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1. A grid of infinitely long wires is located in the (x, y) plane at y = 0, x = ±na, n =
0, 1, 2, . . .. Each line carries charge λ per unit length.

Obtain a series expansion for the potential φ(x, y). Show that for large y the field is

just that due to a plane of charge density λ/a. By noting that
∞∑

n=1

zn

n
= − ln(1− z) for

z complex or real, sum the series to show

φ(x, y) = −λ
[
2πy

a
+ ln

(
1 − 2e−2πy/a cos

2πx

a
+ e−4πy/a

)]

= −λ ln
[
2
(
cosh

2πy

a
− cos

2πx

a

)]
. (1)

Show that the equipotentials are circles for small x and y, as if each wire were alone.
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2. Two halves of a long, hollow conducting cylinder of inner radius b are separated by
small lengthwise gaps, and kept at different potentials V1 and V2.

Give a series expansion for the potential φ(r, θ) inside, and sum the series to show

φ(r, θ) =
V1 + V2

2
+

V1 − V2

π
tan−1

(
2br sin θ

b2 − r2

)
(2)

Note that
∑

n odd

zn

n
= 1

2
ln 1+z

1−z
, and Im ln z = phase(z).
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3. The two dimensional region a < r < b, 0 ≤ θ ≤ α is bounded by conducting surfaces
held at ground potential, except for the surface at r = b.

Give an expression for φ(r, θ) satisfying these boundary conditions.

Give the lowest order terms for Er and Eθ on the surfaces r = a, and θ = 0.

As an application of the case α = 2π, consider a double gap capacitor designed for use
at very high voltage (as in “streamer chamber” particle detectors):

The central electrode is extended a distance b beyond the ground planes, and is termi-
nated by a cylinder of radius a � b. Calculate the maximal electric field on the guard
cylinder compared to the field E inside the capacitor, keeping only the first-order term
derived above.

You may approximate the boundary condition at r = b as

φ(r = b) �
⎧⎪⎨
⎪⎩

Eh(1 − θ/θ0), |θ| < θ0,

0, θ0 < |θ|π,
(3)

where θ0 ≈ h/b � 1 and h is the gap height. Note that the surfaces r = a and θ = 0
are not grounded, but are at potential Eh.

Answer: Emax � 2Eh
π
√

ab
.
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4. Find the potential distribution inside a spherical region of radius a bounded by two
conducting hemispheres at potential ±V/2 respectively. Do the integrals to evaluate
the two lowest-order nonvanishing terms.
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5. Find the potential both inside and outside a spherical volume of charge of radius a in
which the charge density varies linearly with the distance from some equatorial plane
(Qtot = 0).
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6. A uniform field E0 is set up in an infinite dielectric medium of dielectric constant ε.
Show that if a spherical cavity is created, then the field inside the cavity is:

E =
3ε

2ε + 1
E0 . (4)

This problem differs from our discussion of the “actual” field on a spherical molecule
in that the field inside the remaining dielectric can change when the cavity is created.
The result could be rewritten as

Ecavity = E0 +
4πP

2ε + 1
, (5)

where P is the dielectric polarization. A Clausius-Mosotti relation based on this anal-
ysis is, however, less accurate experimentally than the one discussed in the lectures.
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7. A spherical capacitor consists of two conducting spherical shells of radii a and b, a < b,
but with their centers displaced by a small amount c � a. Take the center of the
sphere a as the origin. Show that the equation of the surface of sphere b in spherical
coordinates with z along the line of centers is

r = b + cP1(cos θ) + O(c2) . (6)

Suppose sphere a is grounded and sphere b is at potential V . Show that the electric
potential is

φ(r, θ) = V

[
r − a

b − a

(
b

r

)
− abc

r2(b − a)

(
r3 − a3

b3a3

)
P1(cos θ) + O(c2)

]
. (7)

What is the capacitance, to order c?
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8. a) A charge Q is distributed uniformly along a line from z = −a to z = a at x = y = 0.
Show that the electric potential for r > a is

φ(r, θ) =
Q

r

∑
n

(
a

r

)2n P2n(cos θ)

2n + 1
. (8)

b) A flat circular disk of radius a has charge Q distributed uniformly over its area.
Show that the potential for r > a is

φ(r, θ) =
Q

r

[
1 − 1

4

(
a

r

)2

P2(cos θ) +
1

8

(
a

r

)4

P4 − 5

64

(
a

r

)6

P6 + . . .

]
. (9)

For both examples, also calculate the potential for r < a.
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9. A conducting disk of radius a carrying charge Q has surface charge density

ρ(r) =
Q

2πa
√

a2 − r2
(10)

(both sides combined).

a) Show that the potential in cylindrical coordinates is

φ(r, z) =
Q

a

∞∫
0

e−k|z|J0(kr)
sin ka

k
dk . (11)

See section 5.302 of the notes on Bessel functions for a handy integral.

b) Show that the potential in spherical coordinates is (r > a):

φ(r, θ) =
Q

r

∑
n

(−1)n

2n + 1

(
a

r

)2n

P2n(cos θ) . (12)

Note the relation for P2n(0) (see sec. 5.157) to obtain a miraculous cancelation.
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10. A semi-infinite cylinder of radius a about the z axis (z > 0) has grounded conducting
walls. The disk at z = 0 is held at potential V . The “top” of the cylinder is open.
Show that the electric potential inside the cylinder is

φ(r, z) =
2V

a

∑
l

e−klz

kl

J0(klr)

J1(kla)
. (13)

Refer to the notes on Bessel functions for the needed relations.
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11. a) Calculate the electric potential φ everywhere outside a grounded conducting cylinder
of radius a if a thin wire located at distance b > a from the center of the cylinder carries
charge q per unit length.

Use separation of variables. Interpret your answer as a prescription for the image
method in two dimensions.

b) Use the result of a) to calculate the capacitance per unit length between two con-
ducting cylinders of radius a, whose centers are distance b apart.

Answer (in Gaussian units, the capacitance per unit length is dimensionless):

C =
1

4 ln
(

b+
√

b2−4a2

2a

) . (14)

c) [A bonus.] You have also solved the problem: What is the resistance between two
circular contacts of radius a separated by distance b on a sheet of conductivity σ?

Apply voltage V between the contacts. Field E appears, and current density J = σE
arises as well. The total current is

I =
∫

J · dS = σ
∫

E · dS = 4πσQin , (15)

by Gauss’ law, and Qin is the charge on one of the contacts needed to create the field
E. But if t is the thickness of the sheet, then the disk is like a length t of the cylindrical
conductor considered in part a). Therefore, Qin/t = V C with capacitance C as in part
b), assuming that J and E are two-dimensional. Hence, I = 4πσtV C = V/R by Ohm’s
law, and (15) leads to

R =
1

4πσtC
=

R��
4πC

. (16)

where

R�� =
1

σt
=

L

σtL
(17)

is the resistance of a square of any size on the sheet.
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Solutions

1. This problem is 2-dimensional, and well described in rectangular coordinates (x, y).
We try separation of variables:

φ(x, y) =
∑

X(x)Y (y) . (18)

Away from the surface y = 0, Laplace’s equation, ∇2φ = 0, holds, so one of X and Y
can be oscillatory and the other exponential. The X functions must be periodic with
period a, and symmetric about x = 0. This suggests that we choose

Xn(x) = cos knx, with kn =
2nπ

a
. (19)

We first consider the regions y > 0 and y < 0 separately, and then match the solutions
at the boundary The Y functions are exponential, and should vanish far from the plane
y = 0. Hence we consider

Yn(y) =

⎧⎪⎨
⎪⎩

e−kny, y > 0,

ekny, y < 0.
(20)

However, we must remember that the case of index n = 0 is special in that the separated
equations are X

′′
0 = 0 = Y

′′
0 , so that we can have X0 = 1 or x, and Y0 = 1 or y. In the

present case, X0 = 1 is the natural extension of (19) for nonzero n, so we conclude that
Y0 = ±y is the right choice; otherwise X0Y0 = 1, which is trivial. Then the potential
φ = ±y will be associated with a constant electric field in the y direction, which is to
be expected far from the grid of wires.

Combining X and Y , our series solution thus far is

φ(x, y) =

⎧⎪⎨
⎪⎩

a0y +
∑

n>0 an cos(2nπx/a) e−2nπy/a, y > 0,

−a0y +
∑

n>0 an cos(2nπx/a) e2nπy/a, y > 0,
(21)

where we have used continuity of the potential at y = 0 to use the same an for both
y > 0 and y < 0. Note, however, the sign change for a0, corresponding to the constant
electric field that points away from the wire plane.

At the boundary, y = 0, the surface charge density is

σ = λ
∑
n

δ(x − na) =
1

4π
(Ey(0

+) − Ey(0
−)) =

1

4π

(
−∂φ(x, 0+)

∂y
+

∂φ(x, 0−)

∂y

)

= − a0

2π
+

1

a

∑
n

nan cos(2nπx/a). (22)

We evaluate the an by considering the interval [−a/2 < x < a/2]. Multiplying by
cos(2nπx/a) and integrating, we find

a0 = −2πλ

a
, and an =

2λ

n
. (23)
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The potential is then,

φ(x, y) = −2πλ|y|
a

+ 2λ
∑
n>0

1

n
cos(2nπx/a) e−2nπ|y|/a. (24)

To sum the series, we write it as

φ(x, y) = −2πλ|y|
a

+ 2λRe
∑
n>0

1

n
e2nπx/a e−2nπ|y|/a

= −2πλ|y|
a

+ 2λRe
∑
n>0

1

n
(e2πix/a e−2π|y|/a)n

= −2πλ|y|
a

− 2λRe ln(1 − z), (25)

where
z = e2πix/a e−2π|y|/a. (26)

To take the real part, we note that if

ln(1 − z) ≡ u + iv, then 1 − z = eu eiv, |1 − z| = eu, (27)

and

Re ln(1 − z) = u = ln |1 − z|
= ln |1 − e−2π|y|/a[cos(2πx/a) + i sin(2πx/a)]

= ln
√

1 − 2 cos(2πx/a)e−2π|y|/a + e−4π|y|/a

=
1

2
ln[1 − 2 cos(2πx/a)e−2π|y|/a + e−4π|y|/a]. (28)

The potential is now

φ(x, y) = −λ ln e2π|y|/a − λ ln[1 − 2 cos(2πx/a)e−2π|y|/a + e−4π|y|/a]

= −λ ln[e2π|y|/a − 2 cos(2πx/a) + e−2π|y|/a]

= −λ ln[2 cosh(2π|y|/a)− 2 cos(2πx/a)]

= −λ ln[cosh(2π|y|/a)− cos(2πx/a)] − λ ln 2. (29)

For x, y small:

cosh
2π|y|

a
− cos

2πx

a
≈ 1 +

1

2

(
2πy

a

)2

+ . . . − 1 +
1

2

(
2πx

a

)2

+ . . . =
1

2

(
2πr

a

)2

(30)

where r2 = x2 + y2. Thus, at small x, y,

φ(x, y) → −2λ ln
2πr

a
, (31)

which is just the potential for an individual line charge λ. Close to each wire, the
equipotentials are cylinders around this wire.
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2. For a 2-dimensional potential problem with cylindrical boundaries, it is appropriate to
use polar coordinates (r, θ). In general, the potential could be expanded in a series of
terms in r±n cosnθ and r±n sinnθ. For a bounded potential in the region r < b, only
factors of rn can occur.

In the present problem, we measure θ from the plane that separates the two half
cylinders, and take 0 < θ < π on the half cylinder at potential V1. Since θ varies
over the full range [0, 2π], n must be an integer. The average potential is (V1 + V2)/2,
and the variable part of the potential has the symmetries φ(r,−φ) = −φ(r, φ), and
φ(r, π − θ) − φ(r, θ). The first implies that only factors of sinnθ can occur, and the
second tells us that n must be odd.

Thus, the potential has the form:

φ(r, θ) =
V1 + V2

2
+
∑

n odd

anr
n sinnθ. (32)

To fix the coefficients an, we use the boundary conditions at r = b, which can be
written as ∑

n odd

anb
n sinnθ =

V1 − V2

2
sign(θ), (33)

where

sign(θ) ≡
⎧⎪⎨
⎪⎩

+1, 0 < θ < π,

−1, −pi < θ < 0.
(34)

Thus, we have to learn how to decompose the function sign(θ) in Fourier series.

For a straightforward evaluation of the Fourier coefficients an, multiply (34) by sinnθ
and integrate from 0 to 2π:

πanb
n = (V1 − V2)

∫ π

0
sinnθ dθ =

2

n
(V1 − V2). (35)

Thus,

φ(r, θ) =
V1 + V2

2
+

2

π
(V1 − V2)

∑
n odd

rn

nbn
sinnθ

=
V1 + V2

2
+

2

π
(V1 − V2)Im

∑
n odd

(reiθ/b)n

n

=
V1 + V2

2
+

V1 − V2

π
Im ln

1 + reiθ/b

1 − reiθ/b

=
V1 + V2

2
+

V1 − V2

π
Im ln

1 − (r/b)2 + 2i(r/b) sin θ

1 + (r/b)2 − 2(r/b) cos θ

=
V1 + V2

2
+

V1 − V2

π
tan−1

(
2br sin θ

b2 − r2

)
. (36)
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In the above, we used the facts about logarithms stated in the problem; the second of
which follows from (27).

As a sidelight, we can compare (33) with (36) to learn that

sign(θ) =
4

π

∑
n odd

sinnθ

n
. (37)

This is, of course, also the famous Fourier expansion of a square wave, since that is the
result of periodically extending the definition (33).
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3. The general possibilities for a series expansion for this problem are similar to those of
problem 2. Since φ(r, 0) = 0 = φ(r, α), the angular factors can only be sin(nπθ/α).
Then, since the radial extent includes neither the origin nor ∞, factors of both rnπ/α

and r−nπ/α can occur. Thus, the potential can be written

φ(r, θ) =
∞∑

n=1

[
an

(
r

a

)πn/α

+ bn

(
a

r

)πn/α
]

sin
πnθ

α
. (38)

The use of factors r/a and a/r is convenient for enforcing the boundary condition
φ(a, θ) = 0, since this simply requires bn = −an.

For the electric field, we get:

Er = −∂φ

∂r
= −∑

n

nπ

α
an

[
1

r

(
r

a

)πn/α

+
1

r

(
a

r

)πn/α
]

sin
πnθ

α
, (39)

Eθ = −1

r

∂φ

∂θ
= −∑

n

nπ

α
an

[
1

r

(
r

a

)πn/α

− 1

r

(
a

r

)πn/α
]
cos

πnθ

α
(40)

At r = a, Eθ = 0. At θ = 0, Er = 0, as expected. At r = a,

Er = −2π

aα

∑
n

nan sin
πnθ

α
. (41)

At θ = 0,

Eθ = − π

αr

∑
n

nan

[(
r

a

)πn/α

−
(

a

r

)πn/α
]
. (42)

To obtain this, we ignored the small terms proportional to (a/b)n/2 compared to the
terms proportional to (b/a)n/2 in φ(r = b).

We cannot determine the coefficients an until the boundary condition at r = b is
specified.

For the example of a “Streamer Chamber”, α = 2π. The surfaces r = a and θ = 0, 2π
are at potential Eh rather than 0, but we can accommodate this by simply adding Eh
to (38). To evaluate an, we use the boundary condition (3) at r = b. Since a � b, we
can approximate the potential there as

φ(r = b) ≈ Eh +
∑
n

an

(
b

a

)n/2

sin
nθ

2
=

⎧⎪⎨
⎪⎩

Eh(1 − θ/θ0), |θ| < θ0,

0, θ0 < |θ|.
(43)

Subtracting Eh from both sides, we find

∑
n

an

(
b

a

)n/2

sin
nθ

2
=

⎧⎪⎨
⎪⎩

−Ehθ/θ0, |θ| < θ0,

−Eh, θ0 < |θ|.
(44)

On multiplying by sin(nθ/2) and integrating from 0 to π, we find

nan =
2Eh

π

(
a

b

)n/2
(

cos
nπ

2
− 2

nθ0
sin

nθ0

2

)
. (45)
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From (41), the field on the surface of the guard cylinder is

Er(r = a) = −2Eh

πa

∑
n

(
a

b

)n/2
(

cos
nπ

2
− 2

nθ0
sin

nθ0

2

)
sin

nθ

2
. (46)

Since a/b is very small, it suffices to keep only the first term, which is maximal at
θ = π:

Er,max(r = a) � 2Eh

π
√

ab
. (47)

For reasonable values of a, b and h, we have Er,max
<∼ E.

A sign that our approximations are somewhat delicate is obtained by evaluating Eθ(r =
b) using (42). If we keep only the first term, we find that Eθ(r = b) ≈ Eh/πb, instead
of E. However, because of the form (45) of the an, the leading term at each order n
in series (42) does not have any factors of a/b, and this series converges much more
slowly than does (41). The terms are of similar magnitude until nθ0 ≈ π, i.e., until
n ≈ πb/h, and Eθ(r = b) sums to E.
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4. This problem involves a spherical boundary, so we seek a solution in spherical coordi-
nates (r, θ, ϕ). Since the problem has axial symmetry, the potential will be independent
of ϕ, and of the general form

φ(r, θ) =
∑
n

[
An

(
r

a

)n

+ Bn

(
a

r

)n+1
]
Pn(cos θ). (48)

The region of interest contains the origin, so we must have Bn = 0 for a finite potential
there.

To find the An, we use the boundary condition at r = a: multiply (48) by Pn and
integrate over cos θ to find

An =
2n + 1

2

1∫
0

φ(a, θ)Pn(cos θ) d cos θ =
2n + 1

4
V
[∫ 1

0
(Pn(z) − Pn(−z)) dz

]
. (49)

Since Pn(z) = (−1)nPn(−z), we get An = 0 for even n. For odd n, we get

An =
2n + 1

2
V
∫ 1

0
Pn(z) dz. (50)

Using the explicit expressions for the polynomials Pn, we find for the first 2 nonvan-
ishing terms:

A1 =
3

2
V
∫ 1

0
zdz =

3

4
V, (51)

A3 =
7

2
V
∫ 1

0

1

2
(5z2 − 3z)dz = − 7

16
V. (52)

The potential is:

φ(r, θ) =
3

4
V

r

a
P1(cos θ) − 7

16
V
(

r

a

)3

P3(cos θ) + . . . (53)
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5. This problem has an axially symmetric charge distribution ρ(r), so we can evaluate
the potential via the multipole expansion. This is the sum of two series, one for
contributions from charge at radius r′ < r and the other for charge at r′ > r:

φ(r, θ) =
∑
n

Pn(cos θ)

rn+1

∫ r

0
2πr

′2 dr′
∫ 1

−1
d cos θ′ρ(r′)r

′nPn(cos θ′)

+
∑
n

rnPn(cos θ)
∫ ∞

r
2πr

′2 dr′
∫ 1

−1
d cos θ′ρ(r′)

Pn(cos θ′)
(r′)n+1

. (54)

In the present problem, the charge distribution is nonzero only for r < a, where it has
the form ρ = ρ0z = ρ0r cos θ = ρ0rP1(cos θ).

We first evaluate the potential outside the sphere of radius a, for which we need only
the first series of (54). The integral is

∫ a

0
2πr

′2 dr′
∫ 1

−1
d cos θ′ρ0r

′P1(cos θ′)r
′nPn(cos θ′) =

⎧⎪⎨
⎪⎩

2πa5

5
2
3
ρ0, n = 1,

0, n �= 1.
, (55)

using the orthogonality relation

∫ 1

−1
d cos θ Pn(cos θ)Pm(cos θ) =

2δnm

2n + 1
. (56)

Thus,

φ(r > a, θ) =
4πa5ρ0

15

cos θ

r2
, (57)

which the potential due to a dipole of strength p = 4πa4ρ0/15.

The total charge in the upper hemisphere is

Q0 =
∫ a

0
2πr2 dr

∫ 1

0
d cos θ ρ0rP1(cos θ) = 2π

a4

4

ρ0

2
=

πa4ρ0

4
, (58)

with −Q0 in the lower hemisphere. The effective height z0 of this charge is such that
the dipole moment is p = 2Q0z0, so z0 = 8a/15.

For the potential inside the sphere, we must evaluate both series in (54), but we see in
each case that only the n = 1 term survives the angular integration. Therefore,

φ(r < a, θ) =
P1(cos θ)

r2

∫ r

0
2πr

′2 dr′
2

3
ρ0r

′2 + rP1(cos θ)
∫ a

r
2πr

′2 dr′
2

3
ρ0

r′

r′2

= πρ0 cos θ

(
2a2r

3
− 2r3

5

)
. (59)

Expressions (57) and (59) give the same value at r = 1, as expected.

For possible instruction, we give a second solution for the potential inside the sphere,
where Poisson’s equation applies:

∇2φ = −4πρ = −4πρ0rP1(cos θ). (60)
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Since this is a linear partial differential equation, a solution can be found in terms of a
particular solution φp to (60) plus the general solution to the homogeneous equation,

which is Laplace’s equation ∇2φh = 0 in the present case. Also, we must match our
solution for r < a to that found for r > a.

This problem has axial symmetry, so the general solution to the homogeneous equation
for r < a can be written

φh(r, θ) =
∑
n

Anr
2Pn(cos θ). (61)

Since the solution for r > a involves only P1, we expect that the solution for r < a will
also. Then, φh = Ar cos θ.

Returning to Poisson’s equation, writing μ = cos θ, we get

1

r2

∂

∂r

(
r2 ∂φ

∂r

)
+

1

r2

∂

∂μ

[
(1 − μ2)

∂φ

∂μ

]
= −4πρ0rμ. (62)

We hope for a simple power law solution in r, and expect the angular function to be
just P1 = μ. That is, we try φ = Brnμ. Inserting this into (62), we learn that the
particular solution is φp = −2πρ0r

3μ/5. The complete solution then has the form

φ(r < a, θ) = φh + φp = Ar cos θ − 2πρ0r
3

5
cos θ. (63)

Matching this to (57) at r = a requires:

Aa − 2πρ0a
3

5
=

4πρ0a
3

15
, (64)

which gives A = 2
3
πρ0a

2, and hence the solution (59).
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6. Let the potential be given by the function φ1(r, θ) inside the sphere (r < a) and φ2(r, θ)
outside. The boundary conditions for the potential are

φ1(a, θ) = φ2(a, θ), (65)

∂

∂r
φ1(a, θ) = ε

∂

∂r
φ2(a, θ), (66)

where ε is the dielectric constant of the medium at r > a.

Since the asymptotic electric field at r → ∞ is E0 = E0ẑ, the potential φ2 approaches

φ2(r → ∞) → −E0z = −E0rP1(cos θ), (67)

even after we have created the cavity at the origin. Hence, it is clear that the decompo-
sition of φ in spherical harmonics should contain only terms proportional to P1(cos θ).
Recalling the general form (48), we expect

φ1(r, θ) = A
r

a
P1(cos θ), (68)

φ2(r, θ) =

[
−E0r + B

(
a

r

)2
]
P1(cos θ). (69)

From the boundary conditions at r = a, we get

A = −E0a + B = ε(−E0a − 2B). (70)

Solving for A and B, we get

φ1 = − 3ε

2ε + 1
E0r cos θ = − 3ε

2ε + 1
E0z, (71)

E(r < a) =
3ε

2ε + 1
E0ẑ. (72)

The asymptotic value of polarization is related to E0 via

P =
ε − 1

4π
E0. (73)

Thus, we may rewrite E(r < a) in terms of E0 and asymptotic value of P as

E(r < a) = E0 +
4πP

2ε + 1
. (74)
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7. The equation of the surface of the sphere of radius b and center at z = c is

b2 = r2 − 2rc cos θ + c2 = r2
(
1 − 2

c

r
cos θ

)
+ c2, (75)

where r is measured from the origin in a spherical coordinate system. For small c, we
approximate this as

r = b + c cos θ + O(c2) = bP0(cos θ) + cP1(cos θ) + O(c2). (76)

Between the spherical shells of radii a and b, the potential φ has the general axially
symmetric form (48). From the boundary condition φ(r = a) = 0, we conclude that

φ(r, θ) =
∑
n

An

[(
r

a

)n

−
(

a

r

)n+1
]
Pn(cos θ). (77)

The boundary condition on the outer shell can expressed via (76) in terms of P0(cos θ)
and P1(cos θ). Hence, it is plausible that only A0 and A1 are nonzero in (77), which
then reads

φ = A0

(
1 − a

r

)
+ A1

(
r

a
− a2

r2

)
P1. (78)

[For a discussion that does not make this leap, see eqs. ]

The boundary condition on the outer shell now implies that

φ(r = b + cP1) = V

= A0

(
1 − a

b + cP1

)
+ A1

(
b + cP1

a
− a2

(b + cP1)2

)
P1 (79)

≈ A0

(
1 − a

b

)
+

{
A0

ac

b2
+ A1

(
b

a
− a2

b2

)}
P1

where we have dropped terms in P 2
1 in the last line of (79) as these lead to a correction

to A0 of order c2. Hence, the constant term on the last line of (79) equals V , while
the coefficient of P1 must be zero. This determines the values of A0 and A1, and the
potential is

φ(r, θ) = V

[
r − a

b − a

b

r
− abc

r2(b − a)

(
r3 − a3

b3 − a3

)
P1(cos θ) + O(c2)

]
. (80)

To find the capacitance C = Q/V , we have to find the charge ±Q on the spherical
shells. It is simpler to calculate this for the inner shell which is at r = q.

Q =
∫

σ dS =
∫

Er(r = a)

4π
dS = −a2

2

∫ 1

−1
d cos θ

∂φ(a, θ)

∂r
. (81)

The terms in the integrand proportional to P1(cos θ) will integrate to zero, so the
capacitance is unchanged by a small offset c.
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For the record, Q = abV/(b − a) = CV so the capacitance is C = ab/(b − a) (which is
a length, as always in Gaussian units).

As a footnote, we show how the boundary condition on the outer shell could be imple-
mented without immediately assuming that only coefficients A0 and A1 are important
in (77). Neglecting terms of O(c2), we find

φ(r = b + c cos θ) = V

≈∑
n

An

⎧⎨
⎩
(

b

a

)n (
1 + n

c

b
cos θ

)
−
(

b

a

)−n−1 (
1 − (n + 1)

c

b
cos θ

)⎫⎬
⎭Pn(cos θ)

=
∑
n

An

⎡
⎣
(

b

a

)n

−
(

b

a

)−n−1
⎤
⎦Pn(cos θ)

+
c

b

∑
n

An

⎡
⎣n
(

b

a

)n

+ (n + 1)

(
b

a

)−n−1
⎤
⎦P1(cos θ)Pn(cos θ). (82)

At this point, we invoke the recurrence relation

P1(cos θ)Pn(cos θ) =
n + 1

2n + 1
Pn+1(cos θ) +

n

2n + 1
Pn−1(cos θ). (83)

The constants An are determined from the requirement that the coefficients of Pn in
(82) should be zero for n > 0, and the coefficient of P0 = 1 is V . This leads to
recurrence relations for An of the following form (schematically):

(· · ·)An + c(· · ·)An+1 + c(· · ·)An−1 = 0, n > 0. (84)

By iteration, we find a solution with the property An ∝ O(cn). It is straightforward
to find the first two coefficients A0 and A1, which again gives (80).
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8. The problem concerns two examples of specified, axially symmetry charge distributions.
Hence, the multipole expansion (54) can be used to calculate the electric potential.

a) The charge distribution is ρ = Q/2a along the line from z = −a to z = a. Thus,
there is charge only for cos θ = 1 and −1, and the charge distribution is symmetric in
cos θ. Since Pn(−1) = (−1)nPn(1), the integrals in (54) will be nonzero only for even
n. For an observer at r > a, the multipole expansion simplifies to

φ(r > a, θ) =
Q

2a

∑
n

P2n(cos θ)

r2n+1
· 2
∫ a

0
dz′(z′)2nP2n(1) =

Q

r

∑
n

(
a

r

)2n P2n(cos θ)

2n + 1
. (85)

Similarly,

φ(r < a, θ) =
Q

2a

∑
n

P2n(cos θ)

r2n+1
· 2
∫ r

0
dz′(z′)2nP2n(1)

+
Q

2a

∑
n

r2nP2n(cos θ) · 2
∫ a

r

dz′

(z′)2n+1
P2n(1)

=
Q

a

∑
n

P2n(cos θ)

{
1

2n + 1
+

1

2n

[
1 −
(

r

a

)2n
]}

. (86)

As expected (85) and (86) agree at r = a.

b) As in example a), the charge distribution is symmetric in cos θ, so only even n will
contribute to the multipole expansion of the potential. The charge distribution on the
disc r < a, cos θ = 0 is ρ = Q/πa2. Hence, the potential for r > a is

φ(r > a, θ) =
Q

πa2

∑
n

P2n(cos θ)

r2n+1

∫ a

0
2πr′ dr′ (r′)2nP2n(0)

=
Q

r

∑
n

(−1)n(2n − 1)P2n(cos θ)

2n(n + 1)

(
a

r

)2n

, (87)

which gives (9), noting that P2n(0) = (−1)2(2n − 1)/2n. Similarly,

φ(r < a, θ) =
Q

πa2

∑
n

P2n(cos θ)

r2n+1

∫ r

0
2πr′ dr′(r′)2nP2n(0)

+
Q

πa2

∑
n

r2nP2n(cos θ)
∫ a

r
2πr′ dr′

P2n(0)

(r′)2n+1
.

=
Qr

a2

∑
n

(−1)nP2n(cos θ)

2n

[
4n + 1

n + 1
− 2
(

r

a

)2n−1
]
. (88)

Again, these two expressions agree at r = a.

The charged surfaces in these examples are not conductors, so those surfaces are not
equipotentials.

If you had forgotten the multipole expansion, you could have proceeded by first solving
the simpler problem of the potential on the axis. For example, in the case of the charged
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disk,

φ(z > a) =
Q

πa2

a∫
0

2πr dr√
r2 + z2

=
2Q

a2

[√
z2 + a2 − z

]

=
Q

z

[
1 − 1

4

(
a

z

)2

+
1

8

(
a

z

)4

− 5

64

(
a

z

)6

+ . . .

]
. (89)

The potential φ(r, θ) is obtained from this simply by replacing z by r and multiplying
the term in 1/rn by Pn(cos θ), etc.
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9. a) We expect any solution of Laplace’s equation having axial symmetry in cylindrical
coordinates (r, θ, z) to be a sum of expressions of the form

e±kzJ0(kr). (90)

In the example of a conducting disk, there are no boundary surfaces, so the separation
constant k will be continuous. The problem is symmetric about the plane z = 0, so
we look for a solution of the form

φ(r, z) =
∫ ∞

0
dk f(k)e−k|z|J0(kr). (91)

To find the Fourier coefficients f(k), we note that the electric field experiences a jump
across the conducting disk at z = 0:

∂

∂z
φ(r < a, z = 0+) − ∂

∂z
φ(r < a, z = 0−) = −4πσ. (92)

Hence,

− 2

∞∫
0

kf(k)J0(kr) dk = −2Q

a

θ(a − r)√
a2 − r2

, (93)

using expression (10) for the charge density σ. Given the integral relation

∫ ∞

0
sin kaJ0(kr) dk =

⎧⎪⎨
⎪⎩

0, r > a

1√
a2−r2 , r < a

⎫⎪⎬
⎪⎭ =

θ(a − r)√
a2 − r2

. (94)

we find that f(k) = Q sin(ka)/ka, and the potential is given as in (11).

b) To give a solution in spherical coordinates for the potential due to a specified, axially
symmetric charge distribution, we again use the multiple expansion (54). The present
problem is quite similar to problem 8b, so we write

φ(r > a, θ) =
Q

2πa

∑
n

P2n(cos θ)

r2n+1

∫ a

0
2πr′ dr′

(r′)2n

√
a2 − r′2

P2n(0)

=

√
πQ

a

∑
n

P2n(0)Γ(n + 1)

(2n + 1)Γ(n + 3/2)

(
a

r

)2n+1

P2n(cos θ),

=
Q

a

∑
n

(−1)n

2n + 1

(
a

r

)2n+1

P2n(cos θ), (95)
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10. This problem has boundary conditions on the potential that φ(r = a) = 0, and φ(z =
0) = V , so a solution in cylindrical coordinates (r, θ, z) for r < a, z > 0 will have the
form

φ =
∑

l

Ale
−klzJ0(klr). (96)

where J0(kla) = 0. At z = 0, we have

V =
∑

l

AlJ0(klr). (97)

The {J0(klr)} are an orthogonal set of functions on the interval [0, a] upon integration
with respect to dr2 rather than dr. Hence, we can evaluate the Fourier coefficients Al

by multiplying (97) by J0(kmr) and integrating:

∑
l

Al

∫ a

0
r dr J0(klr)J0(kmr) = Am

a2

2
[J1(kma)]2

= V
∫ a

0
r dr J0(kmr) = V

a

k
J1(kma), (98)

using 5.297(3) and 5.294(7) of Smythe. With this, we obtain the expansion

φ(r, θ, z) =
2V

a

∑
l

e−klz

kl

J0(klr)

J1(kla)
. (99)
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11. This two dimensional problem involves cylinders about the z axis, so we use cylindrical
coordinates to discuss the potential φ(r, θ). The first conducting cylinder of radius a
has its axis along the z.

a) A wire at (r, θ) = (b, 0) carries charge density q per unit length.

We present three related solutions; the first two use Fourier series, where the first
decomposes the potential into φ = φwire +φcylinder, while the second does not; the third
solution is more elementary.

In all cases, we have the symmetry φ(−θ) = φ(θ), so the Fourier expansion for the
potential contains terms in cosnθ, but not sin nθ.

The potential due to the wire has the general form

φwire(r, θ) =

⎧⎪⎨
⎪⎩

a0 +
∑

n=1 an

(
r
b

)n
cosnθ, r < b,

a0 + b0 ln r
b
+
∑

n=1 an

(
b
r

)n
cos nθ, r > b,

(100)

since this should not blow up at the origin, should be continuous at r = b, and can
have a logarithmic divergence at infinity.

The potential due to the conducting cylinder has the form

φcylinder(r > a, θ) = A0 + B0 ln r +
∑
n=1

An

rn
cosnθ. (101)

The cylinder is grounded, so the total potential (and not φcylinder) obeys φ(r = a) = 0.
Hence,

a0 + A0 + B0 ln a = 0, An = −an

(
a2

b

)n

, (102)

and so the potential due to the cylinder is

φcylinder(r > a, θ) = −a0 + B0 ln
r

a
−∑

n=1

an

(
a2/b

r

)n

cosnθ, (103)

where coefficient B0 is not yet determined.

Comparing (103) to the form (100) of the potential due to the wire for r > b, we see
that these are the same for terms with n > 0, except for an overall − sign, and the
substitution b → a2/b. Since we are still free to choose the value of B0, we set it to
−b0 ln b/a, and the potential of the cylinder becomes

φcylinder(r > a, θ) = −a0 − b0 ln
r

a2/b
−∑

n=1

an

(
a2/b

r

)n

cos nθ, (104)

and now the n = 0 terms are also related to those of eq. (100) in the same way as the
terms with n > 0.

This suggests that the potential due to a grounded, conducting cylinder of radius a in
the presence of a line charge density q at r = b is the same that due to a line charge
density −q at r = a2/b. This is the desired image method for cylindrical geometry.
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There was no need to evaluate the Fourier coefficients an to reach this conclusion!

In the second solution, we do not separate the potential into two parts, and we carry
out the evaluation of the Fourier coefficients.

The cylinder r = a is at zero potential, so the most general form that satisfies these
conditions for a < r < b is

φ(r, θ) = b0 ln r − b0 ln a +
∞∑

n=1

An

[(
r

a

)n

−
(

a

r

)n]
cos nθ (a < r < b). (105)

Beyond the wire at r = b, we can only have the form

φ(r, θ) = c0 + d0 ln r +
∞∑

n=1

Bn

(
b

r

)n

cos nθ (r > b). (106)

As this problem is meant to represent a real 2-wire system, the energy per unit length
must be finite. Therefore, we must have d0 = 0, so that no field lines from the wire
escape to infinity. This also means that the charge on the cylinder at r = a must be
−q.

The potential is continuous at r = b, which leads to the conditions

c0 = b0 ln
b

a
, Bn = An

[(
b

a

)n

−
(

a

b

)n
]
. (107)

The remaining condition is obtained by considering a Gaussian surface (of unit length
in z) that surrounds the cylindrical surface (b, θ):

4πqin =
∫

E · dS =
∫

b dθ (Er+ − Er−). (108)

For this we learn that

4πqδ(θ) = b(Er+ − Er−) = b

(
−∂φ(b+)

∂r
+

∂φ(b−)

∂r

)

= b0 +
∑
n

n cos nθ

{
Bn + An

[(
b

a

)n

+
(

a

b

)n
]}

. (109)

Multiply this by cos nθ and integrate over θ to find

b0 = 2q, Bn + An

[(
b

a

)n

+
(

a

b

)n
]

=
4q

n
. (110)

Combining this with (107), we learn that

c0 = 2q ln
b

a
, An =

2q

n

(
a

b

)n

, Bn =
2q

n

[
1 −
(

a

b

)2n
]
. (111)
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For a < r < b we now have

φ(r, θ) = 2q ln
r

a
+ 2q

∑
n

1

n

(
a

b

)n [(r

a

)n

−
(

a

r

)n]
cosnθ

= 2q ln
r

a
+ 2qRe

∑
n

1

n

[(
r

b

)n

−
(

a2

br

)n]
(eiθ)n

= 2q ln
r

a
− 2qRe

[
ln

(
1 − reiθ

b

)
− ln

(
1 − a2eiθ

br

)]

= 2q ln
r

a
− 2q ln

∣∣∣∣∣1 − reiθ

b

∣∣∣∣∣+ 2q ln

∣∣∣∣∣1 − a2eiθ

br

∣∣∣∣∣
= 2q ln

b

a
− 2q ln

∣∣∣b − reiθ
∣∣∣+ 2q ln

∣∣∣∣∣r − a2eiθ

b

∣∣∣∣∣ (112)

= 2q ln
b

a
− 2q ln

√
r2 − 2br cos θ + b2 + 2q ln

√√√√r2 − 2r
a2

b
cos θ +

(
a2

b

)2

.

Recall that the potential at distance R from a line of charge q per unit length is
φ = −2q lnR + const. Thus the second term of the last line of (112) is the potential
due to the line of charge density q at (r, θ) = (b, 0). The second term is equal to the
potential due to a line of charge density −q at (r, θ) = (a2/b, 0).

Hence, we have demonstrated the cylindrical image method: the image in a conducting
cylinder of radius a of a line of charge density q at radius b is a line of charge density −q
at radius a2/b. In terms of distances r1 and r2 shown in the figure below, the potential
is then,

φ(r, θ) = 2q ln
br2

ar1
. (113)

[We skip the demonstration that this prescription also works for r > b.]

For a third solution, we suppose that there exists an image wire carrying charge density
q′ at distance c from the center of the conducting cylinder, as shown in the figure.

Then the potential at an aribtrary point (r, θ) due to the two wires is

φ(r, θ) = φq + φq′ = K − 2q ln r1 − 2q′ ln r2

= K − q ln(r2 + b2 − 2br cos θ) − q′ ln(r2 + c2 − 2cr cos θ). (114)
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The cylinder is grounded, so

φ(r = a, θ) = 0 = K − q ln(a2 + b2 − 2ab cos θ) − q′ ln(a2 + c2 − 2ac cos θ). (115)

This can be arranged by putting q′ = −q, so that (115) simplifies to

K = q ln
a2 + b2 − 2ab cos θ

a2 + c2 − 2ac cos θ
. (116)

If we take c = a2/b (inspired by our knowledge of the spherical image method), we
find that the argument of the logarithm becomes b2/a2, which is independent of θ, as
desired. Hence, K = 2q ln(b/a), and the potential is again (113).

b) Suppose we have two parallel conducting cylinders of radius a each, carrying charge
+q and −q per unit length, whose axes are distance b apart. We want to find locations
for two line charge densities +q and −q such that the fields from these lines charges
are the same as those due to the two conducting cylinders.

Clearly, these lines charges should be placed symmetrically in the plane containing
the axes of the cylinders, say distance c apart. Then the first line charge is distance
(b+c)/2 from the center of the second cylinder. Its image charge would then be located
distance 2a2/(b + c) from the center of the second cylinder. We want the image charge
to be the same as the second line charge, which is at distance (b− c)/2 from the center
of the second cylinder. Equating the two distances, we find that

c =
√

b2 − 4a2. (117)

To find the capacitance C = q/ΔV , we need the potential difference ΔV between
the two cylinders. We can calculate the potential on a conducting cylinder at any
convenient point. For example, consider the point on one cylinder closest to the other.
This point is distance a − (b − c)/2 from one line charge, and distance (b + c)/2 − a
from the second line charge. The potential at this point is therefore

V = −2q ln[a − (b − c)/2] + 2q ln[(b + c)/2 − a] = 2q ln
c + b − 2a

c − (b − 2a)

= 2q ln
b + c

2a
. (118)

The corresponding point on the second cylinder is at potential −V , so ΔV = 2V , and
the capacitance is

C =
1

4 ln b+
√

b2−4a2

2a

. (119)


