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1. a) Child’s Law. Before the transistor era, a common device was a vacuum diode.
This is a parallel plate capacitor with a potential difference V across a gap d, all of
which is inside a vacuum tube. The cathode (at φ = 0) is heated, so electrons can
jump off and flow to the anode (at φ = V ). Positive charges have very low probability
of leaving the anode and flowing to the cathode. The resulting one way flow of charge
from cathode to anode is the diode action.

Consider a steady situation in which a constant current density j = ρ(x)v(x) flows, and
where the electrons leave the cathode with velocity v(0) = 0. Here, ρ(x), 0 ≤ x ≤ d, is
the electron charge density.

Solve for the potential φ(x) via Poisson’s equation,

∇2φ = −4πρ. (1)

Show that

φ(x) = V
(

x

d

)4/3

, and J = − 1

9π

V 3/2

d2

√
2e

m
. (2)

where e and m are the magnitudes of the charge and mass of the electron, respectively.

Note that since the current density J = nev is constant, and v → 0 near the cathode,
the charge density n → ∞ there. The field due to this large “space charge” distribution
near the cathode opposes the field due to the capacitor alone, and cancels it completely
very close to the cathode. That is, E(x) ∝ xp with p > 0. Then, φ(x) = − ∫ E dx ∝
x1+p rises more quickly than the simple linear relation for an ordinary capacitor.

b) Laser Driven Vacuum Photodiode. A vacuum photodiode is constructed in the
form of a parallel-plate capacitor of area A, plate separation d. A battery maintains
constant potential V between the plates. A short laser pulse illuminates that cathode
at time t = 0 with energy sufficient to liberate all of the surface-electron charge density.
This charge moves across the capacitor gap as a sheet until it is collected at the anode
at time T . Then another laser pulse strikes the cathode, and the cycle repeats.

Estimate the average current density 〈j〉 that flows onto the anode from the battery,
ignoring the recharging of the cathode as the charge sheet moves away. Then calculate
the current density and its time average when this effect is included.

You may suppose that the laser photon energy is equal to the work function of the
cathode, so the electrons leave the cathode with zero velocity.
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2. Obtain a Legendre series expansion for the potential inside a conducting sphere of
radius a and conductivity σ when a current I enters at one pole through a fine wire of
radius b 	 a, and leaves through the other pole via a similar fine wire.

Define the potential as φ = 0 on the equator.

By noting that Pn(−μ) = (−1)nPn(μ), and referring to the expansion of 1/R given on
p. 57 of the notes, show that

φ(r < a, θ) =
I

2πσ

[
1

r1
− 1

r2
+

1

2

∫ r

0

(
1

r1
− 1

r2

)
d ln r′

]
, (3)

where r1,2 is the distance from the “north” (“south”) pole to the point (r, θ, ϕ) in
spherical coordinates. The integrals can be found in tables if desired.

Finally, suppose the wires have radius b 	 a, and their surface of contact with the
sphere is an equipotential. Show that the resistance of the sphere is that of a piece of
wire roughly b long, if that wire had conductivity σ.

Hint: Express the radial current density at r = a in terms of delta functions, δ(cos θ−1)
and δ(cos θ + 1).
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3. Charge Distributions in a Wire that carries a Steady Current

a) A wire of circular cross-section carries a current I which is uniformly distributed
across the wire. We consider this current to be due to a number density ρ of free
electrons moving with average drift velocity v. (In a typical situation, v 	 1cm sec−1!)
Let ρ0 be the uniform number density of positive ions in the wire. For steady current
flow, there must be no radial force on the electrons. Use the Lorentz force law,

F = q
(
E +

v

c
× B

)
(4)

to find the relation between ρ0 and ρ such that the force vanishes. (As a check, you
may wish to do this problem via special relativity, but try it using Maxwell’s equations
and the Lorentz force.)

b) A resistor of resistance R, length l and cross-sectional area A carries a current I ,
delivered by fine lead wires. Calculate the charge that accumulates on the end faces
of the resistor in order to produce the field E which drives the current according to
Ohm’s law. Suppose that the current in the wire varies with time. Show that the
conduction current inside the resistor is different from that in the lead wires, but that
Maxwell’s concept of displacement current restores the continuity of “total current”.
You may assume that l 	 √

A so that the current density J is uniform inside the wire.
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4. A straw tube chamber is a low cost version of a proportional counter, which latter is
a descendent of the Geiger counter.1

These devices consist of a pair of coaxial conducting cylinders with the region between
the cylinders is filled with a gas such as argon. The inner cylinder of radius a is the
anode, and is held at potential V ; the outer cylinder of radius b is the cathode, and is
grounded.

If a penetrating charged particle passes through the chamber, it will ionize about two
gas molecules per mm of path length. The ionization electrons are pulled by the
electric field towards the anode. Close to the anode, the field is strong enough that the
electrons gain enough energy during one mean free path to ionize the molecule they hit
next, liberating one or more additional electrons. In a proportional chamber, the field
is kept low enough that the resulting Townsend avalanche2 involves 104-106 molecules.

What is the time dependence, I(t), of the current that flows off the anode due to the
avalanche of a single initial electron?

What is the spatial dependence, q(z) of the charge distribution induced on the anode
during the time when the current is large, where the z axis is the chamber axis? You
may restrict your attention to values of z far from the ends of the tube of length l.

Measurement of the charge distribution via a segmented cathode permits localization
in z of the ionization, and hence, of the initiating charged particle.3

You may ignore the tiny current that flows while the electron drifts towards the anode.
The avalanche takes place so close to the anode, that the small remaining drift time
for the electrons to reach the anode may also be ignored. In this approximation, the
situation at t = 0 is that electrons of total charge −q0 reside on the anode in close
proximity to positive ions of total charge +q0. Current flows off the anode only when
some of the field lines from the positive ions detach from the electrons on the anode,
and extend to the cathode where charge is induced to terminate these field lines. This
occurs only as the positive ions move away from the anode, with velocity related by

v = μE, (5)

where μ is the positive-ion mobility.

1E. Rutherford and H. Geiger, An Electrical Method of Counting the Number of α-Particles from Radio-
active Substances, Proc. Roy. Soc. London A 81, 141 (1908),
http://kirkmcd.princeton.edu/examples/detectors/rutherford_prsla_81_141_08.pdf
H. Geiger and W. Müller, Elektronenzählrohr zur Messung schwächster Aktivit/”aten, Naturw. 16, 617
(1928), http://kirkmcd.princeton.edu/examples/detectors/geiger_naturw_16_617_28.pdf

2J.S. Townsend, The conductivity in Gases produced by Motion of Negatively-charged Ions, Nature 62,
340 (1900), http://kirkmcd.princeton.edu/examples/detectors/townsend_nature_62_340_00.pdf
Phil. Mag. 6, 198 (1901), http://kirkmcd.princeton.edu/examples/detectors/townsend_pm_6_198_01.pdf

3C. Leonidopoulos, C. Lu and A.J. Schwartz, Development of a Straw Tube Chamber with Pickup-Pad
Readout, Nucl. Instr. and Meth. A427, 465 (1999),
http://kirkmcd.princeton.edu/examples/detectors/leonidopoulos_nim_a427_465_99.pdf
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I(t) via Reciprocity and Weighting Fields

This problem can be solved by an application of Green’s reciprocation theorem, which
states that if a set of fixed conductors is at potentials Vi when carrying charges Qi,
and at potentials V ′

i when carrying charges Q′
i, then

∑
i

ViQ
′
i =

∑
i

V ′
i Qi. (6)

To see this, we label the 3-dimensional potential distribution associated with charges Qi

by φ(r), and that associated with charges Q′
i by φ′. The space outside the conductors

is charge free and with dielectric constant ε = 1. Then ∇2φ = 0 = ∇2φ′ outside the
conductors.

We invoke Green’s theorem (p. 37 of the Notes),

∫
(φ∇2φ′ − φ′∇2φ)dvol =

∮
(φ∇φ′ − φ′∇φ) · dS, (7)

where we take the bounding surface S to be that of the set of conductors. Hence,4

0 =
∑

i

∮
(Vi∇φ′

i − V ′
i ∇φi) · dSi = −4π

∑
i

(ViQ
′
i − V ′

i Qi), (8)

using Gauss’ Law (in Gaussian units) that

4πQi =
∮

Ei · dSi = −
∮

∇φi · dSi. (9)

In the present problem, we have a small charge q0 at position r0(t) that moves under
the influence of the field due to conductors i = 1, ..., n that are held at potentials
Vi. The charges Qi on the conductors obey Qi � q0, so the motion of charge q0 is
determined, to a very good approximation by the charges Qi on the conductors when
q0 = 0. Hence, the problem can be considered as the superposition of two situations:

A: charge q0 absent; conductors i = 1, ...n at potentials Vi.

B: charge q0 present; conductors i = 1, ...n grounded, with charges ΔQi on them.
We are particularly interested in the charge on electrode 1, whose time rate of change
is the desired current I(t).

To use the reciprocation theorem, we suppose that in case B the charge resides on a
tiny conductor at position r0 that is at the potential V0 = φA(r0) obtained from case
A. Then, the charges and potentials in case B can be summarized as

4Green’s theorem (7) first appeared as eq. (12), p. 26 of G. Green, Mathematical Papers (1828),
http://kirkmcd.princeton.edu/examples/EM/green_papers.pdf.
The reciprocation theorem (7) was hinted at on pp. 33-39, but may have first been explicitly stated in
Art. 85b, p. 105 of J.C Maxwell, A Treatise on Electricity and Magnetism, 2nd ed. (1878),
http://kirkmcd.princeton.edu/examples/EM/maxwell_treatise_v1_04.pdf.
That this theorem also holds for conductors in a medium of uniform dielectric constant is shown in sec. 3.09,
p. 54 of W.R. Smythe, Static and Dynamic Electricity, 3rd ed. (McGraw-Hill, 1968).
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B: {q0, V0; ΔQi, Vi = 0, i = 1, ..., n}.
We solve the electrostatics problem for a third case,

C: {q′0 = 0, V ′
0(r0); Q1, V ′

1 = 1; ΔQi = 0, V ′
i = 0, i = 2, ..., n.},

in which conductor 1 is held at unit potential, the charges on all other conductors at
zero, and all other conductors are grounded except for the tiny conductor at position
r0. Again, we solve this problem as in case A, first ignoring the tiny conductor, then
evaluating V ′

0 as φC(r0).

The reciprocation theorem (6) applied to cases B and C implies that

0 = q0V
′
0 + ΔQ1 · 1. (10)

The current that moves off electrode 1 in case B is therefore,

I1 = −dΔQ1

dt
= q0

dV ′
0 (r0)

dt
= q0∇V ′

0(r0) · dr0

dt
= −q0Ew · v, (11)

where the velocity v of the charge is determined using the fields from case A, and

Ew = −∇V ′
0(r0) = −∇φC(r0) (12)

is called the weighting field.5 For the case of two conductors (plus charge q0) one of
which is grounded, the weighting field is the same as the field from case A, but in
general they are distinct.

As the present problem involves only two conductors, you may wish to find a solution
that does not appear to use the initially cumbersome machinery of the reciprocation
theorem.

5The result (11) was first deduced by the present method by W. Shockley, Currents to Conductors In-
duced by a Moving Point Charge, J. Appl. Phys. 9, 635 (1939),
http://kirkmcd.princeton.edu/examples/EM/shockley_jap_9_635_39.pdf,
and by S. Ramo, Currents Induced by Electron Motion, Proc. I.R.E. 27, 584 (1939),
http://kirkmcd.princeton.edu/examples/EM/ramo_pire_27_584_39.pdf.
That this result also follows from an energy argument was pointed out by C.K. Jen, On the Induced Current
and Energy Balance in Electronics, Proc. I.R.E. 29, 349 (1941),
http://kirkmcd.princeton.edu/examples/EM/jen_pire_29_345_41.pdf.
For discussion that the weighting-field method holds for multiple charges (space charge) and for a uniform
dielectric medium, see, for example, L.A. Hamel and M. Julien, Generalized demonstration of Ramo’s theo-
rem with space charge and polarization effects, Nucl. Instr. Meth. A 597, 207 (2008),
http://kirkmcd.princeton.edu/examples/EM/hamel_nim_a597_207_08.pdf.
See also, K.T. McDonald, Does Space Charge or the Dielectric Constant Affect Induced Charge in a Liquid
Argon Detector? (June 4, 2016), http://kirkmcd.princeton.edu/examples/induced.pdf.
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5. Resistance of a Disk with Edge Contacts

Calculate the resistance between two contacts on the rim of a disk of radius a, thickness
t 	 a, and conductivity σ, when each (perfectly conducting) contact extends for a
small distance δ around the circumference, and the distance along the chord between
the contacts is d � δ.
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6. Some biological systems consist of two “phases” of nearly square fiber bundles of dif-
fering thermal and electrical conductivities. Consider a circular region of radius a near
a corner of such a system as shown below.

Phase 1, with electrical conductivity σ1, occupies the “bowtie” region of angle ±α,
while phase 2, with conductivity σ2 	 σ1, occupies the remaining region.

Deduce the approximate form of lines of current density J when a background electric
field is applied along the symmetry axis of phase 1. What is the effective conductivity
σ of the system, defined by the relation I = σΔφ between the total current I and the
potential difference Δφ across the system?

It suffices to consider the case that the boundary arc (r = a, |θ| < α) is held at electric
potential φ = 1, while the arc (r = a, π − α < |θ| < π) is held at electric potential
φ = −1, and no current flows across the remainder of the boundary.

Hint: When σ2 	 σ1, the electric potential is well described by the leading term of a
series expansion.
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7. A rectangular loop of size 2a by 2b carries a current I ′, and is free to rotate about an
axis that bisects the sides of length 2b. The axis is parallel to and distance d from
a wire that carries current I . If the plane of the loop makes angle θ to the plane
containing the wire and the axis, and if the currents in the wire and in the side (of
length 2a) of the loop closest to the wire flow in the same direction, show that the
magnitude of the torque on the loop is

N =
8abdII ′

c

(b2 + d2) sin θ

b4 + d4 − 2b2d2 cos 2θ
. (13)

What is its direction?

����

�

��
�

��

�	
θ

�
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8. Helmholtz Coils

a) Each of a pair of parallel, coaxial “Helmholtz” coils has radius a and carries a current
I in the same sense. Their centers are at z = ±b, where the z axis is the common axis
of the coils. Calculate the magnetic field along the axis, and determine the separation
2b such that the first, second and third derivatives of Bz with respect to z all vanish
at the mid‘ axis. Thus, the field is very uniform at the center of the Helmholtz coils.

b) Suppose we desire an even more uniform field at the origin. Add a second pair of
Helmholtz coils of radius a′ = a/2. What current I ′ should flow in the second pair so
as to cancel the 4rth derivative of Bz of the first pair? What fraction of the original
central field is lost in this configuration?

c) In some applications, it is more important that the field outside the coils be as
small as possible, rather than the field inside be highly uniform.

Give an expansion for the field along the axis of a set of Helmholtz coils as a function
of u = 1/z for z � a, b. Identify the first two nonvanishing multipoles, and find the
value of b for which the second of these can be made to vanish.

To cancel the leading multipole as well, add a second coil pair with a′ = 2a. What
current I ′ should flow in this pair? What fraction of the central field of the first pair
is lost? What is the order of the first remaining nonzero multipole?

[See, E.M. Purcell, Am. J. Phys. 57, 18 (1989).6]

6http://kirkmcd.princeton.edu/examples/EM/purcell_ajp_57_18_88.pdf
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9. Expansion of an Axially Symmetric Magnetic Field in Terms of the Axial
Field

Suppose a magnetic field in a current-free region is rotationally symmetric about the
z-axis. Then,

B = Br(r, z)r̂ + Bz(r, z)ẑ (14)

in cylindrical coordinates. The axial field Bz(0, z) is often relatively easy to calculate.
If we write

Bz(r, z) =
∞∑

n=0

an(z)rn, and Br(r, z) =
∞∑

n=0

bn(z)rn , (15)

then a0(z) = Bz(0, z). Use ∇ · B = 0 and ∇ × B = 0 to show that

Bz(r, z) =
∑
n

(−1)na
(2n)
0 (z)

(n!)2

(
r

2

)2n

, (16)

and

Br(r, z) =
∑
n

(−1)n+1 a
(2n+1)
0 (z)

(n + 1)(n!)2

(
r

2

)2n+1

, (17)

where

a
(n)
0 =

dna0

dzn
. (18)

This magnetic field can also be deduced from the vector potential whose only nonzero
component is

Aφ(r, z) =
∑
n

(−1)n a
(2n)
0 (z)

(n + 1)(n!)2

(
r

2

)2n+1

. (19)

For the example of Helmholtz coils, prob. 5, we know that

Bz(0, z) = B0 + B4z
4 + . . . (20)

Give Bz and Br correct to fourth order in r and z.

Show also that, for small r, ∇ · B = 0 leads to the relation

Br(r, z) ≈ −r

2

∂Bz(0, z)

∂z
. (21)

Remark. An electrostatic field with azimuthal symmetry about the z axis can also be
expanded according to eqs. (16)-(17). For example, consider a capacitor with circular
plates centered about (r, θ, z) = (0, 0, 0). Then we can expand

Ez(0, 0, z) ≈ Ez(0, 0, 0) +
z2

2

d2Ez(0, 0, 0)

dz2
+ ... (22)

and

Ez(r, 0, 0) ≈ Ez(0, 0, 0) − r

2

d2Ez(0, 0, 0)

dz2
+ ... (23)

Thus, if Ez has a maximum with respect to z at the origin, it is at a minimum with
respect to r, or vice versa. The field E cannot be at a maximum with respect to both
r and z, as shown in general in prob. 1(c) of set 1.
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10. Nonaxially Symmetric Magnetic Field in Terms of the Axial Field

In the previous problem, it was demonstrated how knowledge of a static, axial magnetic
field leads to a complete characterization of the field if that field is axially symmetric.

A variant on the electro- or magnetostatic boundary value problem arises in accelerator
physics, where a specified field, say B(0, 0, z), that is not axially symmetric is desired
along the z axis. In general there exist static fields B(x, y, z) that reduce to the desired
field on the axis, but the “boundary condition” B(0, 0, z) is not sufficient to insure a
unique solution.

For example, find a field B(x, y, z) that reduces to

B(0, 0, z) = B0 cos kzx̂ + B0 sin kzŷ (24)

on the z axis. In this, the magnetic field rotates around the z axis as z advances.

Show that the use of rectangular or cylindrical coordinates leads “naturally” to different
forms for B off the z axis.

One 3-dimensional field extension of (24) is the so-called helical wiggler, which obeys
the auxiliary requirement that the field at z + δ be the same as the field at z, but
rotated by angle kδ. Show that this field pattern can be realized by a current-carrying
wire that is wound in a helix of period λ = 2π/k.

See, B.M. Kincaid, A short-period helical wiggler as an improved source of synchrotron
radiation, J. Appl. Phys. 48, 2684-2691 (1977);7 J.P. Blewett and R. Chasman, Orbits
and fields in the helical wiggler, J. Appl. Phys. 48, 2692-2698 (1977).8

7http://kirkmcd.princeton.edu/examples/EM/kincaid_jap_48_2684_77.pdf
8http://kirkmcd.princeton.edu/examples/EM/blewett_jap_48_2692_77.pdf
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11. Axial Field of a Solenoid Magnet

A solenoidal coil of radius a and length l has n turns per unit length and carries a
current I (in each turn). On the axis, show that

Bz(0, z) =
2πnI

c
(cos θ1 + cos θ2), (25)

where θ1 and θ2 are the angles between the axis and the ends of the solenoid at the
observation point. Near the midpoint of the solenoid (z = 0), show

Br(r, z) ≈ 288πnIa2rz

cl4
. (26)

At the end of the coil (z = l/2), show that

Bz ≈ 2πnI

c
≈ Bz(0, 0)

2
, (27)

and

Br ≈ πnIr

ac
. (28)

If one is interested in the fields near the end of a long solenoid (l � a), it is often
sufficient to approximate the coil as semi-infinite, for which (25) leads to

Bz(0, z) =
2πnI

c

(
1 +

z√
z2 + a2

)
, (29)

where z = 0 at the end of coil.
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12. a) A coil is wound on the surface of a sphere such that the magnetic field inside the
sphere will be uniform. How should the turns be distributed?

b) What is the effective magnetic dipole moment of a sphere of uniform surface charge
density σ which rotates with constant angular velocity ω about an axis of the sphere?

An electron has a permanent magnetic dipole moment of magnitude

μ =
eh̄

2mc
. (30)

Suppose the electron is a rotating spherical shell of charge with radius

a =
e2

mc2
, (31)

the “classical electron radius”. What is the velocity at the equator?

Compare the magnetic field energy of the rotating shell of charge with its electric field
energy.
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13. Saturation and Hysteresis

a) A piece of iron saturates in a magnetic field of ≈ 20, 000 Gauss, when all available
electron magnetic moments are aligned. The density of iron is 8 g/cm3. How many
electrons per iron atom have been aligned to produce this field?

b) You can understand some aspects of the hysteresis curve of a ferromagnet via a
model consisting of two permanent dipoles separated by a fixed distance d, but free to
rotate. In the absence of any external field, what is the equilibrium orientation and
energy of the two dipoles?

Suppose a magnetic field B is applied at right angles to the line of centers of the dipoles.
What is the minimum field strength needed to align the dipoles along B? Higher fields
produce no further change – saturation has occurred.

Suppose the dipoles were originally aligned parallel to their line of centers, and then a
field B is applied antiparallel to the dipoles. What is the minimum value of B needed
to flip the dipoles?

If the dipoles flip and later B is reduced to zero, the dipoles do not unflip – hysteresis
has occurred.
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14. Magnetic Field Mapping. You may be familiar with the method of mapping the
equipotentials in 2-dimensional electrostatic problems using conducting paper:

On the paper, J = σE, where J is the two dimensional current density (= current per
unit length perpendicular to J), σ is the surface conductivity of the resistive paper,
and E is the electric field in the paper. Outside of the sources and sink of current in
the patches of conducting paint, we have ∇ ·J = 0, so ∇ ·E = 0 also. The currents and
fields are steady, so ∇× E = 0, and the electric field can be derived from a potential,
E = −∇φ that obeys Laplace’s equation, ∇2φ = 0. The value of the potential φ at
any point on the paper can be read directly with a voltmeter.

The boundary conditions are that

• J and E are perpendicular to the boundaries of the patches of conducting paint.

• J and E are parallel to the edges of the paper (where there is no conducting paint.
Thus, the region outside the paper is like a dielectric with constant ε = 0. This is
not very physical, so make the paper much larger than the region used to model
the problem of interest (if the boundaries are not entirely conducting).

The conducting paper technique can also be used to model 2-dimensional magnetostatic
problems due to current distributions that are normal to the paper.

Imagine that the regions of conducting paint represent the cross sections of infinite
conductors that are perpendicular to the paper. Let ẑ label the unit vector normal to
the paper. Then, the vector potential due to our imagined currents would be

A =
1

c

∫
J

r
dVol = Azẑ. (32)

(Here, J is due to the imagined current normal to the paper, not the surface currents
in the paper.)

Show that the observed potential φ on the paper, when a battery feeds current into
and out of the conductors on the paper, is proportional to the vector potential of the
imagined situation:

Az = kφ, k = constant. (33)
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Your analysis might include the following:

• Relate the magnetic field B of the imagined 2-dimensional current distribution to
φ on the paper. When A = Azẑ, B is perpendicular to z. Show that lines of B
exactly follow equipotentials of φ.

• Relate B to E on the paper.

• Suppose current I from a battery enters a region of conducting paint on the paper,
causing current density J to flow outwards:

Consider
∮
J×dl for a loop enclosing the region of conducting paint to determine

the constant k in (33).

• Show that the voltage difference between any two points on the paper is propor-
tional to the magnetic flux passing between these points.

• Show that the boundary conditions at the edge of the paper are such that we may
consider the region outside the paper as being iron of a very large permeability μ.

As an example, consider a long electromagnetic with an iron yoke:

Invoking symmetry, we could map this with an arrangement like:

Try it in the lab sometime!



Princeton University 1999 Ph501 Set 4, Solution 1 18

Solutions

1. a) The problem is 1-dimensional, so Poisson’s equation is

d2φ

dx2
= −4πρ(x). (34)

Since an electron leaves the cathode at v = 0, when it reaches position x, it has energy
eφ(x) = mv2/2, and velocity

v =

√
2eφ

m
. (35)

Since the current density J = ρv is constant, eq. (34) becomes

d2φ

dx2
= −4π

J

v
= −4πJ

√
m

2e
φ−1/2. (36)

We try (pray for) a power law solution, φ = axp, which quickly leads p = 4/3. Then,
since φ(d) = V , the potential is

φ(x) = V
(

x

d

)4/3

. (37)

Equation (36) can now be rearranged as

J = −φ
′′

4π

√
2e

m
φ1/2 = − 1

9π

V 3/2

d2

√
2e

m
= − 1

6.36π

V 3/2

d2

√
e

m
. (38)

The electric space charge density ρ(x) follows from eqs. (34) and (37),

ρ(x) = −φ
′′

4π
=

V

9πd
3
√

dx2
, (39)

which is very large close to the cathode at x = 0.

b) The initial electric field in the capacitor is E = V/d, so the initial surface charge
density on the cathode is

σ = −E/4π = −V/4πd. (40)

The laser liberates this charge density at t = 0.

The average current density that flows onto the anode from the battery is

〈J〉 = −σ

T
=

V

4πdT
, (41)

where T is the transit time of the charge across the gap d. We first estimate T by
ignoring the effect of the recharging of the cathode as the charge sheet moves away from
it. In this approximation, the average field on the charge sheet is always E/2 = V/2d,
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so the acceleration of an electron is a = eV/2dm, and the time to travel distance d is

T =
√

2d/a = 2d
√

m/eV . Hence,

〈J〉 =
1

8π

V 3/2

d2

√
e

m
. (42)

This is close to Child’s Law (38).

[This sign difference between (38) and (42) is because the former is the current flowing
off the anode, while the latter is the current flowing onto it.]

We now make a detailed calculation, including the effect of the recharging of the
cathode, which will reduce the average current density somewhat.

At some time t, the charge sheet is at distance x(t) from the cathode, and the anode
and cathode have charge densities σA and σC , respectively. All the field lines that leave
the anode terminate on either the charge sheet or on the anode, so

σ + σC = −σA. (43)

The magnitude of the electric field strength in the region I between the anode and the
charge sheet is

EI = 4πσA, (44)

and that in region II between the charge sheet and the cathode is

EII = −4πσC . (45)

The voltage between the capacitor plates is therefore,

V = EI(d − x) + EIIx = 4πσAd − V
x

d
, (46)

using (40) and (43-45). Thus,

σA =
V

4πd

(
1 +

x

d

)
, σC = − V x

4πd2
, (47)

and the time-dependent current density flowing onto the anode is

J(t) = σ̇A =
V ẋ

4πd2
. (48)

This differs from the average current density (41) in that ẋ/d 
= T , since ẋ varies with
time.

To find the velocity ẋ of the charge sheet, we consider the force on it, which is due to
the average field set up by charge densities on the anode and cathode,

Eon σ = 2π(−σA + σC) = − V

2d

(
1 +

2x

d

)
. (49)
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The equation of motion of an electron in the charge sheet is

mẍ = −eEon σ =
eV

2d

(
1 +

2x

d

)
, (50)

or

ẍ − eV

md2
x =

eV

2md
. (51)

With the initial conditions that the electron starts from rest, x(0) = 0 = ẋ(0), we
readily find that

x(t) =
d

2
(cosh kt − 1), (52)

where

k =

√
eV

md2
. (53)

The charge sheet reaches the anode at time

T =
1

k
cosh−1 3

2
=

0.96

k
, (54)

compared to T = 1/k as found above without the battery. anode-current density is,
using (41) and (54),

〈J〉 =
V

4πdT
=

V 3/2

4π cosh−1(3/2) d2

√
e

m
=

V 3/2

12.09 πd2

√
e

m
. (55)

The electron velocity is

ẋ =
dk

d
sinh kt, (56)

so the anode-current density (48) is

J =
1

8π

V 3/2

d2

√
e

m
sinh kt (0 < t < T ). (57)
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2. Potential inside a Resistive Sphere

Although current is flowing inside the resistive sphere, it remains electrically neutral.
Hence, the electromagnetic scalar potential φ satisfies Laplace’s equation, ∇2φ = 0.

We analyze the problem in spherical coordinates (r, θ, ϕ), with the origin at the center
of the sphere of radius a, and θ = 0 and π at the points of contact with the wires. The
problem has axial symmetry, so φ will be independent of ϕ. We require the potential
to be well behaved at the origin, so it can be expressed in a Legendre series,

φ(r < a) =
∞∑

n=0

An

(
r

a

)n

Pn(cos θ). (58)

The convention that φ = 0 at the equator, θ = π/2, implies that An = 0 for n even.
Therefore, we can write

φ(r < a) =
∑

n odd

An

(
r

a

)n

Pn(cos θ). (59)

To complete the solution inside the sphere, we need a boundary condition on φ at the
surface of the sphere, r = a. We know that the radial component of the current density,
Jr is zero at the surface, except for the contact points where the current enters and
exits. Since J = σE = −σ∇φ, we obtain a condition on the derivative of the potential
at the boundary,

∂φ

∂r

∣∣∣∣∣
r=a−

= −Er(r = a−) = −Jr(r = a−)

σ
. (60)

In the limit of very fine wires, the current density Jr(r = a−) is zero except at the
poles, so we can express it in terms of Dirac δ functions. The current dI that crosses
an annular region on the surface of the sphere of angular extent d cos θ centered on
angle θ is given by

dI = 2πa2Jr(a
−, θ)d cos θ. (61)

Current I enters at cos θ = 1, and exits at cos θ = −1. Hence, the form

Jr(a
−, θ) =

I

2πa2
[−δ(cos θ − 1) + δ(cos θ + 1)] . (62)

describes the entrance and exit currents upon integration of eq. (61).

Combining eqs. (59)-(60) and (62), we have

∑
n odd

nAn

a
Pn(cos θ) =

I

2πa2
[δ(cos θ − 1) − δ(cos θ + 1)] . (63)

As usual, to evaluate the Fourier coefficients An, we multiply eq. (63) by Pn(cos θ) and
integrate over d cos θ to find

nAn

a

∫ 1

−1
P 2

n(cos θ) d cos θ =
2nAn

(2n + 1)a
=

2I

2πa2σ
. (64)
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Thus, the Legendre series expansion for the potential is

φ(r < a, θ) =
I

2πaσ

∑
n odd

(
2 +

1

n

)(
r

a

)n

Pn(cos θ). (65)

To express this series in closed form, we utilize the expansion for the distance r1 between
the point (a, 0) and (r, θ) given on p. 57 of the notes:

1

r1

=
1

a

∞∑
n=0

(
r

a

)n

Pn(cos θ), (66)

Similarly, the distance r2 between the point (a, π) and (r, θ) is

1

r2
=

1

a

∞∑
n=0

(
r

a

)n

Pn(cos(θ−π)) =
1

a

∞∑
n=0

(
r

a

)n

Pn(− cos θ) =
1

a

∞∑
n=0

(−1)n
(

r

a

)n

Pn(cos θ).

(67)
Hence,

1

r1
− 1

r2
=

2

a

∑
n odd

(
r

a

)n

Pn(cos θ). (68)

It follows that, on integration along the radius from the origin to the point (r, θ),

∫ r

0

(
1

r1
− 1

r2

)
dr′

r′
=

2

a

∑
n odd

1

n

(
r

a

)n

Pn(cos θ). (69)

Then, eqs. (65) and (68-69) combine to give to the alternative form (3) for φ,

φ(r < a, θ) =
I

2πσb

[
1

r1
− 1

r2
+

1

2

∫ r

0

(
1

r1
− 1

r2

)
d ln r′

]
. (3)

As we approach the “north” pole, r1 → 0, (we claim; details given later) the first term
in eq. (3) dominates. That is, the potential φ diverges at the poles for the case of very
fine wires.



Princeton University 1999 Ph501 Set 4, Solution 2 23

When considering actual wires of radius b, we suppose that our solution holds outside
the region of contact between the wire and the sphere. Indeed, we expect that the
potential close to the wire, and outside the conducting sphere, to be constant in planes
perpendicular to the axis of the wire, so that the interface between the wire and the
sphere is an equipotential. This cuts off the formal divergence in eq. (3) near the poles.

In this way, the potential at the upper interface is obtained from (3) on putting r1 = b
and neglecting all but the first term,

φinterface ≡ V ≈ I

2πσb
. (70)

The potential difference across the sphere is twice this;

ΔV = 2V ≈ I

πσb
= I

b

σπb2
≡ IR. (71)

Thus, the effective resistance of the sphere is

R ≈ 1

πσb
=

b

σπb2
, (72)

which is also the resistance of a piece of wire of radius b, length b, and conductivity σ.

To verify the claim that the first term of eq. (3) dominates for small r1, we consider
the point (r, θ) = (a − b, 0) for b 	 a. Then, the first term of eq. (3) is 1/b, and the
second term is 1/(2a − b) which is negligible compared to the first. Inside the integral
term of eq. (3), we have R1 = a − r and R2 = a + r, so the integral is

∫ a−b

0

(
1

r1

− 1

r2

)
d ln r =

∫ a−b

0

2

a2 − r2
dr =

1

a
ln

2a − b

b
≈ 1

a
ln

2a

b
. (73)

The ratio of the integral term to the first term of (3) is therefore,

b

2a
ln

2a

b
, (74)

which goes to zero as b becomes small.

Magnetic Field and Poynting Vector

The power dissipated by the resistive bead is, according to eq. (72),

P = I2R ≈ I2

πσb
. (75)

As a check on the solution (65) for the potential, we consider whether the dissipated
power equals the integral of the Poynting flux, S = (c/4π)E × B (in Gaussian units),
normal to the surface of the bead, where c is the speed of light in vacuum.

For this, we need the magnetic field B at r = a, due to the electric currents in the
problem. This field is azimuthal, because of the azimuthal symmetry of the problem.
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Then, the magnetic field at the surface of the resistive bead follows easily from Ampère’s
law,

2πr⊥Bφ(r = a−) = 2πa sin θB0 = −4π

c
I, Bφ(r = a−) = − 2I

c a sin θ
, (76)

The radial component of the Poynting vector also depends on the electric field compo-
nent,

Eθ(r = a− = −1

a

∂φ(r = a−)

∂θ
. (77)

Then, the radial component of the Poynting vector at the surface of the bead is

Sr(r = a−, θ) =
c

4π
Eθ(r = a−)Bφ(r = a−) =

I

2πa2

1

sin θ

∂φ(r = a−)

∂θ

= − I

2πa2

∂φ(r = a−)

∂ cos θ
= − I

2πa2

I

2πaσ

∑
n odd

(
2 +

1

n

)
P ′

n(cos θ). (78)

The integral of the radial component of the Poynting vector over the surface of the
bead is

Pinto bead = −2πa2
∫ 1

−1
Sr(r = a−, θ) d cos θ =

I2

2πaσ

∑
n odd

(
2 +

1

n

) ∫ 1

−1
P ′

n(cos θ) d cos θ

=
I2

πaσ

∑
n odd

(
2 +

1

n

)
≈ b

a
I2R

∑
n odd

(
2 +

1

n

)
. (79)

Formally, the result (79) diverges, which corresponds to infinite power dissipation at
the points of contact of the wires with the bead, in the limit of zero radius of these
wires. For wires of finite radius b, the power dissipated is finite, P = I2R for resistance
R as approximated in eq. (72), but then the formal solutions (3) and (65) are only
approximate. Since the sum of the first N terms of the series

∑
N odd(2 + 1/n) is

roughly N2, we infer that the form (65) for the potential inside the bead in case of

wires of radius b is a reasonable approximation if we keep only the first N ≈
√

a/b
terms.

In practice, one would be content to keep many fewer terms than this.

Potential outside the Resistive Sphere

We now consider the problem outside the sphere, for which one model is that the wires
are perfect conductors extending from r = a to distance d, where they are attached
to perfectly conducting hemispheres of radius d > a, with a ring-shaped battery of
potential difference 2V between them at location (r, θ) = (c, π/2).



Princeton University 1999 Ph501 Set 4, Solution 2 25

In the region a < r < d and outside the wires at θ = 0 and π, the potential obeys
∇2φ = 0, is azimuthally symmetric, and symmetric about the plane θ = π/2, so it can
be expanded as

φ(a < r < d) =
∑

n odd

[
Bn

(
r

a

)n

+ Cn

(
a

r

)n+1
]
Pn(cos θ). (80)

Continuity of the potential at r = a requires, recalling eqs. (59) and (64), that

Bn + Cn = An =
(2n + 1)I

2πanσ
=

(2n + 1)bV

an
. (81)

The constant potential V on the upper hemisphere requires that

φ(r = d, 0 < cos θ < 1) = V =
∑

n odd

[
Bn

(
d

a

)n

+ Cn

(
a

d

)n+1
]
Pn(cos θ), (82)

and the constant potential V on the upper wire requires that

φ(a < r < d, θ = 0) = V =
∑

n odd

[
Bn

(
r

a

)n

+ Cn

(
a

r

)n+1
]
. (83)

If we multiply eq. (82) by Pn(cos θ) = Pn(x) and integrate over x from 0 to 1, we obtain
(using Wolfram Alpha with integrate Legendre P(n,x) from x=0 to 1),9

V
∫ 1

0
Pn(x) dx =

√
π V

2Γ(1 − n
2
)Γ(n+3

2
)
≡ KnV =

1

2n + 1

[
Bn

(
d

a

)n

+ Cn

(
a

d

)n+1
]
, (84)

K1 = 1/2, K3 = −1/8, K5 = 1/16, K7 = −5/128, K9 = 7/256, K11 = −21/1024, ...
Combining this with eq. (81), we find

Bn =
(2n + 1)V

(d
a
)n − (a

d
)n+1

[
Kn − b

an

(
a

d

)n+1
]
, Cn =

(2n + 1)V

(d
a
)n − (a

d
)n+1

[
b

an

(
d

a

)n

−Kn

]
.

(85)

It is obvious how well the Bn and Cn of eq. (85) satisfy the condition (83), but a
numerical example suggests that they do so. For example, suppose that d = 2a,

9Jackson uses Rodrigues’ formula and integration by parts n times to find
Kn = (−1/2)(n−1)/2(n − 2)!!/2[(n + 1)/2]!, his eq. (3.26).
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b/a = 0.03 and V = 1. Then, using only the first six terms of eq. (83) yields the
following plot,

We also infer that the surface r = a of the sphere supports electric charge density,

ς(θ) =
Er(r = a+) − Er(r = a−)

4π
= − ∂

∂r
[φ(r = a+) − φ(r = a−)] (86)

=
∑

n odd

−nBn + (n + 1)Cn + nAn

a
Pn(cos θ) =

∑
n odd

(2n + 1)Cn

a
Pn(cos θ).

This illustrates the general result that current-carrying conductors (of finite conduc-
tivity σ) have nonzero surface charge density, as needed to shape the electric field
E = J/σ which drives the current inside the conductor.
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3. a) Take the axis of the wire to be the z axis of a cylindrical coordinate system, (r, θ, z).
By rotational symmetry, there is no azimuthal component to the electric field, and by
translation symmetry, the axial and radial components can only depend on r. Similarly,
there is no radial or axial component to the magnetic field, and its azimuthal component
is only dependent on r.

Consider a cylindrical portion of the wire, of radius r and length l. The charge con-
tained in this cylinder is then,

Q = e(ρ0 − ρ)πr2l, (87)

where e is the magnitude of the charge of an electron. From Gauss’ Law and (87), we
have

4πQ = 4π2er2l(ρ0 − ρ) =
∮

E · dS = 2πrlEr(r), (88)

since the contributions from the flat end surfaces are be equal and opposite. Hence,

E = 2πe(ρ0 − ρ)rr̂ + Ezẑ. (89)

The resulting radial force on the free electrons must be opposed by magnetic effects
associated with the electron current, which we presume flows only in the z direction

The current density in the wire is

J = −ρevẑ, (90)

so from Ampère’s law,

2πrBθ = −4π

c
ρevπr2, and B = −2π

c
eρvrθ̂. (91)

The radial component of the Lorentz force on an electron, which must vanish if there
is to be no current in radial direction, is then,

Fr = −e
(
Er − vz

c
Bθ

)
= −e

[
2πe(ρ0 − ρ)r + 2πeρ

v2

c2
r

]
= 0, (92)

using (89) and (91). Hence,

ρ0 = ρ

(
1 − v2

c2

)
, (93)

and the positive charge density is less than the negative by one part in 1021 for v = 1
cm/s.

b) In this problem, we treat the resistor as a kind of conductive capacitor. Since the
current density is uniform, the electric field E is also. To maintain this electric field,
surface charge ±Q must reside at the ends of the resistor. From Gauss’ Law,

Q =
EA

4π
, (94)

where A is the cross-sectional area of the resistor.
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If the current I into to resistor varies with time, then part of it goes to changing the
charge Q at the ends of the resistor, and part of it appears as the conduction current
IC across the resistor. Thus, IC is less than I according to

IC = I − Q̇. (95)

However, Maxwell advises us that inside the resistor we should also consider the dis-
placement current,

ID =
Ḋ

4π
=

εĖ

4π
= εQ̇ = Q̇, (96)

using (94), in a medium whose dielectric constant ε is unity.

Combining (95) and (96), the “total” current inside the resistor is thus,

Itotal = IC + ID = I, (97)

which illustrates Maxwell’s notion that “total” currents are conserved.
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4. The form of the current I(t) in a cylindrical “straw tube” can also be found without
using the reciprocation theorem, so we illustrate that first.

Elementary Solution for I(t)

The current that flows off the anode is equal to minus the rate of change of the charge
q(t) < 0 that remains on the anode as the positive ions of total charge q0 move outward
according to r(t).

The key to an elementary solution is that although the positive ions occupy a very
small volume around the point (r, θ, z) = (r(t), 0, 0) in cylindrical coordinates, the
charge they induce on the cathode is exactly the same as if those ions were uniformly
spread out over a cylinder of radius r.

Because the superposition principle holds in electrostatics, the problem of the chamber
with voltage V on the anode plus ions at a fixed position between the anode and
cathode can be separated into two parts. First, an empty chamber with voltage V
on the anode, and second, a grounded chamber with positive ions inside. [That is,
we decompose the problem into cases A and B of the discussion of the reciprocation
theorem, even though we won’t use that theorem here.]

For the second part, the radial electric field in the region a < r < r(t) can be calculated
from the charge q on the anode as

E(r) =
2q(t)

rl
, (98)

using Gauss’ Law, where l � b is the length of the cylinder. Similarly, the electric field
in the region r(t) < r < b is

E(r) =
2(q0 + q(t))

rl
. (99)

The potential difference between the inner and outer cylinder must be zero. Hence,

0 =
2q(t)

l

∫ r(t)

a

dr

r
+

2(q0 + q(t))

l

∫ b

r(t)

dr

r
=

2q0

l
ln

b

r(t)
+

2q(t)

l
ln

b

a
, (100)

and so

q(t) = −q0
ln(b/r(t))

ln(b/a)
. (101)

The current is

I(t) = −q̇(t) = − q0

ln(b/a)

v(t)

r(t)
. (102)

To calculate the dynamical quantities r(t) and v(t), we must return to the full problem
of the ions in a chamber with voltage V . The electric field in the chamber is only
slightly perturbed by the presence of the ions, and so is given by

E(r) =
V

r ln(b/a)
. (103)
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According to (5), the positive ions have velocity

v(r) =
μV

r ln(b/a)
, (104)

which integrates to give

r2(t) = a2 +
2μV

ln(b/a)
t. (105)

Inserting (104-105) in (102), we find

I(t) = − q0

2t0 ln(b/a)

1

1 + t/t0
, (106)

where

t0 =
a2 ln(b/a)

2μV
. (107)

The idealized current pulse has a very sharp rise, and falls off rapidly over characteristic
time t0, which is about 20 nsec in typical straw tube chambers.

I(t) via Reciprocity

Referring to the prescription in the statement of the problem, we first solve case C, in
which the inner electrode is at unit potential and the outer electrode is grounded. We
quickly find that

VC(r) =
ln(b/r)

ln(b/a)
. (108)

According to (11), the current off the inner electrode is therefore,

I(t) = −q0
dVC

dr
v(r) = − q0

ln(b/a)

v(t)

r(t)
, (109)

as previously found in (102). We again solve for v and r(t) as in (103-105), which
corresponds to the use of case A, to obtain the solution (106-107).

The Charge Distribution q(z) on the Cathode

The more detailed question as to the longitudinal charge distribution on the cathode
can be solved by the reciprocation method if we conceptually divide the cathode cylin-
der into a ring of length dz at position z1 plus two cylinders that extends to z = ±l/2
where l is the length of the cylinder. We label the ring as electrode 1, and calculate
the charge ΔQ1 = q(z)dz induced on this ring when the positive ion charge q0 is at
position (r0, 0, z0) in cylindrical coordinates (r, θ, z).

According to the prescription (10) given in the statement of the problem,

ΔQ1 = −q0VC(r0, 0, z0), (110)

where case C now consists of a cylinder of radius b grounded except for the ring at
position z1 at unit potential, and a grounded cylinder at radius a. For z not close to
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the ends of the cylinder, the end surfaces z = ±l/2 may be approximated as at ground
potential.

This problem is very similar to that discussed in sec. 5.36 of W.R. Smythe, Static and
Dynamic Electricity, 3rd ed. (Mcgraw-Hill, New York, 1968).

Laplace’s equation, ∇2φC(r) = 0 holds for the potential in the region a < r < b. The
problem has azimuthal symmetry, so φC will be independent of θ. Since the planes
z = ±l/2 are grounded, the longitudinal functions in the Fourier series expansion,

φC =
∑
n

Rn(r)Zn(z), (111)

must have the form Zn = sin 2nπz/l. The equation for the radial functions Rn(r)
follows from Laplace’s equation as

d2Rn

dr2
+

1

r

dRn

dr
−
(

2nπ

l

)2

Rn = 0. (112)

The solutions of this are the modified Bessel functions of order zero, I0(2nπr/l) and
K0(2nπr/l). Both of these are finite on the interval a < r < b, so the expansion (111)
will include them both.

The boundary condition that φC(a, θ, z) = 0 is satisfied by the expansion

φC =
∑
n

An

I0(2nπr/l)
I0(2nπa/l)

− K0(2nπr/l)
K0(2nπa/l)

I0(2nπb/l)
I0(2nπa/l)

− K0(2nπb/l)
K0(2nπa/l)

sin
2nπz

l
, (113)

where the form of the denominator is chosen to simplify the evaluation of the boundary
condition at r = b. Here, φC = 0, except of an interval dz long about z where it is
unity. Hence, the Fourier coefficients are

An =
2

l
sin

2nπz1

l
dz. (114)

In sum, the charge distribution q(z) on the cathode at radius b due to positive charge
q0 at (r0, 0, z0) follows from (110) and (112-113) as

q(z) = −2q0

l

∑
n

I0(2nπr0/l)
I0(2nπa/l)

− K0(2nπr0/l)
K0(2nπa/l)

I0(2nπb/l)
I0(2nπa/l)

− K0(2nπb/l)
K0(2nπa/l)

sin
2nπz

l
sin

2nπz0

l
. (115)

A numerical evaluation of (115) is illustrated in Fig. 1. As is to be expected, the
induced charge distribution on the cathode has characteristic width of order b−r0, the
distance of the positive charge from the cathode.
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Figure 1: The induced charge distribution (115) on the cathode of a straw
tube chamber of radius RC = 0.25 cm due to positive ion charge at radius R.
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5. This problem is posed on p. 363 of The Mathematical Theory of Electricity and Mag-
netism, 5th ed., by James Jeans.

We will evaluate the resistance R via Ohm’s Law, R = V/I , by calculating the current
I that flows when a potential difference V is established between the two contacts.

For a thin disk, the current flow is 2-dimensional. Since J = σE, where J is the current
density and E is the electric field, the electric field is 2-dimensional also. And, since
E = −∇φ, where φ is the electric potential, the potential is 2-dimensional as well.

The form of the 2-dimensional potential is well approximated (for distances more than
δ/2 from the centers of the contacts) by considering a cylinder of radius a, rather than
the disk, with a line charge density λ that passes through the center of one contact,
and line charge −λ that passes through the center of the other contact.

The electric field from the wire of charge density λ has magnitude

E1 =
2λ

r1
, (116)

according to Gauss’ law, where r1 is the distance from the wire to the observer. The
corresponding electric potential is

φ1 = 2λ ln
r1

r0
, (117)

where r0 is a constant of integration. The potential due to the wire with charge density
−λ is similarly

φ2 = −2λ ln
r2

r0

, (118)

where r2 is the distance from the observer to wire 2. The potential at an arbitrary
point is then given by

φ = φ1 + φ2 = 2λ ln
r1

r2
. (119)

The total potential difference between the two line charges is formally divergent. To
make physical sense, we can suppose that expression (119) holds only for r1 and r2

greater than δ/2, the half width of the electrical contacts, and the potential is essentially
constant for smaller values of r1 and r2. That is, we approximate the contacts of width
δ by perfectly conducting wires of radii δ/2, as shown in the figure below. Then, the
potential of contact 2 is estimated from eq. (119) by setting r1 = d− δ/2 and r2 = δ/2

φ(contact 2) = 2λ ln
d − δ/2

δ/2
≈ 2λ ln

2d

δ
. (120)

The potential at the surface of contact 1 is just the negative of eq. (120), so the potential
difference is

V ≈ 4λ ln
2d

δ
. (121)
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We note that the current and the electric field must be tangential to the edge of the disk.
We recall that the equipotentials of eq. (119) are circles, and that the corresponding
electric field lines are also circles which, of course, pass through the line charges. Hence,
the boundary condition on the electric field at the edge of the disk is indeed satisfied.

To complete the solution, we must calculate the current I that is flowing. For this, we
can integrate the current density J across any surface between the two contacts. For
convenience, consider a cylindrical surface of radius r centered on one of the contacts,
such that δ/2 < r 	 d. Since r 	 d, this surface is essentially an equipotential, and
the electric field is essentially that due to the nearby charge density λ. Namely, the
electric field is normal to this surface, with magnitude

E =
2λ

r
. (122)

The current density across this surface is given by J = σE. Restricting the problem
to a disk of thickness t, the relevant area of the surface is πrt, so the total current is

I = πrt · σ · 2λ

r
= 2πσλt, (123)

which is independent of the choice of r.

Finally, the resistance is found by combining eqs. (121) and (123):

R =
V

I
≈ 4λ ln 2d/δ

2πσλt
=

2

πσt
ln

2d

δ
, (124)

independent of the radius a of the disk.
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6. The series expansion approach is unsuccessful in treating the full problem of a “checker-
board” array of two phases if those phases meet in sharp corners as shown above. How-
ever, an analytic form for the electric potential of a two-phase (and also a four-phase)
checkerboard can be obtained using conformal mapping of certain elliptic functions; see
R.V. Craster and Yu.V. Obnosov, Checkerboard composites with separated phases, J.
Math. Phys. 42, 5379 (2001).10 If the regions of one phase are completely surrounded
by the other phase, rather lengthy series expansions for the potential can be given;
see Bao Ke-Da, Jörger Axell and Göran Grimvall, Electrical conduction in checker-
board geometries, Phys. Rev. B 41, 4330 (1990).11 The present problem is based on
M. Söderberg and G. Grimvall, Current distribution for a two-phase material with
chequer-board geometry, J. Phys. C: Solid State Phys. 16, 1085 (1983),12 and Joseph
B. Keller, Effective conductivity of periodic composites composed of two very unequal
conductors, J. Math. Phys. 28, 2516 (1987).13

In the steady state, the electric field obeys ∇ × E = 0, so that E can be deduced
from a scalar potential φ via E = −∇φ. The steady current density obeys ∇ · J = 0,
and is related to the electric field by Ohm’s law, J = σE. Hence, within regions of
uniform conductivity, ∇ · E = 0 and ∇2φ = 0. Thus, we seek solutions to Laplace’s
equations in the four regions of uniform conductivity, subject to the stated boundary
conditions at the outer radius, as well as the matching conditions that φ, E‖, and j⊥
are continuous at the boundaries between the regions.

We analyze this two-dimensional problem in a cylindrical coordinate system (r, θ) with
origin at the corner between the phases and θ = 0 along the radius vector that bisects
the region whose potential is unity at r = a. The four regions of uniform conductivity
are labeled I , II , III and IV as shown below.

Since J⊥ = Jr = σEr = −σ∂φ/∂r at the outer boundary, the boundary conditions at
r = a can be written

φI(r = a) = 1, (125)

10http://kirkmcd.princeton.edu/examples/EM/craster_prsla_456_2741_00.pdf
11http://kirkmcd.princeton.edu/examples/EM/ke-da_prb_41_4330_90.pdf
12http://kirkmcd.princeton.edu/examples/EM/soderberg_jpc_16_1085_83.pdf
13http://kirkmcd.princeton.edu/examples/EM/keller_jmp_28_2516_87.pdf
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∂φII(r = a)

∂r
=

∂φIV (r = a)

∂r
= 0, (126)

φIII(r = a) = −1. (127)

Likewise, the condition that J⊥ = Jθ = σEθ = −(σ/r)∂φ/∂θ is continuous at the
boundaries between the regions can be written

σ1
∂φI(θ = α)

∂θ
= σ2

∂φII(θ = α)

∂θ
, (128)

σ1
∂φIII(θ = π − α)

∂θ
= σ2

∂φII(θ = π − α)

∂θ
, (129)

etc.

From the symmetry of the problem we see that

φ(−θ) = φ(θ), (130)

φ(π − θ) = −φ(θ), (131)

and in particular φ(r = 0) = 0 = φ(θ = ±π/2).

We recall that two-dimensional solutions to Laplace’s equations in cylindrical coordi-
nates involve sums of products of r±k and e±ikθ, where k is the separation constant
that in general can take on a sequence of values. Since the potential is zero at the
origin, the radial function is only rk. The symmetry condition (130) suggests that the
angular functions for region I be written as cos kθ, while the symmetry condition (131)
suggests that we use sin k(π/2 − |θ|) in regions II and IV and cos k(π − θ) in region
III . That is, we consider the series expansions

φI =
∑

Akr
k cos kθ, (132)

φII = φIV =
∑

Bkr
k sin k

(
π

2
− |θ|

)
, (133)

φIII = −∑Akr
k cos k(π − θ). (134)

The potential must be continuous at the boundaries between the regions, which requires

Ak cos kα = Bk sin k
(

π

2
− α

)
. (135)

The normal component of the current density is also continuous across these bound-
aries, so eq. (128) tells us that

σ1Ak sin kα = σ2Bk cos k
(

π

2
− α

)
. (136)

On dividing eq. (136) by eq. (135) we find that

tan kα =
σ2

σ1
cot k

(
π

2
− α

)
. (137)
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There is an infinite set of solutions to this transcendental equation. When σ2/σ1 	 1
we expect that only the first term in the expansions (132)-(133) will be important, and
in this case we expect that both kα and k(π/2 − α) are small. Then eq. (137) can be
approximated as

kα ≈ σ2/σ1

k(π
2
− α)

, (138)

and hence

k2 ≈ σ2/σ1

α(π
2
− α)

	 1. (139)

Equation (135) also tells us that for small kα,

Ak ≈ Bkk
(

π

2
− α

)
. (140)

Since we now approximate φI by the single term Akr
k cos kθ ≈ Akr

k, the boundary
condition (125) at r = a implies that

Ak ≈ 1

ak
, (141)

and eq. (140) then gives

Bk ≈ 1

kak(π
2
− α)

� Ak. (142)

The boundary condition (126) now becomes

0 = kBka
k−1 sin k

(
π

2
− θ

)
≈ k(π

2
− θ)

a(π
2
− α)

, (143)

which is approximately satisfied for small k.

So we accept the first terms of eqs. (132)-(134) as our solution, with k, Ak and Bk

given by eqs. (139), (141) and (142).

In region I the electric field is given by

Er = −∂φI

∂r
≈ −k

rk−1

ak
cos kθ ≈ −k

rk−1

ak
, (144)

Eθ = −1

r

∂φI

∂θ
≈ k

rk−1

ak
sin kθ ≈ k2θ

rk−1

ak
. (145)

Thus, in region I , Eθ/Er ≈ kθ 	 1, so the electric field, and the current density, is
nearly radial. In region II the electric field is given by

Er = −∂φII

∂r
≈ −k

rk−1

kak(π
2
− α)

sin k
(

π

2
− θ

)
≈ −k

rk−1

ak

π
2
− θ

π
2
− α

, (146)

Eθ = −1

r

∂φII

∂θ
≈ k

rk−1

kak(π
2
− α)

cos k
(

π

2
− θ

)
≈ rk−1

ak(π
2
− α)

. (147)
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Thus, in region II , Er/Eθ ≈ k(π/2 − θ) 	 1, so the electric field, and the current
density, is almost purely azimuthal.

The current density J follows the lines of the electric field E, and therefore behaves as
sketched below:

The total current can be evaluated by integrating the current density at r = a in region
I :

I = 2a
∫ α

0
Jrdθ = 2aσ1

∫ α

0
Er(r = a)dθ ≈ −2kσ1

∫ α

0
dθ = −2kσ1α = −2

√
σ1σ2α
π
2
− α

.

(148)
In the present problem the total potential difference Δφ is -2, so the effective conduc-
tivity is

σ =
I

Δφ
=

√
σ1σ2α
π
2
− α

. (149)

For a square checkerboard, α = π/4, and the effective conductivity is σ =
√

σ1σ2. It
turns out that this result is independent of the ratio σ2/σ1, and holds not only for
the corner region studied here but for the entire checkerboard array; see Joseph B.
Keller, A Theorem on the Conductivity of a Composite Medium, J. Math. Phys. 5,
548 (1964).14

14http://kirkmcd.princeton.edu/examples/EM/keller_jmp_5_548_64.pdf
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7. Taking the wire that carries current I to be along the z axis, the magnetic field at
distance r from the wire is

B =
2I

cr
θ̂. (150)

The force on an element dl of the loop that carries current I ′ is

dF =
I ′

c
dl × B. (151)

The torque about the axis of the loop due to that force element is

dN = sn̂× dF , (152)

where s is the distance from the axis to the element and n̂ is the unit vector from the
axis to the element. Combining (150-152), the total torque on the loop is

N =
2II ′

c

∮
sn̂× (dl × θ̂)

r
. (153)

The two sides of length 2b will have equal and opposite contributions which therefore
cancel, leaving only the contributions from the two sides of length 2a. For the side
nearest the wire, s = b, and dl = ẑdl, since the currents flow in the same direction, so
that dl× θ̂ = −r̂neardl (parallel currents attract),

sn̂× (dl × θ̂) = −bn̂× r̂neardl = −b sinαẑdl = −bd sin θ

rnear

ẑdl, (154)

using the law of sines for the triangle shown.

�

θ�
�

α

β

�����

����

The distance r from the wire to this side of the loop is

rnear =
√

b2 + d2 − 2bd cos θ, (155)

so that the contribution of this side of the loop to the torque is

Nnear = −4abdII ′

c

sin θ

b2 + d2 − 2bd cos θ
ẑ. (156)

For the side furthest the wire, again s = b, but dl = −ẑdl, so dl × θ̂ = r̂fardl. Then,

sn̂ × (dl × θ̂) = bn̂× r̂fardl = −b sinβẑdl = −bd sin θ

rfar
ẑdl. (157)
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and
rfar =

√
b2 + d2 + 2bd cos θ, (158)

so that the contribution of the far side of the loop to the torque is

Nfar = −4abdII ′

c

sin θ

b2 + d2 + 2bd cos θ
ẑ. (159)

The total torque on the loop is then,

N = Nnear + Nfar = −8abdII ′

c

(b2 + d2) sin θ

b4 + d4 − 2b2d2 cos 2θ
ẑ, (160)

where the identity 2 cos2 θ = cos 2θ + 1 has been used. This torque is down the axis,
that is, it acts to decrease θ and bring the loop into the plane of the wire and the axis.
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8. a) The magnetic field on the axis of the loop centered at z = b is obtained from the
Biot-Savart law:

B1 =
I

c

∮
dl × r

r3
=

2πIa2

c(a2 + (z − b)2)
3
2

ẑ, (161)

and that due to the other loop is

B2 =
2πIa2

c(a2 + (z + b)2)
3
2

ẑ. (162)

The total field is then the sum of the (161) and (162). This is unchanged under
z → −z, so all odd derivatives with respect to z automatically vanish at the origin.
We can choose the separation b to cancel any desired even derivative at the origin.

We first accumulate a catalog of derivatives (some of which are needed in prob. 6):

cBz(z)

2πIa2
=

1

(a2 + (z − b)2)
3
2

+
1

(a2 + (z + b)2)
3
2

, (163)

cB ′
z(z)

2πIa2
= − 3(z − b)

(a2 + (z − b)2)
5
2

− 3(z + b)

(a2 + (z + b)2)
5
2

, (164)

cB
′′
z (z)

2πIa2
=

12(z − b)2 − 3a2

(a2 + (z − b)2)
7
2

+
12(z + b)2 − 3a2

(a2 + (z + b)2)
7
2

. (165)

cB
′′′
z (z)

2πIa2
= −90(z − b)3 − 15a2(z − b)

(a2 + (z − b)2)
9
2

− 90(z + b)3 − 15a2(z + b)

(a2 + (z + b)2)
9
2

, (166)

cB
′′′′
z (z)

2πIa2
=

540(z − b)4 − 450a2(z − b)2 + 15a4

(a2 + (z − b)2)
11
2

+
540(z + b)4 − 450a2(z + b)2 + 15a4

(a2 + (z + b)2)
11
2

, (167)

The second derivative of Bz with respect to z at the origin is proportional to

4b2 − a2

(a2 + b2)
7
2

, (168)

which vanishes when a = 2b. That is, the separation of a pair of Helmholtz coil is
equal to their radius.

b) In a Helmholtz coil pair, the field at the origin is proportional to I/a according to
(163), so the 4rth derivative at the origin is proportional to I/a5. If we add a second
Helmholtz pair with current I ′ and radius a′ = 2/a, the combined 4th derivative at
the origin is proportional to I/a5 + 32I ′/a5. Hence, the current I ′ = −I/32 will
cancel the 4rth derivative at the origin. The field at the origin is then proportional to
I/a− (I/32)(2/a) = 15I/16. That is, the central field has been reduced by 1/16.

c) Far outside the coils, the leading behavior of the magnetic field is due to the dipole
moment, 2πIa2/c, of the coils. If a second Helmholtz pair is placed at a′ = 2a to cancel
the dipole moment of the first pair, we need I ′ = −I/4. Since the central field of a
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Helmholtz pair varies as I/a, the combined central field will be I/a − (I/4)(1/2a) =
7I/8a, i.e., 1/8 of the central field is lost to insure that the field far outside the coils
is extremely weak.

To characterize the field well outside a set of Helmholtz coils in more detail, we use
the variable u = 1/z, and expand about u = 0. From (163), and using a = 2b,

cB(0)
z (u)

2πIa2
=

u3

(1 − au + 5a2u2/4)
3
2

+
u3

(1 + au + 5a2u2/4)
3
2

. (169)

Using the Taylor expansion,

1

(1 + ε)
3
2

= 1 − 3

2
ε +

15

8
ε2 − 105

48
ε3 + ...., (170)

we find that

B(0)
z (u) =

4πIa2

c

(
u3 +

75

16
a3u6 + ...

)
. (171)

The leading term, u3 = 1/z3, is due to the dipole moment of the pair, which, of course,
is proportional to Ia2. The next nonvanishing term, u6, is due to the hexadecupole
moment, which is proportional to Ia5. The brevity of this derivation hides that fact
that the Helmholtz condition, a = 2b, served to cancel the octupole moment. The
quadrupole moment vanishes due to the symmetry of the coil pair.
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9. Since the divergence of the magnetic field vanishes, the proposed expansions (15) obey

∇ · B =
1

r

∂Br

∂r
+

∂Bz

∂z
=
∑
n

[
(n + 1)bnrn−1 + a(1)

n rn
]

= 0, (172)

where a(m)(z) ≡ dma/dzm. For this to be true at all r, the coefficients of rn must
separately vanish for all n. Hence,

b0 = 0, (173)

bn = − a
(1)
n−1

n + 1
. (174)

Since the curl of the field vanishes,

(∇ × B)θ =
∂Br

∂z
− ∂Bz

∂r
=
∑
n

(
b(1)
n rn − nanr

n−1
)

= 0 , (175)

Again, the coefficient of rn must vanish for all n, so that

b(1)
n = (n + 1)an+1. (176)

Using (176) in (174), we find

bn = − b
(2)
n−2

(n + 1)(n + 3)
. (177)

Since b0 vanishes, b2n vanishes for all n, and from (176), a2n+1 vanishes for all n. Then,
using (177) in (176), we find

a2n = −a
(2)
2n−2

4n2
. (178)

Repeatedly applying this to itself gives

a2n = (−1)n a
(2n)
0

22n(n!)2
. (179)

Inserting this in (174), we get

b2n+1 = (−1)n+1 a
(2n+1)
0

22n+1(n + 1)(n!)2
. (180)

Combining (179-180) with (15), we arrive at the desired forms (16-17) for the fields.

The axial field of a pair of Helmholtz coils has the form

a0(z) = B0 + B4z
4 + ... (181)

The first four derivatives are

a
(1)
0 = 4B4z

3, a
(2)
0 = 12B4z

2, a
(3)
0 = 24B4z, a

(4)
0 = 24B4. (182)
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From (179-180), the other non-vanishing functions through fourth order are

a2 = −3B4z
2, a4 =

3B4

8
, b1 = −2B4z

3, b3 =
3B4

2
z . (183)

The fields, correct to fourth order, are

Bz = B0 + B4z
4 − 3B4r

2z2 +
3B4

8
r4 + . . . , (184)

Br = −2B4rz
3 +

3B4

2
r3z + . . . (185)

The constants B0 and B4 are obtained from the catalog of derivatives in prob. 5, using

Bz(0, z) = B0 + B4z
4 = Bz(0, z) +

B
′′′′
z (0, z)z4

4!
+ ... (186)

From (163),

B0 =
4πIa2

c(a2 + b2)
3
2

=
32
√

5πI

25ca
, (187)

and from (167),

B4 =
5πIa2(a4 − 30a2b2 + 36b4)

2c(a2 + b2)
11
2

= −4864
√

5πI

3125ca5
= − 152

125a4
B0 , (188)

using b = a/2. Since B4 < 0, the axial field Bz decreases as we move away from the
origin, as is to be expected.

These results are overly detailed for some purposes. If one is interested only in the
leading behavior at small r, then (184-185) simplify to

Bz(r, z) ≈ Bz(0, z), Br(r, z) ≈ −r

2

∂Bz(0, z)

∂z
. (189)

The result for Br also follows quickly from ∇ ·B = 0, according to eq. (172),

Br(r, z) = −
∫ r

0
r
∂Bz(r, z)

∂z
dr ≈ −

∫ r

0
r
∂Bz(0, z)

∂z
dr = −r

2

∂Bz(0, z)

∂z
. (190)

It is also instructive that the approximation (190) can be deduced quickly from the
integral form of Gauss’ law (without the need to recall the form of ∇ ·B in cylindrical
coordinates). Consider a Gaussian pillbox of radius r and thickness dz centered on
(r = 0, z). Then,

0 =
∫

B · dS ≈ πr2[Bz(0, z + dz) −Bz(0, z)] + 2πr dz Br(r, z)

≈ πr2 dz
∂Bz(0, z)

∂z
+ 2πr dz Br(r, z) , (191)

which again implies eqs. (189).
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10. We first seek a solution in rectangular coordinates, and expect that separation of
variables will apply. Thus, we consider the form

Bx = f(x)g(y) cos kz, (192)

Bx = F (x)G(y) sinkz, (193)

Bz = A(x)B(y)C(z). (194)

Then
∇ · B = 0 = f ′g cos kz + FG′ sin kz + ABC ′, (195)

where the ′ indicates differentiation of a function with respect to its argument. Equa-
tion (195) can be integrated to give

ABC = −f ′g
k

sin kz +
FG′

k
cos kz. (196)

The z component of ∇ × B = 0 tells us that

∂Bx

∂y
= fg′ cos kz =

∂By

∂x
= F ′G sin kz, (197)

which implies that g and F are constant, say 1. Likewise,

∂Bx

∂z
= −fk sin kz =

∂Bz

∂x
= A′BC = −f ′′

k
sin kz, (198)

using (196-197). Thus, f
′′ − k2f = 0, so

f = f1e
kx + f2e

−kx. (199)

Finally,
∂By

∂z
= Gk cos kz =

∂Bz

∂y
= AB ′C =

G′′

k
sin kz, (200)

so
G = G1e

ky + G2e
−ky. (201)

The “boundary conditions” f(0) = B0 = G(0) are satisfied by

f = B0 cosh kx, G = B0 cosh ky, (202)

which together with (196) leads to the solution

Bx = B0 cosh kx cos kz, (203)

By = B0 cosh ky sin kz, (204)

Bz = −B0 sinh kx sin kz + B0 sinh ky cos kz, (205)

This satisfies the last “boundary condition” that Bz(0, 0, z) = 0.

However, this solution does not have helical symmetry.
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Suppose instead, we look for a solution in cylindrical coordinates (r, θ, z). We again
expect separation of variables, but we seek to enforce the helical symmetry that the
field at z + δ be the same as the field at z, but rotated by angle kδ. This symmetry
implies that the argument kz should be replaced by kz − θ, and that the field has no
other θ dependence.

We begin constructing our solution with the hypothesis that

Br = F (r) cos(kz − θ), (206)

Bθ = G(r) sin(kz − θ). (207)

To satisfy the condition (24) on the z axis, we first transform this to rectangular
components,

Bz = F (r) cos(kz − θ) cos θ + G(r) sin(kz − θ) sin θ, (208)

By = −F (r) cos(kz − θ) sin θ + G(r) sin(kz − θ) cos θ, (209)

from which we learn that the “boundary conditions” on F and G are

F (0) = G(0) = B0. (210)

A suitable form for Bz can be obtained from (∇ ×B)r = 0:

1

r

∂Bz

∂θ
=

∂Bθ

∂z
= kG cos(kz − θ), (211)

so
Bz = −krG sin(kz − θ), (212)

which vanishes on the z axis as desired.

From either (∇ × B)θ = 0 or (∇ ×B)z = 0 we find that

F =
d(rG)

dr
. (213)

Then, ∇ ·B = 0 leads to

(kr)2 d2(krG)

d(kr)2
+ kr

d(krG)

d(kr)
− [1 + (kr)2](krG) = 0. (214)

This is the differential equation for the modified Bessel function of order 1. See,
for example, M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions
(National Bureau of Standards, Washington, D.C., 1964), sec. 9.6. Hence,

G = C
I1(kr)

kr
=

C

2

[
1 +

(kr)2

8
+ · · ·

]
, (215)

F = C
dI1

d(kr)
= C

(
I0 − I1

kr

)
=

C

2

[
1 +

3(kr)2

8
+ · · ·

]
. (216)
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The “boundary conditions” (210) require that C = 2B0, so our second solution is

Br = 2B0

(
I0(kr) − I1(kr)

kr

)
cos(kz − θ), (217)

Bθ = 2B0
I1

kr
sin(kz − θ), (218)

Bz = −2B0I1 sin(kz − θ), (219)

which is the form discussed by Blewett and Chasman.

For a realization of the axial field pattern (24), we consider a wire that carries current
I and is wound in the form of a helix of radius a and period λ = 2π/k. A suitable
equation of this helix is

x1 = a sin kz, y1 = −a cos kz. (220)

The magnetic field due to this winding has a nonzero z component along the axis,
which is not desired. Therefore, we also consider a second helical winding,

x2 = −a sin kz, y2 = a cos kz, (221)

which is offset from the first by half a period and which carries current −I . The
combined magnetic field from the two helices has no component along their common
axis.

The unit vector l̂1,2 that is tangent to helix 1(2) at a point

r′1,2 = (x′
1,2, y

′
1,2, z

′) = (±a sin kz′,∓a cos kz′, z′) (222)

has components

l̂1,2 =
(±2πa cos kz′,±2πa sin kz′, λ)√

λ2 + (2πa)2
, (223)

and the element dl′1,2 of arc length along the helix is related by

dl′1,2 = l̂′1,2dz′
√

λ2 + (2πa)2

λ
= dz′(±ka cos kz′,±ka sin kz′, 1). (224)

The magnetic field B at a point r = (0, 0, z) on the axis is given by

B(0, 0, z) =
I

c

∫
1

dl′1 × (r′1 − r)

|r′1 − r|3 − I

c

∫
2

dl′2 × (r′2 − r)

|r′2 − r|3

=
2Ia

c

∫ ∞

−∞
dz′

[a2 + (z′ − z)2]3/2
[x̂(k(z′ − z) sin kz′ + cos kz′)

+ŷ(−k(z′ − z) cos kz′ + sin kz′)]

=
2I

ca

∫ ∞

−∞
dt

(1 + t2)3/2
[x̂(kat sin(kat + kz) + cos(kat + kz))

+ŷ(−kat cos(kat + kz) + sin(kat + kz))] (225)

=
4Ik

c
(x̂ cos kz + ŷ sin kz)

[
1

ka

∫ ∞

0

cos kat

(1 + t2)3/2
dt +

∫ ∞

0

t sin kat

(1 + t2)3/2
dt

]
,
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where we made the substitution z′ − z = at in going from the second line to the third.
Equation 9.6.25 of Abramowitz and Stegun tells us that

∫ ∞

0

cos kat

(1 + t2)3/2
dt = kaK1(ka) , (226)

where K1 also satisfies eq. (214). We integrate the last integral by parts, using

u = sin kat, dv =
t dt

(1 + t2)3/2
, so du = ka cos kat dt, v = − 1√

1 + t2
. (227)

Thus, ∫ ∞

0

t sin kat

(1 + t2)3/2
dt = ka

∫ ∞

0

cos kat√
1 + t2

dt = kaK0(ka) , (228)

using 9.6.21 of Abramowitz and Stegun. Hence

B(0, 0, z) =
4Ik

c
[kaK0(ka) + K1(ka)] (x̂ cos kz + ŷ sin kz). (229)

Both K0(ka) and K1(ka) have magnitudes ≈ 0.5e−ka for ka ≈ 1. That is, the field
on the axis of the double helix is exponentially damped in the radius a for a fixed
current I .
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11. We analyze the magnetic field of the solenoid in cylindrical coordinates, (r, θ, z), with
the origin at the center of the solenoid and z axis along that of the solenoid.

First, the field at a point on the axis, (0, 0, z), to a current loop, with current dI ,
centered on and perpendicular to the z-axis at z′ follows from the Biot-Savart law as

B(0, 0, z) =
dI

c

∮
dl × r

r3
=

2πdIa2

c(a2 + (z − b)2)
3
2

ẑ, (230)

For the solenoid,
dI = nI dz′ ,

where z′ runs from −l/2 to l/2, so the total field on the axis is

B(0, 0, z) =
2πnIa2ẑ

c

∫ l
2

− l
2

dz′

(a2 + (z − z′)2)
3
2

=
2πnIa2ẑ

c

∫ l
2
−z

− l
2
−z

dz′

(a2 + z′2)
3
2

=
2πnI ẑ

c

⎛
⎝ l

2
− z√

a2 + ( l
2
− z)2

+
l
2

+ z√
a2 + ( l

2
+ z)2

⎞
⎠

=
2πnI

c
(cos θ1 + cos θ2)ẑ , (231)

where θ1 is the angle between the z axis and the line joining the observation point,
(0, 0, z) to the point (a, 0, l/2) on the end of the solenoid, etc.

For z 	 a 	 l, we use the next to last line of (231), and the Taylor expansion

1√
1 + ε

= 1 − ε

2
+

3ε2

8
− 5ε3

16
+ ..., (232)

to find that near the origin,

Bz(0, 0, z) ≈ 2πnI

c

(
2 − 4a2

l2
− 72a2z2

l4

)
. (233)

As noted as the end of prob. 6, the radial field near the axis can be obtained from the
axial field using (189). Hence,

Br(r, 0, z) ≈ 288πnIa2rz

cl4
. (234)

Near the end of the solenoid at z = l/2,

cos θ1 = − sin(θ1 − π/2) ≈ −z − l/2

a
, and cos θ2 ≈ l√

l2 + a2
≈ 1 − a2

2l2
.

(235)



Princeton University 1999 Ph501 Set 4, Solution 11 50

Then, from (231)

Bz(0, 0, z) ≈ 2πnI

c

(
1 − a2

2l2
− z − l/2

a

)
. (236)

Comparing with (233), we see that the axial field at the end of the solenoid is approx-
imately 1/2 that at the center. The radial field at the end of the solenoid follows from
(189) as

Br ≈ πnIr

ac
. (237)
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12. a) As discussed on p. 98 of the Notes,15 a sphere of uniform magnetization density
M has a uniform magnetic field B = 8πM/3 inside. As discussed on p. 93, the B
field associated with magnetization density M can be thought of as arising from a
magnetization current density, Jm = c∇ × M, and a surface current density, Km =
cM × n̂, where n̂ is the outward normal from the bounding surface. For uniform
magnetization, Jm = 0, while, if M = M ẑ, then

Km = cM sin θ φ̂. =
3cB sin θ φ̂

8π
(238)

Since this is to be produced by windings on the surface of the sphere, with the same
current flowing through each turn of the winding, the density of windings must be
proportional to sin θ (or to cos θ for θ measured with respect to the “equatorial” plane
(colatitude).

On the other hand, if the surface current is due to a surface charge density σ(θ) that
rotates as a rigid body with angular velocity ω, then the surface current density is
ωa sin θσ(θ), which varies as sin θ for uniform σ. That is, a rotating, uniform spherical
shell of charge produces the desired uniform magnetic field inside the shell.

b) If the sphere has radius a and surface charge density σ and rotates with angular
velocity ω, its magnetic moment will be

μ =
1

c

∫
AreadI =

1

c

∫
Area

dQ

T
=

1

c

∫ π

0
πa2 sin2 θ · σ2πa sin θa dθ

2π/ω

=
πσωa4

c

∫ π

0
sin3 θ dθ =

4πσωa4

3c
=

Qωa2

3c
=

Qaveq

3c
, (239)

where Q = 4πσa2 is the total charge on the sphere, and veq = aω is the equatorial
velocity of the rotating shell.

In case of a solid sphere with uniform chaged density, μ = Qωa2/5c = Qaveq/5c.

These results were first given by W. Voigt, ELektronenhypothese und Theorie des
Magnetismus, Ann. d. Phys. 9, 115 (1902),
http://kirkmcd.princeton.edu/examples/EM/voigt_ap_9_115_02.pdf

See his eqs. 9-10, where μ is the magnetic moment, M = 2ma2/3 is the moment of
inertia for a spherical shell, r = ω, but for Voigt, ω = c.

For the classical model of the electron with magnetic moment μ = eh̄/2mc, the velocity
at the equator is

veq = ωa =
3μc

Qa
= 3

eh̄

2mc
c
1

e

mc2

e2
=

3

2

h̄c

e2
c =

3

2α
c. (240)

Since the fine structure constant α = eh̄/c2, is ≈ 1/137, this velocity is more than two
hundred times the speed of light!

15http://kirkmcd.princeton.edu/examples/ph501/ph501lecture8.pdf
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Even if we suppose the radius of the electron is the (reduced Compton wavelength
λ = h̄/mc, the velocity at the equator is 3c/2 for a spherical shell (and 5c/2 for a solid
sphere).

The magnetic field of the rotating shell of charge, with magnetic moment μ = μ ẑ is

B =

⎧⎪⎨
⎪⎩

2μ
a3 = 2μ ẑ

a3c
(r < a)

3(μ·r̂) r̂−μ
r3 = 2μ cos θ r̂−μ sin θ θ̂

cr3 (r > a).
(241)

The magnetic field energy is

UM =
∫

B2

8π
dVol =

1

8π

4μ2

a6c2
4πa3 +

μ3

4

∫ 1

−1
d cos θ

∫ ∞

a
r2 dr

4 cos2 θ + sin2 θ

r6c2

=
2μ2

a3c2
+

μ3

3a3c2
=

8Q2v2
eq

3ac2
=

8v2
eq

3c2
UE, (242)

where the electrostatic field energy is UE = Q2/a. Perhaps surprisingly, the magnetic
field energy is larger than the electric field energy as veq → c, as is needed for a classical
model of an electron to reproduce its observed magnetic moment eh̄/2mc.

Indeed, the evidence from scattering experiments that an electron is “pointlike” (mean-
ing not larger than its Compton wavelength) requires a classical model of the electron
magnetic moment to involve an equatorial velocity faster than light, such that classical
models of the electron are unsatisfactory.
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13. a) If n is the number density of alignable electrons, each of magnetic moment μ =
eh̄/2mc, then the resulting bulk magnetic field strength is

B = 4πM = 4πnμ =
2πneh̄

mc
= 2πn

eh̄

m2c3
mc2 =

2πnmc2

Bcrit

, (243)

where Bcrit = m2c3/eh̄ = 4.4 × 1013 Gauss is the so-called QED critical field strength.
Since mc2 = 0.511 MeV = 8.2 × 10−7 erg we have

n =
2 × 104 · 4.4 × 1013

2π · 8.2 × 10−7
= 1.7 × 1023/cm3. (244)

Iron has atomic weight A = 56 and mass density 8 g/cm3, so its number density is

natom =
6 × 1023 · 8

56
= 8.6 × 1022/cm2. (245)

Thus, two electrons per iron atom participate in its bulk magnetization.

b) The interaction energy U of two magnetic dipoles m1 and m2 of equal magnitude
m separated by distance r2 − r1 = dẑ can be calculated by supposing that, say, dipole
2 is held fixed while dipole 1 is brought into place from a large distance. The force on
dipole 1 due to dipole 2 is then

F1 = ∇1(m1 · B2), (246)

which can be integrated to give the interaction energy

U = −
∫

F1 · dr1 = −m1 · B2 = −m2 · B1, (247)

where the second form follows from a similar argument in which dipole 1 was held fixed
while dipole 2 is moved into place. The field of a dipole is

B1 =
3(m1 · r̂)r̂ − m1

r3
, (248)

so

U = −3(m1 · ẑ)(m2 · ẑ) − m1 · m2

d3
. (249)

If dipole 1(2) makes angle θ1(2) to the z axis, and both lie in, say, the x-z plane, then

U(θ1, θ2) = −m2

d3
[3 cos θ1 cos θ2 − cos(θ1 − θ2)]. (250)

This is a minimum for θ1 = θ2 = 0 or π, and

Umin = −2m2

d3
. (251)

In the absence of an external field, the dipoles are aligned, and both are either parallel
or antiparallel to the z axis.
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We now add a uniform external magnetic field B that makes angle θ to the z axis in
the x-z plane. The interaction energy of the system is then,

U(θ1, θ2, θ) = −m2

d3
[3 cos θ1 cos θ2−cos(θ1−θ2)]−mB[cos(θ−θ1)+cos(θ−θ2)]. (252)

First, consider when B is at right angles to the line of centers of the dipoles, θ = π/2.
Then,

U(θ1, θ2) = −m2

d3
[3 cos θ1 cos θ2 − cos(θ1 − θ2)] − mB[sin θ1 + sin θ2]. (253)

If the dipoles remain in their original orientation, say θ1 = θ2 = 0, then the interaction
energy U0 is still given by (251). Suppose the two dipoles rotate together towards B.
Then,

U(θ1 = θ2) = −m2

d3
[3 cos2 θ1 − 1] − 2mB sin θ1

=
m2

d3

[
3 sin2 θ1 − 2 − 2d3B

m
sin θ1

]
. (254)

The dipoles will rotate from angle 0 to π/2 provided that U(θ1 = θ2) decreases mono-
tonically along this path. Since (254) is a quadratic function of sin θ1, this requires
that the minimum occur for sin θ1 ≥ 1. The critical condition is then

B =
3m

d3
, (255)

above which field strength the dipoles always align with the transverse B. Thus, (255)
is the saturation magnetic field.

We note that for B < 3m/d3, the energy minimum occurs at sin θ1 = sin θ2 =
d3B/3m < 1. From (253), it can be verified that this is the absolute minimum for
all (θ1, θ2). So the equilibrium configuration falls short of full alignment with B until
the field is larger than the saturation value (255).

Finally, we consider the case where the dipoles originally have θ1 = θ2 = 0, and external
field B = −Bẑ is applied. We first suppose that the dipoles rotate together, θ1 = θ2,
so from (252) the energy of an intermediate state is

U(θ1 = θ2) = −m2

d3

(
3 cos2 θ1 − 1 − 2d3B

m
cos θ1

)
. (256)

This form is concave downward in cos θ1, so the alignment can occur so long as the
maximum occurs at cos θ1 ≥ 1. Thus, on this path the critical condition is again (255).

We might wonder whether the alternative path, θ2 = −θ1 leads to a lower critical field.
From (252),

U(θ1 = −θ2) = −m2

d3

(
cos2 θ1 + 1 − 2d3B

m
cos θ1

)
. (257)
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This is also concave downward in cos θ1, so requiring the maximum to occur at cos θ1 =
1 leads to the critical condition

B =
m

d3
. (258)

In our model of a permanent magnet as consisting of only 2 magnetic dipoles, we
find that it is favorable for the transition from one ferromagnetic (aligned dipoles)
state to another at 180◦ due to application of an external field to pass through an
antiferromagnetic state (anti-aligned dipoles). We leave it to statistical mechanics to
decide whether this can occur in a system of a large number of magnetic dipoles.
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14. The technique of mapping two dimensional magnetostatic fields with conducting pa-
per is NOT based on the analogy between electrostatics and magnetostatics that was
mentioned on p. 97 of the Notes. Rather, we start from (32-33). The 2-dimensional
magnetic field derived from the vector potential Azẑ is

B = ∇ × A =

(
∂Az

∂y
,−∂Az

∂x
, 0

)
. (259)

With the identification Az = kφ we can write

E = −∇φ = −
(

∂φ

∂x
,
∂φ

∂y

)
= −1

k

(
∂Az

∂x
,
∂Az

∂y

)
=

1

k
(By, Bx) =

B × ẑ

k
. (260)

Hence, B is perpendicular to E and therefore parallel to equipotentials of φ.

When current I is feed into a region of conducting paint, it spreads out on the paper
as described by current density J. Then, current conservation and Ohm’s law allow us
to write

I ẑ =
∮

J × dl =
∮

E

σ
× dl =

1

kσ

∮
(B × ẑ) × dl =

ẑ

kσ

∮
B · dl =

4πIB

ckσ
ẑ, (261)

where IB is the current needed to produce magnetic field B. Thus, if we set

k =
4πIB

cσI
, (262)

we can extract numerical values of B from the potential distribution φ on the paper.
To be more precise, note that

Δφ = −
∫

E · dl = −1

k

∫
(B × ẑ) · dl =

1

k

∫
B · (dl × ẑ) =

ΦB

k
, (263)

where ΦB is the magnetic flux per unit length in z that passes between the end points
of the integration.

As to the boundary conditions, first consider the patches of conducting paint. The
electric field is perpendicular to the boundaries of these, and hence the model B is
parallel to them. This is the magnetic boundary condition at a perfect conductor.

As mentioned in the statement of the problem, one can use a patch of conducting paint
to simulate a surface on which the magnetic field is known to lie, thereby reducing the
extent of the model.

The electric field is parallel to the edge of the conducting paper, and zero outside it,
since E = J/σ. Hence, the model magnetic field is perpendicular to the edge of the
paper. Outside the paper, (260) and the vanishing of E would imply that B vanishes
also. This awkwardness can be avoided by supposing that we were actually modeling
the field H rather than B, and the paper corresponds to a region of permeability
μ = 1, where B = H. Then, if we suppose that the region outside the paper has very
high permeability, the continuity of B⊥ at the boundary implies that H is extremely



Princeton University 1999 Ph501 Set 4, Solution 14 57

small outside the paper, which restores consistency of the actual electrical boundary
conditions with a class of magnetic boundary conditions.

Thus, we conclude that the conducting paper technique is particularly well suited for
mapping 2-dimensional magnetic fields in situations bounded by a high permeability
material, such as iron. Of course, the actual fields must not be so high that the iron
saturates and the effective permeability drops to near unity.

Use of conducting paper to study two-dimensional patterns of electric field lines seems
to haven been first made by G. Kirchhoff, Ueber den Durchgang einem elektrischen
Stromes durch einie Ebene, insbesondere durch eine kreissfórmige. Ann. d Phys. 64,
497 (1845), http://kirkmcd.princeton.edu/examples/EM/kirchhoff_apc_64_497_45.pdf

See also B. Liebmann, Electrical Analoǵues, Brit. J. Appl. Phys. 4, 193 (1953),
http://kirkmcd.princeton.edu/examples/EM/liebmann_bjap_4_193_53.pdf

and J.H.O. Harries, The Rubber Membrane and Resistance Paper Analogies, Proc.
IRE 44, 236 (1956), http://kirkmcd.princeton.edu/examples/EM/harries_pire_44_236_56.pdf


