)
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IF the Green’s function G(x,x′) vanishes on the surface S, then we have the desirable
relation between the potential φ in the interior of V and its value on the bounding
surface S,

φ(x) =
1

4π

∫
S
φ(x′)

∂G(x,x′)
∂n′ dS ′. (13)

Green noted that the auxiliary potential ψ can be thought of as due to exterior charges
that bring the surface S to zero potential when there is unit charge at position x inside
volume V , and G as the total potential of that charge configuration. Further, we may
think of the bounding surface S as being a grounded conductor for the purposes of
determining the potentials ψ and G, in which case the “exterior” charges reside on
the surface S. Hence, it is plausible that these exist for interesting physical surfaces S
(although it turns out that mathematicians have constructed examples of surfaces for
which a Green’s function does not exist).

Since the function G is the potential for a specifiable charge configuration, the normal
derivative −∂G/∂n corresponds to the electric field (whose only nonzero component
is En) at the surface S produced by those charges. If we consider surface S to be
a grounded conductor when determining function G, then the charge density σG at
position x′ on that surface, caused by the hypothetical unit charge at x, would be
σG(x,x′) = En/4π = −(1/4π)∂G/∂n. Green emphasized this phyisical interpretation
in his original work, and wrote eq. (13) as

φ(x) = −
∫

S
σG(x,x′)φ(x′) dS ′. (14)

Turning at last to Poisson’s integral (8), we see that the needed Green’s function for
a sphere corresponds to the potential at x′ due to unit charge at x in the presence of
a grounded conducting sphere of radius a. Use the method of images to construct the
Green’s function and its normal derivative, and thereby verify Poisson’s result.
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7. A parallel-plate capacitor is connected to a battery which maintains the plates at
constant potential difference V0. A slab of dielectric constant ε is inserted between the
plates, completely filling the space between them.

(a) Show that the battery does work Q0V0(ε− 1) during the insertion process, if Q0

is the charge on the plates before the slab is inserted.

(b) What is the change in the electrostatic energy of the capacitor?

(c) How much work is done by the mechanical forces on the slab when it is inserted?
Is this work done by, or on, the agent inserting the slab?

Suppose the battery was disconnected before the dielectric was inserted.

(d) Repeat (b).

(e) Repeat (c).
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8. (a) Find the “escape velocity” of an electron initially 1

A above a grounded conducting plate.

(b) Point electric dipoles p1 and p2 lie in the same plane at a fixed distance apart. If
p1 makes angle θ1 to their line of centers, show that the equilibrium angle θ2 of
p2 is related to θ1 by

tan θ1 = −2 tan θ2. (15)
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9. We may define the capacity of a single conductor with respect to infinity as C = Q/V ,
where V is the potential (with respect to potential φ = 0 at ∞) when charge Q is
present on the conductor.

Calculate the capacity of a conductor composed of two tangent spheres of radius a.
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10. A grounded conducting sphere of radius a is placed in a uniform external field E = E0ẑ.
(This field changes after the sphere is added.)

This problem may be solved by the method of images if we suppose the field E0 is due
to two charges ±Q at positions z = ±R, with Q and R appropriately large.

(a) Show that the image of the source of E0 is then a dipole p = a3E0 located at the
center of the sphere.

(b) Give an expression for the potential φ(r, θ) in spherical coordinates (r, θ, ϕ) cen-
tered on the sphere. Sketch the electric field lines.

(c) Show that the induced charge distribution on the sphere is σ = 3
4π
E0 cos θ.

(d) Show that the force between the two hemispheres with equator perpendicular to
E0 is F = 9

16
a2E0.
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11. A hollow infinite rectangular conducting tube of sides a and b has two faces grounded
and two faces at potentials V1 and V2 as shown:

a

b

φ=0

φ=0

φ=φ= V V2
1

x

y

Find the potential φ(x, y) inside the tube. Remember to use a sum of products of all
solutions to the separated equations which do not violate the boundary conditions.



Princeton University 1998 Ph501 Set 2, Problem 12 13

12. A hollow rectangular conducting box has walls at x = 0 and a, at y = 0 and b, and at
z = 0 and c. All faces are grounded except that at z = c, for which φ = V :

φ=0

x

y

z

φ=0
φ=0

φ=0
φ=0

φ=V

c

b

a

Find the potential φ(x, y, z) inside the box.

(Choose the signs of the separation constants carefully!)
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Solutions

1. The energy stored in a dielectric composed of spring like atoms can be written in two
parts,

U = U1 + U2 =
1

8π

∫
E2 dVol +

∫
n
kx2

2
dVol, (16)

where E is the applied electric field, and where n is the number of molecules per unit
volume.

The displacement x in the spring-like atom is related by kx = eEon atom, where e is the
charge of an electron. Then,

U2 =
∫
n
e2E2

on atom

2k
dVol =

1

2

∫
n
e2E2

on atom

mω2
dVol =

1

2

∫
nαE2

on atom dVol, (17)

where ω =
√
k/m is the frequency of oscillation of the electron of mass m, and α =

e2/mω2 is the atomic polarizability introduced in eq. (69) of set 1.

On p. 20 of the Notes, we argued that Eon atom = E + 4πP/3, in terms of the applied
field E and the induced polarization P. But, P = nαEon atom, so

P =
nα

1 − 4πnα/3
E, and Eon atom = E

(
1 +

nα

1 − 4πnα/3

)
≈ E, (18)

where the approximation holds for small n. In this case,

U2 ≈ 1

8π

∫
4πnαE2 dVol, (19)

and

U ≈ 1

8π

∫
(1 + 4πnα)E2 dVol ≈ 1

8π

∫
εE2 dVol =

1

8π

∫
E · D dVol, (20)

using the Lorenz-Lorentz approximation for the dielectric constant ε in terms of the
polarizability α, and supposing that D = εE.
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2. (a) As argued on p. 13 of the Notes, rotational symmetry of a charge distribution
about the x axis implies that its quadrupole tenson Qij can be written

Qij =

⎛
⎜⎜⎜⎜⎜⎝
Qxx 0 0

0 −Qxx/2 0

0 0 −Qxx/2

⎞
⎟⎟⎟⎟⎟⎠ , (21)

and hence, from (4),

U = −Qxx

6

(
∂Ex

∂x
− 1

2

∂Ey

∂y
− 1

2

∂Ez

∂z

)
= −Qxx

6

(
3

2

∂Ex

∂x
− 1

2
∇ · E

)
= −Qxx

4

∂Ex

∂x
,

(22)
using ∇ · E = 0, assuming that the external field is produced by charges not at
the location of the quadrupole.

The force on the quadrupole is:

F = −∇U =
Qxx

4

(
∂2Ex

∂x2
,
∂2Ex

∂x∂y
,
∂2Ex

∂x∂z

)
. (23)

(b) i. Consider a point charge q at at the origin and the quadrupole at (x, y, z) =
(R, 0, 0). The x-component of the electric field from q observed at (x, y, z) is

Ex =
qx

r3
, where r2 = x2 + y2 + z2. (24)

Then,
∂Ex

∂x
= q

r2 − 3x2

r5
, (25)

and the force is evaluated from (23) at (R, 0, 0) as

F =
(

3

2

qQxx

R4
, 0, 0

)
. (26)

Let us check this for the simple quadrupole shown in the picture.

�

−q1
�

2q1

�

−q1
Suppose the distance between −q1 and 2q1 is a. The force on the quadrupole
due to charge q at distance R from the center of the quadrupole, and along
the latter’s axis, is

Fx = − q1q

(R− a)2
+

2q1q

R2
− q1q

(R + a)2
= −6a2q1q

R4
(1 + O(a/R)). (27)

This agrees with (26), since

Qij =
∫
ρ′(3r′ir

′
j − r′2δij) dVol′ ⇒ Qxx =

∑
2q′r

′2 = −4q1a
2. (28)
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ii. If, instead, the quadrupole is at (0, R, 0) (but still oriented parallel to the x
axis), eqs. (23) and (25) combine to reveal that only the derivative ∂2Ex/∂x∂y
is nonvanishing, and

F =
(
0,−3qQxx

4R4
, 0
)
. (29)

Again, we can directly compute the force on the simple quadrupole:

Fy = 2

(
q1q

R2
− q1qR

(R2 + a2)3/2

)
≈ 3qq1a

2

R4
= −3qQxx

4R4
, (30)

using (28).
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3. Once the charge has reached distance d from the plane, the static electric field Ee at
an arbitrary point r due to the charge can be calculated by summing the field of the
charge plus its image charge,

Ee(r, d) =
er1

r3
1

− er2

r3
2

, (31)

where r1 (r2) points from the charge (image) to the observation point r, as illustrated
below. The total electric field is then E0ẑ + Ee.

The charge e and its image charge −e at positions (r, θ, z) = (0, 0,±d) with
respect to a conducting plane at z = 0. Vectors r1 and r2 are directed from
the charges to the observation point (r, 0, z).

It turns out to be convenient to use a cylindrical coordinate system, where the obser-
vation point is r = (r, θ, z) = (r, 0, z), and the charge is at (0, 0, d). Then,

r2
1,2 = r2 + (z ∓ d)2. (32)

The part of the electrostatic field energy that varies with the position of the charge is
the interaction term,

Uint =
∫
E0ẑ · Ee

4π
dVol

=
eE0

4π

∫ ∞

0
dz
∫ ∞

0
πdr2

(
z − d

[r2 + (z − d)2]3/2
− z + d

[r2 + (z + d)2]3/2

)

=
eE0

4

∫ ∞

0
dz

⎛
⎜⎝
⎧⎪⎨
⎪⎩

2 if z > d

−2 if z < d

⎫⎪⎬
⎪⎭− 2

⎞
⎟⎠

= −eE0

∫ d

0
dz = −eE0d. (33)

When the particle has traversed a potential difference V = E0d, it has gained energy
eV and the electromagnetic field has lost the same energy.

In a practical “electrostatic” accelerator, the particle is freed from an electrode at
potential −V and emerges with energy eV in a region of zero potential. However, the
particle could not be moved to the negative electrode from a region of zero potential
by purely electrostatic forces unless the particle lost energy eV in the process, leading
to zero overall energy change. An “electrostatic” accelerator must have an essential
component (such as a battery) that provides a nonelectrostatic force that can absorb
the energy extracted from the electrostatic field while moving the charge from potential
zero, so as to put the charge at rest at potential −V prior to acceleration.
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4. (a) First, we calculate the force directly. The electric field from one of the dipoles,
taken to be at the origin and with moment p = px̂, is

E =
3(p · r̂)r̂ − p

r3
=

3pxr̂

r4
− px̂

r3
. (34)

For a second dipole at (x, y, z) = (2d, 0, 0), also with moment p = px̂, we have

F = (p · ∇)E = p
∂E

∂x

∣∣∣∣∣
(2d,0,0)

= −3p2

8d4
x̂. (35)

The minus sign indicates that the dipole’s attract.

As an aside, we can also calculate F = −∇U , where U is the energy of interaction
of the two dipoles. First, the energy of a charge q2 at position r2 in the field of a
dipole p1 at position r1 is

U = q2
p1 · r
r3

, (36)

where r = |r| = |r2 − r1|, as on p. 12 of the Notes. A point dipole p2 is the limit
of a pair of charges ±q2 at positions r2 and r2 − s where s = sp̂2, and the product
q2s is held constant at value p2. Thus, the interaction energy of two point dipoles
is obtained from (36) as

U = lim
s→0, q2s=p

q2

(
p1 · r
r3

− p1 · r′
r′3

)
= (p2 ·∇2)

p1 · r
r3

, (37)

where r′ = |r2 − s− r1|. For p1 = p2 = px̂ separated by distance 2d along x, (37)
reduces to

U = p2 ∂

∂x

∣∣∣∣∣
x=2d

1

x2
. (38)

Then, the force F = −∇U is along x with magnitude

F = −p2 ∂2

∂x2

1

x2

∣∣∣∣∣
x=2d

= −3p2

8d4
, (39)

as found in (35).

Now, let us calculate the force via the Maxwell stress tensor. The force on the
charges within a (closed) surface S is given by

Fi =
∮

S
TijdSj , (40)

as on p. 33 of the Notes, where the Maxwell tensor in empty space is given by

Tij =
1

4π

(
EiEj − 1

2
δijE

2
)
. (41)

In the problem with two dipoles, it is convenient to choose the surface as the
midplane perpendicular to the line connecting two dipoles (the x axis), closing



Princeton University 1998 Ph501 Set 2, Solution 4 19

the surface at infinity around one of the dipoles. On this plane (x = d) the only
nonzero component of E is Ex, and this is twice Ex from the dipole at x = 0. At
radius r from (d, 0, 0) in the symmetry plane, the total field is then

Ex(r) = 2p

(
3d2

[r2 + d2]5/2
− 1

[r2 + d2]3/2

)
= 2p

2d2 − r2

[r2 + d2]5/2
. (42)

The Maxwell stress tensor is thus,

Tij =
1

8π

⎛
⎜⎜⎜⎜⎜⎝
E2

x 0 0

0 −E2
x 0

0 0 −E2
x

⎞
⎟⎟⎟⎟⎟⎠ . (43)

We take our surface element to be dS = (2πrdr, 0, 0) in cylindrical coordinates,
the sign of which implies that the surface S encloses the dipole at x = 0. Then,
(40) and (43) indicate that only Fx is nonzero, and it is given by

Fx =
1

4

∫ ∞

0
r drE2

x = p2
∫ ∞

0
r dr

(r2 − 2d2)2

(r2 + d2)5

=
p2

2

∫ ∞

0
dt

(t− 2d2)2

(t+ d2)5
=
p2

2

∫ ∞

0
dt

[(t+ d2) − 3d2]2

(t+ d2)5
(44)

=
p2

2

∫ ∞

0
dt

[
1

(t+ d2)3
− 6d2

(t+ d2)4
+

9d4

(t+ d2)5

]

=
p2

2

[
1

2d4
− 2

d4
+

9

4d4

]
=

3p2

8d4
.

This agrees with (35), noting that since the dipoles attract, the force on the dipole
at x = 0 is in the +x direction.

(b) The electric field outside the conducting sphere of radius a is E = qr̂/r2. The
pressure (= force per unit area) on the surface charges is P = σE/2, where σ is
the surface charge density; hence, P = q2r̂/8πa4. (The coefficient 1/2 is needed
because E is the field outside the surface, while the field inside the sphere is zero,
thus the average field inside the charge layer is E/2.) To find the force between
two hemispheres, we integrate the component of pressure normal to the equatorial
plane (P cos θ) over one hemisphere:

F =
∫ 1

0
2πa2 d cos θ

q2 cos θ

8πa4
=

q2

8a2
. (45)

Now, let us calculate the force using the Maxwell stress tensor. We integrate
Fz over the x-y plane separating our sphere into two hemispheres. Since dS =
(0, 0, 2πr dr) there, and the only nonzero components of E on that surface are
Ex and Ey, only Tzz = −E2/8π = −q2/8πr4 contributes to the force. Integrating
from r = a to ∞, we find

Fz =
∫ ∞

a
2πr drTzz =

q2

4

∫ ∞

a

dr

r3
=

q2

8a2
, (46)

in agreement with (45).
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5. (a) The electrical force F required to pull oil of density ρ into a cylindrical capacitor
of inner and outer radii a and b, respectively, to height h above the bath is equal
to the force of gravity:

F = ρgh(b2 − a2). (47)

A second relation for F can be computed from the balance of electrical energy,
noting that the capacitor is held at constant voltage by a battery. Suppose we
increase the height of the oil by δh. Then, work Fδh is done on the oil, the energy
U = CV 2/2 stored in the capacitor changes by δU , and the battery loses energy
V δQ. Conservation of energy implies

0 = Fδh+ δU − V δQ. (48)

Since V = Q/C, we find for constant voltage,

V δQ = V 2δC = 2δ

(
CV 2

2

)
= 2δU. (49)

Together, (48) and (49) imply that

F = +
∂U

∂h

∣∣∣∣∣
V

. (50)

As the liquid is drawn into the capacitor, the energy for this must come from
elsewhere; yet, the energy of the capacitor increases because the battery loses
energy in twice the amount of work done on the liquid.

We now calculate the stored energy U by integrating the electric field energy
density. By cylindrical symmetry and Gauss’s law, the electric field between the
pipes has form Er(r) = α/r, where α is fixed by

V =
∫ b

a
Er dr = α ln

b

a
, or α =

V

ln b
a

. (51)

Suppose the total height of the capacitor (above the bath) is H. Then, the energy
of the electric field in the capacitor is:

U =
1

8π
εh
∫ b

a
E22πr dr +

1

8π
(H − h)

∫ b

a
E22πr dr, (52)

where the first term on the right is the contribution from the space filled with the
oil whose dielectric constant is ε, while the second term is from the empty space
above. Evaluating the integrals:

2π
∫ b

a
E2r dr = 2π

V 2

ln2 b
a

∫ b

a

dr

r
= 2π

V 2

ln b
a

, (53)

we then find:

U =
1

4

V 2

ln b
a

[(ε− 1)h+H] . (54)
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The force is obtained from (50) and (54):

Fel =
∂U

∂h

∣∣∣∣∣
V

=
V 2(ε− 1)

4 ln b
a

. (55)

Equating this to the force of gravity, (47) we obtain the height h of the oil column:

h =
(ε− 1)V 2

4πρg ln
(

b
a

)
(b2 − a2)

. (56)

(b) The force on the liquid arises from the effect of gradients of the electric field on
the molecular dipoles in the liquid. The spatially varying electric field E results
in a bulk dielectric polarization given by

P = χE =
ε− 1

4π
E, (57)

where χ is the dielectric susceptibility and ε is the dielectric constant. The energy
density associated with the induced polarization is

u = −P · E = −ε− 1

4π
E2, (58)

and so the force density on the liquid is given by

f = −∇u =
ε− 1

4π
∇E2. (59)

The gradient ∇E2 in the fringe field of the capacitor points from the outside to
the interior of the capacitor, with a generally vertical component for the liquid
below the capacitor in the present problem.

It is interesting to consider a variant on this problem: a capacitor with horizontal
plates completely immersed in a dielectric liquid. Here, the fringe fields of the
capacitor pull the liquid in from all sides, “trapping” it inside the capacitor. That
is, work would be required to pull the liquid out of the capacitor in any direction.

Is this an example of electrostatic trapping – which is claimed not to exist? No!
The “trapping” in the direction perpendicular to the capacitor plates is not pro-
vided by purely electrostratic fields, but by the material of the capacitor plates
(whose stability is not a result of purely electrostatic effects). See prob. 7 of set
4 for further discussion.

We have concluded that the liquid is drawn into the interior of the capacitor and
that the liquid near the middle of the capacitor is forced up against the capacitor
plates by electrostatic forces on the induced dipoles. If we drill a hole in the
center of one capacitor plate, would liquid squirt out? (If yes, we would have a
perpetual motion machine.) No, the fringe fields around the hole will pull liquid
into the interior of the capacitor creating a static equilibrium much as before.
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6. We work from eq. (13), for which we first need the potential φ at a point r inside a
grounded conducting sphere of radius a when unit charge is located at x, also inside
the sphere. Then we need the normal derivative of this potential on the inner surface
of the sphere, i.e.when |r| = r = a.

The image method for a grounded conducting sphere tells us that the potential inside
the sphere can be calculated as that due to unit charge at x together with charge −a/x
at position x′ = a2x/x2. We denote the angle between vectors r and x as θ, so that

R = |r − x| =
√
r2 + 2rx cos θ + x2, (60)

and

R′ = |r − x′| =

√
r2 + 2r

a2

x
cos θ +

a4

x2
. (61)

We see that when r = a, then

R′ =
a

x
R. (62)

The potential inside the sphere can now be written

φ(r) =
1

R
− a

R′x
, (63)

The normal derivative of the potential on the inner surface of the sphere is the negative
of its radial derivative when r = a,

∂φ

∂n
= −∂φ(r = a)

∂r
=
a + x cos θ

R3
− a[a+ (a2/x) cos θ]

R′3x
=
a2 − x2

aR3
, (64)

using eq. (62). Inserting this in eq. (13), we obtain Poisson’s integral,

φ(x) =
a2 − x2

4πa

∫
S

φ(x′)
R3

dS ′. (65)
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7. (a) The capacitance C of a parallel-plate capacitor of area A, gap thickness d and
dielectric constant ε is

C =
εA

d
≡ Q

V
. (66)

Adding the dielectric increased the capacitance to

Cf = εC0, (67)

and hence the charge also increase, if the voltage is kept fixed. Thus, the work
done by the battery as the dielectric is inserted,

ΔWbatt = V0ΔQ = V 2
0 ΔC = V 2

0 (ε− 1)C0 = Q0V0(ε− 1), (68)

is positive.

(b) As the dielectric is inserted, the field energy U = CV 2/2 stored in the capacitor
changes by

ΔU =
1

2
ΔCV 2

0 =
1

2
C0V

2
0 (ε− 1) =

1

2
Q0V0(ε− 1). (69)

(c) The work done by the battery, (68), is only partly accounted for in increase in
the field energy, (69). The rest of the work done by the battery is done on the
external agent that held the dielectric during insertion (the external agent gained
energy):

ΔWon agent =
1

2
Q0V0(ε− 1). (70)

(d) If the battery had been disconnected before the dielectric was inserted, then the
charge Q0 would be constant. From (66) we see that the final voltage would be
only V0/ε. Recalling (67), the change in the electrostatic field energy would then
be

ΔU =
1

2
εC0

(
V0

ε

)2

− 1

2
C0V

2
0 =

1

2
Q0V0

(
1

ε
− 1

)
< 0. (71)

(e) By conservation of energy, the work done on the external agent that held the
dielectric during insertion is equal and opposite to the change in stored energy.
Hence the work done on the agent is again positive, but now with the value

ΔWon agent =
1

2
Q0V0

ε− 1

ε
. (72)

That is, the dielectric is pulled into the capacitor whether or not the battery is
still connected.
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8. (a) The field energy associated with an electron at distance r from a grounded con-
ducting plane is 1/2 that associated with the corresponding image charge, i.e.,
with that electron plus a positron at distance −r, in the absence of the conducting
plane. Hence,

U = −1

2

e2

2r
= − e2

4r
. (73)

The fields in the image solution have reality only outside the conducting plane;
there is no energy associated with the “fictitious” image fields inside the conduc-
tor.

Equation (73) indicates that an electron is “bound” to the conducting plane, and
so to escape, must have a minimum velocity related by

vmin =

√
2|U |
m

=

√
e2

2mr
=

√
e2c2

2mc2r
= c

√
re

2r
, (74)

where re = e2/mc2 = 2.8 × 10−13 cm is the classical electron radius. Thus, for
r = 1

A,

vmin

c
=

√
2.8 × 10−13

2 × 10−8
= 0.0037. (75)

(Notice that the nonrelativistic approximation suffices.)

The “binding energy” can be estimated from (73) as

U = − e2

4mc2r
mc2 = −re

r

mc2

4
= −2.8 × 10−13

10−8

5.11 × 105 eV

4
= −3.6 eV. (76)

(b) In equilibrium, the torque on dipole p2 must vanish, and so p2 will be directed
along the electric field created by dipole p1. The electric field of the latter is given
by

E =
3(p1 · r̂)r̂ − p1

r3
. (77)

The projection of E onto the line connecting two dipoles is

E‖ = E · r̂ = 2
p1

r3
cos θ1. (78)

The orthogonal projection is
E⊥ = E− E‖, (79)

leading to

E⊥ = −p1

r3
sin θ1, (80)

where the minus sign indicates that E⊥ is directed opposite to p1,⊥.

The angle of the field line, and hence of p2 is

tan θ2 =
E⊥
E‖

= −1

2
tan θ1. (81)
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9. We solve the problem of the capacity of two tangent, conducting spheres of radii a by
the method of images.

We first find the image-charge distribution needed to bring one sphere to potential V ,
but leaving the other at zero potential. Then, we complete the solution by superposing
the mirror distribution, obtained by reflection symmetry about the plane through the
point of tangency of the two spheres.

(a) Place charge q = aV at the center of sphere 1, bringing its surface to otential V .

(b) To bring sphere 2 to zero potential, place charge −q(a/2a) = −q/2 at distance
a2/2a = a/2 from the center of sphere 2, following the prescription on p. 41 of
the Notes.

(c) The image charge (b) takes sphere 1 away from potential V . To bring it back, add
an image charge (c) inside sphere 1 so that this sphere is at zero potential under
the effect of charges (b) and (c). That is, add charge −(−q/2)(a/(3a/2)) = +q/3
at distance a2/(3a/2) = 2a/3 from the center of sphere 1, i.e., a/3 from the point
of contact.

(d) Add charge −q/4 at 3a/4 from the center of sphere 2 to bring it back to zero
potential.

(e) ....

q q-q/2 -q/2... ...

The total charge needed to bring both spheres to potential V is double that described
in the sequence above. Hence,

Q = 2q
(
1 − 1

2
+

1

3
− 1

4
+ ...

)
= 2aV ln 2, (82)

and the capacitance is
C = Q/V = 2a ln 2 = 1.386a. (83)

Note that since the dimensions of potential are [charge]/[length], capacitance has the
dimension of [length] in Gaussian units. Thus, we expect that C ≈ a for this problem,
since a is the only relevant length.
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10. (a) The uniform field E0 = E0ẑ is approximated as being due to charges ±Q at
z = ∓R, where Q → ∞ and R → ∞ in such a way as to keep Q/R2 constant.
In the limit, the field in the region of the sphere is homogeneous and equal to
E = (2Q/R2)ẑ. According to the image method, we can make the potential
on the sphere vanish by adding charge q′ = −Qa/R at z = −a2/R and −q′ at
z = a2/R. Thus, the perturbation to the field due to the sphere is effectively that
due to a dipole with the moment

p = 2
a2

R
Q
a

R
ẑ = a3E0. (84)

(b) The potential outside the sphere is thus,

φ = φ0 + φdipole = −E0r cos θ +
E0a

3 cos θ

r2
. (85)

The field lines bend in to be normal to the sphere at r = a:

p

(c) We find the surface charge density σ from the normal component of the electric
field at the surface of the sphere:

Er(a, θ) = − ∂φ

∂r

∣∣∣∣∣
r=a

= 3E0 cos θ, (86)

and so

σ(θ) =
Er(a, θ)

4π
=

3E0 cos θ

4π
. (87)

(d) The force acting on the surface charge density σ is F = σEr(a)r̂/2 = E2
r (a)r̂/8π

(where the latter form follows immediately from the Maxwell stress tensor). The
force on the right hemisphere is directed along z and is obtained by integrating
the z component of F:

Fz =
1

8π

∫ 1

0
2πa2 d cos θ(3E0 cos θ)2(cos θ) =

9

16
a2E2

0 . (88)

Since the force on the hemisphere at z > 0 is positive, the hemispheres repel each
other.
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11. We seek solutions to Laplace’s equation in 2 dimensions, ∇2φ(x, y) = 0, of the form
φ = X(x)Y (y). This leads to solutions of the form e±kxe±iky or e±ikxe±ky.

Since the boundary conditions include φ = 0 at y = 0 and b, it is advantageous to
consider functions Y of the type e±iky, which can be immediately restricted to the
form:

Y (y) = sin ky, where k = nπ/b, n = 1, 2, . . . . (89)

This also fixes the separation constants k.

The general expression for the potential is now:

φ(x, y) =
∑
n

Xn(x)Yn(y) =
∑
n

(
Ane

nπx/b +Bne
−nπx/b

)
sin

nπy

b
. (90)

The boundary conditions at x = 0 and x = a are

φ(0, y) = V1 =
∑
n

(An +Bn) sin
nπy

b
, (91)

φ(a, y) = V2 =
∑
n

(
Ane

nπa/b +Bne
−nπa/b

)
sin

nπy

b
. (92)

A straigthforward approach to findAn andBn is to multiply (91) and (92) by sin(nπy/b)
and integrate from y = 0 to b:

∫ b

0
φ(0, y) sin

nπy

b
dy = − bV1

nπ
cos

nπy

b

∣∣∣∣∣
b

0

=
bV1

nπ

⎧⎪⎨
⎪⎩

2, n odd

0, n even
=
b

2
(An +Bn) , (93)

and similarly,

bV2

nπ

⎧⎪⎨
⎪⎩

2, n odd

0, n even
=
b

2

(
Ane

nπa/b +Bne
−nπa/b

)
. (94)

Thus, for n even, An = Bn = 0, while for n odd,

An =
2

nπ sinh nπa
b

(
V2 − V1e

−nπa/b
)
, Bn =

2

nπ sinh nπa
b

(
V1e

nπa/b − V2

)
. (95)

Finally, we get for the potential:

φ(x, y) =
4

π

∑
n odd

sin nπy
b

nπ sinh nπa
b

[
V2 sinh

nπx

b
+ V1 sinh

nπ(a− x)

b

]
. (96)

To verify that this solution satisfies the boundary conditions, note that (91) and (93)
combine to yield the expansion:

1 =
4

π

∑
n odd

1

n
sin

nπy

b
. (97)
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We also note that the potential is symmetric about the midplanes, φ(x, y) =
φ(a− x, y) = φ(x, b− y), which could have been invoked as far back as (90) to show
that only odd n contributes.

Remark: This problem could also usefully be solved as the superposition of two cases,
each with three walls at potential zero and the fourth at a nonzero value. The form of
the solution (96) displays this superposition.
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12. Since φ = 0 at x = 0, a and y = 0, b, solutions φ = X(x)Y (y)Z(z) must have the form

Xm(x) = sin
mπx

a
, and Yn(y) = sin

nπy

b
, (98)

where n and m are positive integers (and odd, recalling the remark at the end of
problem 9). The functions Z(z) then have the form e±kz . Since φ = 0 at z = 0, we
can make the further restriction:

Zmn(z) = sinh kmnz, (99)

where kmn is determined by inserting the trial solutions into Laplace’s equation, yield-
ing

k2
mn =

(
mπ

a

)2

+
(
nπ

b

)2

. (100)

The general solution satisfying all the boundary conditions except for the one at the
face z = c is:

φ(x, y, z) =
∑
m,n

Amn sin
mπx

a
sin

nπy

b
sinh

√(
mπ

a

)2

+
(
nπ

b

)2

z. (101)

The remaining boundary condition tells us that

V =
∑
m,n

Amn sin
mπx

a
sin

nπy

b
sinh

√(
mπ

a

)2

+
(
nπ

b

)2

c. (102)

To find Amn, multiply (102) by sin mπx
a

sin nπy
b

and integrate from 0 to a in x and from
0 to b in y. Similarly to (93), we find

Amn =
16V

mnπ2 sinh

√(
mπ
a

)2
+
(

nπ
b

)2
c

, (103)

for odd m and n, and 0 otherwise. Hence,

φ(x, y, z) =
16V

π2

∑
m,n odd

1

m
sin

mπx

a

1

n
sin

nπy

b

sinh

√(
mπ
a

)2
+
(

nπ
b

)2
z

sinh

√(
mπ
a

)2
+
(

nπ
b

)2
c

. (104)

Note that we have demonstrated the expansion

1 =
∑
m

4

mπ
sin

mπx

a

∑
n

4

nπ
sin

nπy

b
for 0 < x < a, 0 < y < b. (105)

Since this follows from (97), we could have used it to go from (102) to (103) without
performing the integrations.


