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1. a) A charged particle moves in a plane perpendicular to a uniform magnetic field B.
Show that if B changes slowly with time, the magnetic moment produced by the orbital
motion of the charge remains constant. Show also that the magnetic flux through the
orbit, Φ = πr2B is constant. These results are sometimes given the fancy name of
adiabatic invariants of the motion.

b) The Magnetic Mirror. Suppose instead, that the magnetic field is slightly non-
uniform such that Bz increases with z. Then, if the charged particle has a small
velocity in the z direction, it slowly moves into a stronger field. Again, we would
expect the flux through the orbit to remain constant, which means that the orbital
radius must decrease and the orbital velocity must increase. However, magnetic fields
which are constant in time cannot change the magnitude of the velocity, therefore vz

must decrease. If Bz increases enough, vz will go to zero, and the particle is “trapped”
by the magnetic field. Write

v2 = v2
z + v2

⊥ = v2
0 , (1)

where v⊥ is the orbital velocity and v0 is constant. Use the result of part a) to show
that

v2
z(z) ≈ v2

0 − v2
⊥(0)

Bz(z)

Bz(0)
. (2)
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2. If one pitches a penny into a large magnet, eddy currents are induced in the penny,
and their interaction with the magnetic field results in a repulsive force, according to
Lenz’ law. Estimate the minimum velocity needed for a penny to enter a long, 1-T
solenoid magnet whose diameter is 10 cm.

You may suppose that the penny moves so that its axis always coincides with that of
the magnet, and that gravity may be ignored. The speed of the penny is low enough
that the magnetic field caused by the eddy currents may be neglected compared to
that of the solenoid. Equivalently, you may assume that the magnetic diffusion time
is small.
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3. a) Diamagnetism. We consider a model of an atom in which the distance r from the
electron to the nucleus is somehow fixed, but the electron is free to orbit the nucleus.
Then, if a field B is applied to the atom, an E.M.F. is induced around the orbit, while
B is changing, which generates a magnetic dipole moment m via the resulting motion
of the electron. Show that

m = − e2r2

4mc2
B , (3)

where e and m are the charge and mass of an electron, respectively. In bulk matter,
with n atoms per unit volume, the magnetization M is then M = nm.

The magnetic susceptibility is defined by

M = χMH. (4)

Since B = μH, and also B = H + 4πM = (1 + 4πχM )H, we see that the diamagnetic
permeability obeys μ < 1. Calculate χM = (μ − 1)/4π for hydrogen gas at S.T.P. and
compare with the measured value of −2.24 × 10−9.

b) In materials where B = μH, we claim that the magnetic energy is

Umag =
1

8π

∫
B · H dVol =

1

8π

∫
B2 dVol − 1

2

∫
B · M dVol . (5)

Use your analysis from part a) to show that the last term is just the kinetic energy of
the electron’s motion induced by the field B.
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4. a) A flip coil is a practical device for measuring magnetic fields. A coil whose axis is
the z-axis is flipped by 180◦ about the x-axis. The coil leads are connected to a charge
integrator. Show that charge

Q =
2Φ

R
(6)

is collected in the flip, where Φ is the magnetic flux through the loop before (and after)
flipping and R is the resistance of the integrator (plus coil).

b) A fancy flip coil is made by winding wire on the surface of a sphere such that the
turns are distributed according to

dN ∝ sin θ dθ . (7)

(Recall prob. of set 4.) All turns are parallel to the x-y plane. For this coil, show that

Φ ∝
∫

Bz dVol, (8)

the integration being over the interior of the sphere.

c) The field component Bz(r, θ, ϕ) obeys ∇2Bz = 0 inside the sphere, and so may be
expanded in a series of Legendre functions. However, Bz is not necessarily azimuthally
symmetric, so a slight generalization must be made:

Bz =
∑
m,n

Am,nr
nPm

n (cos θ)e±imϕ , (9)

where n and m are integers, and the Pm
n are the associated Legendre polynomials.

Note that P 0
n(cos θ) = Pn(cos θ), the ordinary Legendre polynomials. Using this, show

that Φ ∝ Bz(0, 0, 0), so that the sin θ flip coil measures Bz at the center of the sphere,
no matter how B varies over the sphere!

d) A sin θ coil is hard to build. Suppose we try to make do with a simple cylindrical
coil of radius a and height h. Show that if h =

√
3a, all effects of the first, second

and third derivatives of the field vanish. With such a coil, accuracies of 1 in 104 may
be achieved. Hint: Expand Bz in rectangular coordinates and note that ∇ · B = 0,
∇ ×B = 0 and hence ∇2B = 0.
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5. A cylinder of dielectric constant ε rotates with constant angular velocity ω about its
axis. A uniform magnetic field B is parallel to the axis, in the same sense as �ω. Find
the resulting dielectric polarization in the cylinder and the surface and volume charge
densities, neglecting terms of order (ωa/c)2, where a is the radius of the cylinder.

Answer:

P =
ε − 1

4πcε
ωBr (10)

where r is the radial vector out from the axis.

This problem can be conveniently analyzed by starting in the rotating frame. Consider
also the electric displacement D.
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6. a) Show that the self- and mutual inductances of two circuits obey

L11L22 ≥ L2
12 (11)

by considering the magnetic energy

U =
1

2
L11I

2
1 +

1

2
L22I

2
2 + L12I1I2. (12)

b) A toroidal coil of N turns has a circular cross-section of radius a; the central radius
of the coil is b > a. Show that the self-inductance is

L11 =
8N2

c2
(b−√

b2 − a2) sin−1 1√
1 + 3b2

4a2

. (13)

c) A second circuit in the form of a single loop of radius > a links the toroid; the plane
of the second circuit is the same as that of one of the turns of the toroid, and that
turn is entirely inside the new circuit. Calculate the mutual inductance L12 between
the toroid and the new circuit, and show that relation (11) is obeyed in this example.
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7. a) A coaxial cable consists of a center wire of radius a surrounded by a thin conducting
sheath of radius b > a. The region a < r < b is vacuum. Consider a circuit formed by
joining the two conductors at ±∞ to show that the self inductance per unit length is

L =
2

c2

(
1

4
+ ln

b

a

)
. (14)

Assume the current is distributed uniformly within the center wire.

b) Suppose the axis of the sheath is a distance ε from the axis of the center wire.
Calculate the self inductance accurate to terms in (ε/b)2.
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8. a) A long cylinder of radius a has uniform magnetization M perpendicular to its axis.
Find the magnetic fields B and H everywhere.

Let ẑ be the axis of the cylinder and x̂ the direction of the magnetization.

b) Suppose the cylinder is given a uniform velocity, v = vẑ, along its axis. Find the
resulting charge density and electric field everywhere. You may ignore effects of order
(v/c)2. You can check your result by noting that the Lorentz force on a charge at rest
with respect to the cylinder should vanish.
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9. An iron ring has a circular cross section of radius a, and average radius b � a. However,
the ring has a narrow gap from azimuth θ = 0 to h/b 	 1; the gap width is w. A
toroidal winding of N turns wraps around the ring.

Calculate the stored magnetic energy as a function of the current I in the windings and
the gap width w in a regime where the permeability of the iron is very large. Calculate
the force needed to keep the gap from closing.

Suppose the field in the gap were 15,000 Gauss, near the maximum that is readily
achieved in an iron core magnet. Express the force/area that tends to close the gap in
terms of atmospheric pressure.
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10. Discuss the surface charges and flow of field energy in a cylindrical wire of radius a of
conductivity σ that carries current I distributed uniformly within the wire.

For definiteness, assume the current returns in a hollow conducting cylinder of inner
radius b and very large outer radius. Then, the current density J and electric field E
are vanishingly small in the outer conductor, whose constant electrical potential may
be taken as zero.

Steps in the discussion: Find the magnetic field B everywhere. Find the electric
potential φ(r, θ, z) and electric field E first for r < a, and then for a < r < b. Define
φ(0, 0, 0) = 0 at the center of the wire.

Answer:

φ(a < r < b) = − Iz

πa2σ

ln(r/b)

ln(a/b)
. (15)

Find the surface charge density at r = a which is needed to shape the electric field
inside the wire to be along z. When the current first begins to flow, the electric field
is not yet uniform and free charge heads for the surface of the wire until the desired
static surface charge distribution is obtained.

A length l of the wire has resistance R = l/πa2σ and consumes power at the rate I2R.
Show that the Poynting vector S = (c/4π)E × B at the surface of the wire provides
this power. Thus, according to Poynting, the power flows down the air gap and into
the side of the wire.

As Sommerfeld says, “Electromagnetic energy is transported without losses only in
nonconductors. ‘Conductors’ are nonconductors of energy, which is dissipated in Joule
heating.”

An alternative calculation of the surface charge density σ may be instructive. Consider
first the question of how a tube of radius a of uniform axial electric field could be created
in the absence of the wire. A capacitor consisting of a pair of circular plates of radius a
has a very nonuniform field between the plates as their separation becomes large. We
want the equipotentials to be perpendicular to the axis, and uniformly spaced, which
could be approximately achieved by adding a set of conduting rings of radius a, spaced
uniformly along the axis with potentials that vary linearly between the two end plates.
The charge on a ring would be given by Q = CV , where C is he capacitance of a ring,
and V is the desired potential of the ring.

The current-carrying wire is a kind of continuum limit of the above procedure. The
desired potential inside the wire is φ(z) = −IRz. For the coaxial geometry of the
present problem, calculate the capacitance per unit length between the wire of radius
a and the return conductor of radius b. Then calculate the charge per unit length, and
the surface charge density, on the wire via Q(z) = CV (z).
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11. Consider an air-core transformer in the form of two coaxial cylinders of length l and
radii r1 < r2 	 l. Each cylinder is wrapped with Ni turns, and the total resistance of
coil i is Ri.

a) Deduce the currents I1(t) and I2(t) in the coils when the primary coil 1 is driven by
voltage V1(t) = V0 cosωt. First, evaluate the self and mutual inductances, L1, L2 and
M , and then solve the coupled circuit equations.

Calculate the time-average power dissipated in coil 2.

b) Evaluate the Poynting vector S to show that its time average is nonvanishing only
for r1 < r < r2, and that the total Poynting flux 2πrl 〈Sr〉 is just the power dissipated
in coil 2. What is the direction of S?

c) Consider coil 2 as the primary driven by voltage V2(t) = V0 cos ωt, and discuss the
relation between the Poynting vector and the power dissipated in coil 1.



Princeton University 1999 Ph501 Set 5, Problem 12 12

12. Feynman Disk Paradox. Consider a small coil centered on the origin that carries a
current which sets up a magnetic dipole moment m = mẑ. A ring of radius a in the
plane z = 0 has charge Q distributed uniformly on it. The ring is rigidly attached to
the coil, but the assembly is free to rotate about the z axis.

a) Calculate the initial angular momentum LEM in the electromagnetic field.

Use the multipole expansion for the potential of a ring of charge, pp. 58-59, to show
that

LEM,z =
{

2mQ/15ca, r < a,
13mQ/15ca, r > a.

(16)

b) Now let the current in the coil decrease to zero. Calculate the field induced at the
ring, and the resulting torque to show that

Lmech,z =
mQ

ca
, (17)

once the moment m has vanished.

Hint: Since magnetic field lines always form loops, the flux through the ring is equal
and opposite to that across the plane z = 0 outside the ring.

For yet another version of this problem, see
http://physics.princeton.edu/~mcdonald/examples/feynman_cylinder.pdf
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13. Consider particle with charge e and momentum P = Pz +P⊥ (P⊥ �= 0) that is moving
on average in the z direction inside a solenoid magnet whose symmetry axis is the z axis
and whose magnetic field strength is Bz. Inside the solenoid, the particle’s trajectory
is a helix of radius R, whose center is at distance R0 from the magnet axis.

The longitudinal momentum Pz is so large that when the particle reaches the end of
the solenoid coil, it exits the field with little change in its transverse coordinates. This
behavior is far from the adiabatic limit (c.f. Prob. 1) in which the trajectory spirals
around a field line.

When the particle exits the solenoid, the radial component of the magnetic “fringe”
field exerts azimuthal forces on the particle, and, in general, leaves it with a nonzero
azimuthal momentum, Pφ. Deduce a condition on the motion of the particle when
within the solenoid, i.e., on R, R0, Pz, P⊥, and Bz, such that the azimuthal momen-
tum vanishes as the particle leaves the magnetic field region. Your result should be
independent of the azimuthal phase of the trajectory when it reaches the end of the
solenoid coil.

Hint: Consider the canonical momentum and/or angular momentum.
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Solutions

1. a) Since the particle moves in the plane perpendicular to the magnetic field , the
velocity v, the field B and the force F on the particle of mass m and charge q are
mutually orthogonal. The orbit is a circle of radius r related by

F =
mv2

r
=

qvB

c
, (18)

so long as B varies sufficiently slowly. Then,

r =
mcv

qB
(19)

and the magnetic moment due to this orbit is of magnitude

μ =
πr2I

c
=

πr2

c

qv

2πr
=

qrv

2c
=

mv2

2B
. (20)

The vector �μ is in the opposite direction to B, which can be considered as an example
of Lenz’ Law.

If the field B varies with time, then an electric field is induced around the particle’s
orbit as given by Faraday’s Law:

∮
E · dl = 2πrE = −1

c

d

dt

∫
B · dS = −πr2Ḃ

c
. (21)

Thus,

E =
rḂ

2c
=

mvḂ

2qB
, (22)

with E in the same direction as v. That is, if the magnetic field increases, the electric
field causes the particle to accelerate,

v̇ =
qE

m
=

vḂ

2B
. (23)

The solution to this is
v ∝

√
B , (24)

so that v2/B is constant, and hence the magnetic moment (20) is constant. The flux
linked by the orbit,

Φ = πr2B =
πm2c2v2

q2B
, (25)

is also constant.

b) Suppose now that the magnetic field is constant in time, but varies in space. For
example, consider a field that has azimuthal symmetry about the z axis, and Bz in-
creasing with z. A charged particle with nonzero vz, moves along a kind of helix in
this field.
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The magnetic field at the z coordinate of the particle then varies as

dBz(z(t))

dt
=

dBz

dz
vz. (26)

If this change is slow, the analysis of part a) holds, and the particle’s motion varies so
as to keep v2

⊥(z)/Bz(z) constant, so that

v2
⊥(z) ≈ v2

⊥(0)
Bz(z)

Bz(0)
. (27)

In writing this, we recall from prob. 6, set 4 that for magnetic fields with azimuthal
symmetry, Bz(r, z) ≈ Bz(0, z)−r2B

′′
z (0, z)/4+ ..., and we ignore the radial dependence

for orbits with small r.

Of course, v2 = v2
z + v2

⊥ remains constant as well, so we have

v2
z(z) = v2

0 − v2
⊥(0)

Bz(z)

Bz(0)
. (28)

The particle stops moving forward in z at the plane where

Bz(z) =
v2

0

v2
⊥(0)

Bz(0) > B(0) . (29)

Although the particle has vz = 0 at this plane, its v⊥ now equals v(0), so still there is
a large Lorentz force in the −z direction, and the particle spirals its way back down
the z axis. Hence the term “magnetic mirror”.

A field configuration in which the axial field strength increases with |z| can trap charged
particles near the origin. This is no contradiction to Earnshaw’s theorem, as a “mag-
netic bottle” has no static equilibrium point, but relies on electrodynamics to trap
particles with constant, nonzero velocity.
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2. The penny has radius a and thickness Δz. For the motion as stated in the problem,
the eddy current will flow in concentric rings about the center of the disk. Therefore,
we first examine a ring of radius r and radial extent Δr.

The magnetic flux through the ring at position z is

Φ ≈ πr2Bz(0, z), (30)

whose time rate of change is

Φ̇ = πr2Ḃz = πr2B ′
zv, (31)

where ˙ indicates differentiation with respect to time, ′ is differentiation with respect
to z, Bz stands for Bz(0, z), and v is the velocity of the center of mass of the ring.

The penny has electrical conductivity σ. Its resistance to currents around the ring is

R =
2πr

σΔrΔz
, (32)

so the (absolute value of the) induced current is

I =
E
R

=
Φ̇

cR
=

σrB ′
zvΔrΔz

2c
, (33)

using Faraday’s law.

The azimuthal eddy current interacts with the radial component of the magnetic field
to produce the axial retarding force. Close to the magnetic axis, we estimate the radial
field in term of the axial field according to

Br(r, z) ≈ r
∂Br(0, z)

∂r
= −r

2

∂Bz(0, z)

∂z
≡ −rB ′

z

2
, (34)

as can be deduced from the Maxwell equation ∇ ·B = 0, noting that on the magnetic
axis ∂Br/∂r = ∂Bx/∂x = ∂By/∂y. Then, the retarding force on the ring is

ΔFz =
2πrBrI

c
= −πσr2BrB

′
zvΔrΔz

c2
≈ −πσr3(B ′

z)
2vΔrΔz

2c2
. (35)

Alternatively, we note that the kinetic energy lost by the penny appears as Joule
heating. Hence, for the ring analyzed above,

vΔFz =
dU

dt
= −I2R = −πσr3(B ′

z)
2v2ΔrΔz

2c2
, (36)

using eqs. (32) and (33), which agains leads to eq. (35).

The equation of motion of the ring is

dFz = −πσr3(B ′
z)

2vΔrΔz

2c2
= mv̇ = 2πρrΔrΔz v′v, (37)
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where ρ is the mass density of the metal. We integrate this equation with respect to
radius to find

− πσa4(B ′
z)

2vΔz

8c2
= πρa2Δz v′v, (38)

After dividing out the common factor πa2Δz v, we find

v′ = −σa2(B ′
z)

2

8ρc2
. (39)

For an estimate, we note that the peak gradient of the axial field of a solenoid of
diameter D is about B0/D, and the gradient is significant over a region Δz ≈ D.
Hence, on entering a solenoid the jet velocity is reduced by

Δv ≈ σa2B2
0

8c2ρD
. (40)

The penny must have initial velocity v0 > Δv to enter the magnet.

A copper penny has a ≈ 1 cm, density ρ ≈ 10 g/cm3, electrical resistivity ≈ 10−6 Ω-
cm, and therefore conductivity σ ≈ 9× 1017 Gaussian units. The minimum velocity to
enter a 1-T = 104-G magnet with diameter D = 10 cm is then,

vmin ≈ 9 × 1017 · (1)2 · (104)2

8 · (3 × 1010)2 · 10 · 10 ≈ 125 cm/s. (41)

The case of a sphere rather than a disk has been presented in J. Walker and W.H. Wells,
Drag Force on a Conducting Spherical Drop in a Nonuniform Magnetic Field, ORNL/TN-
6976 (Sept. 1979).
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3. a) Assume that the electron of an atom is initially stationary and that the vector r
between the electron and the nucleus is at a right angle to the direction of the increasing
magnetic field B = Bẑ. As the magnetic field is applied, an electric field is induced
around a loop of radius r according to

E =
rḂ

2c
, (42)

which, as Lenz’ law decrees, will accelerate the electron to velocity v, given by

v =
∫

v̇ dt =
∫ eE

m
dt =

∫ erḂ

2mc
dt =

erB

2mc
, (43)

so that its magnetic dipole moment opposes the magnetic field. From the next to last
equality in (20), we have

m = −evr

2c
ẑ = −e2r2B

4mc2
ẑ = −r0r

2B

4
ẑ , (44)

where r0 = e2/mc2 = 2.8 × 10−13 cm is the classical electron radius.

With n atoms per unit volume, the magnetization is

M = nm = −nr0r
2

4
B. (45)

The magnetic susceptibility χM is related by

M ≡ χMH =
χM

1 + 4πχM

B ≈ χMB , (46)

so

χM ≈ −nr0r
2

4
. (47)

Hence, the permeability, μ = 1 + 4πχM is less than one. For hydrogen, r is the Bohr
radius, a0 = r0/α

2, and, at S.T.P., n ≈ 5.4 × 1019/cm3, so χM ≈ −1.1 × 10−10, which
is of the same order of magnitude as the stated value of −2.24 × 10−9.

b) In a volume V , there are N = nV electrons, and their kinetic energy is

T = N
1

2
mv2 =

nV e2r2B2

8mc2
= −V

2
M · B, (48)

using (43) and (45), which is just the second term in the expression (5) for the magnetic
energy.
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4. a) As the coil flips, the total amount of flux cut by the coil is 2Φ. Then, since the
E.M.F. E generated is proportional to the rate of change of flux, the charge integrated
over time is

Q =
∫

I dt =
1

R

∫
E dt =

1

cR

∫
dΦ

dt
dt =

1

cR

∫
dΦ =

2Φ

cR
. (49)

b) The total magnetic flux through the turns, which are perpendicular to the z axis, is

Φ =
∫ ∫ ∫

B · (ẑ dx dy)dN. (50)

Since the density of turns obeys dN ∝ sin θ dθ, and dz = a sin θ dθ, where a the radius
of the sphere, we have dN ∝ dz. Hence, (50) becomes

Φ ∝
∫

Bz dxdydz =
∫

Bz dVol. (51)

c) Inserting the Legendre series (9) into (51), we have

Φ ∝
∫ ∑

m,n

Am,nr
nPm

n (cos θ)e±imϕr2 dr d cos θ dϕ. (52)

The integral over the azimuthal angle is∫ 2π

0
e±imϕ dϕ = 2πδm0. (53)

The integral over the polar angle is then∫ 1

−1
Pn(cos θ) d cos θ =

∫ 1

−1
Pn(cos θ)P0(cos θ) d cos θ = 2δn0. (54)

The radial integral is just ∫ a

0
r2 dr =

a3

3
. (55)

Combining (52-55) then gives

Φ ∝ 4πa3

3
A0,0 = Bz(0, 0, 0)Vol. (56)

d) The total flux linked by the coil is again given by (50), where now the density of
windings is dN = ndz. Thus,

Φ = n
∫

Bz dVol. (57)

In a Taylor expansion of Bz in rectangular coordinates about the center of the coil,
the integral of odd-order terms will vanish because the cylinder is symmetrical under
reflections. Hence, up to third order, the only terms which survive are the zeroth-order
term, πa2hBZ(0, 0, 0), and the second-order term,

1

2

∑
i

d2Bz

dx2
i

∣∣∣∣∣
0

∫
x2

i dVol. (58)
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In current-free regions and static situations,

∇2Bz =
∑

i

d2Bz

dx2
i

= 0 , (59)

so (58) will vanish if the three integrals in the sum are equal. The x1 = x and x2 = y
integrals are automatically equal because of the symmetry of the cylinder, which means
that for the term to vanish, we need

∫
z2 dVol =

1

2

∫
(x2 + y2) dVol =

1

2

∫
r2 dVol (60)

⇒ πa2h3

12
=

πa4h

4
. (61)

Hence, we require that h =
√

3a.
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5. The v×B force on an atom in the rotating cylinder is radially outwards, and increasing
linearly with radius, so we expect a positive radial polarization.

We begin our analysis in the rotating frame, in which any polarization charge density
is at rest and causes no additional magnetic field. Then, P′ = χE′, where E′ and P′

are the electric field and dielectric polarization in the rotating frame. If v = ωr 	 c,
then the electric field in the rotating frame is related to lab frame quantities by

E′ = E +
v

c
× B, (62)

where E is the electric field due to the polarization that we have yet to find. Since
polarization is charge times distance, in the nonrelativistic limit the polarization is the
same in the lab frame and the rotating frame: P′ = P.

The velocity has magnitude v = ωr, and is in the azimuthal direction. Thus, v×B =
ωBr, so that

P = χ
(
E +

ωB

c
r
)

. (63)

There are no free charges, so the electric displacement is zero:

D = 0 = E + 4πP. (64)

Thus, E = −4πP. Recalling that χ = (ε − 1)/4π, (63) leads to

P =
ε − 1

4πcε
ωBr. (65)

The surface charge density is

σpol = P(a) · r̂ =
ε − 1

4πcε
ωBa, (66)

where a is the radius of the cylinder. As well as this surface charge density, there is a
volume charge density,

ρpol = −∇ · P = −1

r

∂rPr

∂r
= −ε− 1

2πcε
ωB, (67)

so that the cylinder remains neutral over all.

Both the surface and volume charge densities are proportional to v(r)/c, and are mov-
ing at velocity v(r). Hence, the magnetic field created by these charges is of order
v2/c2, and we neglect it in this analysis.

This example is perhaps noteworthy in that a nonvanishing, static volume charge
density arises in a charge-free, linear dielectric material. In pure electrostatics this
cannot happen, since P = χE together with ∇ ·D = 0 = ∇ · E + 4π∇ ·P imply that
ρpol = −∇ · P = 0.
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We also offer an iterative solution. The axial magnetic field acts on the rotating
molecules to cause a v × B force radially outwards. This can be described by an
effective electric field

E0 =
ωB

c
r. (68)

This field causes polarization

P0 = χE0 = χ
ωB

c
r. (69)

Associated with this is the uniform volume charge density

ρ0 = −∇ · P0 = −2χωB. (70)

According to Gauss’ Law, this charge density sets up a radial electric field

E1 = 2πρ0r = −4πχωBr. (71)

At the next iteration, the total polarization is

P1 = χ(E0 + E1) = χ(1 − 4πχ)
ωB

c
r. (72)

This causes additional charge density ρ2, which leads to additional electric field E2, ...

At the nth iteration, the polarization will have the form

Pn = kn
ωB

c
r. (73)

Then,
ρn = −∇ · Pn = −2knωB, (74)

and
En+1 = 2πρnr = −4πknωBr. (75)

The effective electric field at iteration n + 1 is the sum of E0 due to the v × B force
and En+1 due to the polarization charge. Thus,

Pn+1 = χ(E0 + En+1) = χ(1 − πkn)
ωB

c
r. (76)

But by definition,

Pn+1 = kn+1
ωB

c
r. (77)

Hence,
kn+1 = χ(1 − 4πkn). (78)

If this series converges to the value k, then we must have

k = χ(1 − 4πk), (79)

so that

k =
χ

1 + 4πχ
=

ε − 1

4πε
, (80)

which again gives (10) for the polarization.
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6. a) In the expression (12) for the total magnetic energy in the circuits, let

I1 = −L12

L11
I2. (81)

The total energy is then

U =
1

2

(
L22 − L2

12

L11

)
I2
2 . (82)

Since the magnetic energy U is also given by
∫

B2 dvol/8π, it must be non-negative.
Hence, the factor in parentheses in (82) must be non-negative, and

L11L22 ≥ L2
12. (83)

b) The magnetic field due to current I in a toroid of N windings is azimuthal, and is
confined to the interior. Ampère’s Law gives the magnitude as

B(r) =
2NI

cr
, (84)

where r is the perpendicular distance from the axis. The self inductance L11 is related
by NΦ1/cI , where Φ1 is the flux linked by one turn. Thus, for a toroid of central radius
b whose cross section is a circle of radius a,

L11 =
2N2

c2

∫ a

−a

2dx
√

a2 − x2

x + b
. (85)

Substituting y = x + b,

L11 =
4N2

c2

∫ b+a

b−a

dy
√−y2 + 2by + a2 − b2

y
.

=
4N2

c2

[√
−y2 + 2by + a2 − b2 − b sin−1 2(b − y)√

4a2 + 3b2

−√
b2 − a2 sin−1 2by + 2a2 − 2b2

√
4a2 + 3b2

]b+a

b−a

=
8N2

c2
(b−√

b2 − a2) sin−1 1√
1 + 3b2

4a2

. (86)

c) To calculate the mutual inductance between the two circuits, we note that the second
loop links all the flux of the toroidal field, which we called Φ1 above. Hence,

L12 =
Φ1

cI
=

L11

N
. (87)

If the second circuit has radius R, and is made of a wire of radius r0, then its self
inductance is

L22 =
4πR

c2

(
ln

8R

r0
− 7

4

)
, (88)
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from p. 115b of the Notes. Hence, for the system of loop plus toroid,

L11L22

L2
12

=
N2L22

L11

=
πR

(
ln 8R

r0
− 7

4

)
2(b −√

b2 − a2) sin−1 1√
1+ 3b2

4a2

. (89)

The numerator is smallest when R = a, the minimum for which the second loop fully
links the toroid. The denominator is largest when b = a and the toroid looks like a
donut whose hole has shrunk to zero. Then,

L11L22

L2
12

∣∣∣∣∣
min

=
π
(
ln 8a

r0
− 7

4

)
2 sin−1

√
4
7

. (90)

This expression equals unity when a = 1.06r0, i.e., when the second loop is also
essentially a donut with no hole. However, the expression (88) for the self inductance
of a loop was deduced supposing that R � r0. Since the general restriction (11) is
satisfied using (88) for any R > 1.06r0, we infer that (88) is still reasonably accurate
for R only a few times r0.
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7. a) In cylindrical coordinates (r, θ, z), the magnetic field is azimuthal in a coaxial cable
whose axis is the z axis. When current I flows in the cable, whose solid inner conductor
has radius a and whose outer conductor is a cylindrical shell of radius b, the field
strength follows from Ampère’s law as

Bθ(r) =

⎧⎪⎨
⎪⎩

2Ir/a2c, r ≤ a,
2I/cr, a ≤ r ≤ b,
0, r > b.

(91)

The energy per unit length along the cable of this magnetic field is

U =
1

8π

∫
B2 dArea =

I2

2πc2

(∫ a

0

r2

a4
2πr dr +

∫ b

a

2πr dr

r2

)
=

I2

c2

(
1

4
+ ln

b

a

)
(92)

Since the energy can be expressed in terms of the self inductance L as U = 1
2
LI2, we

obtain the result (14).

Alternatively, we can evaluate the self inductance as L = Φ/cI , where Φ is the magnetic
flux per unit length linked by the circuit. The flux linked for a < r < b is clearly

Φ(a < r < b) =
∫ b

a
Bθ dr =

2I

c

∫ b

a

dr

r
=

2I

c
ln

b

a
. (93)

More care is required when discussing the region r < a. On p. 115a of the Notes we
saw that a consistent procedure for an extended current distribution is to average the
flux linked by the various filamentary currents. In the present case, consider first a
filament of area r′dr′dθ at (r′, θ). We can define the surface through which the flux is
to be calculated as that portion of the shell of radius r′ that connects (r′, θ) with the
point (r′, 0), plus the plane θ = 0 between r′ and a. Since the field is azimuthal, no
flux is linked on the shell; all filaments on the same shell link the same flux. Thus,

Φ(r < a) =
2I

c

1

πa2

∫ a

0
2πr′ dr′

∫ a

r′
dr

r

a2
=

2I

a2c

∫ a

0
r′ dr′

(
1 − r

′2

a2

)
=

2I

4c
(94)

Combining (93-94) and dividing by cI , we again arrive at (14).

b) It appears impossible to make an accurate estimate of the self inductance when the
outer cylinder is off center by either of the methods used in part a). The reason is that
the currents are no longer uniformly distributed over the surfaces of the cylinders, so
it is hard to calculate the magnetic field properly.

A solution can be given for the closely related problem in which the inner conductor,
as well as the outer conductor, is a cylindrical shell. Then, we know from transmission
line analysis (Lecture 13) that LC = 1/c2, where C is the capacitance per unit length.
With some effort we then find that

L =
2

c2

(
ln

b

a
− ε2

b2 − a2

)
, (95)

to O(ε2/b2). See my note An Off-Center “Coaxial” Cable (Nov. 21, 1999).
http://physics.princeton.edu/~mcdonald/examples/coax.pdf
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Here we illustrate what happens if we follow the approachs of part a), assuming the
currents are uniformly distributed over the two cylinders.

If the center of the outer cylinder is at (r, θ) = (ε, 0), then the surface of that cylinder
follows

b2 = r2 + ε2 − 2εr cos θ, (96)

or

r(θ) = ε cos θ +
√

b2 − ε2 sin2 θ ≈ b + ε cos θ − ε2

2b
sin2 θ. (97)

We first calculate the self inductance via the energy method. Inside the outer cylinder
the magnetic field is still given by the first two lines of eq. (91), but with r = b replaced
by r(θ) from eq. (97). Outside the cylinder the field is not quite zero because the
magnetic field vectors from the currents in the inner and outer cylinders have slightly
different magnitudes and directions. The vector from the center of the outer cylinder,
(ε, 0) to a point (r, θ) has magnitude r′ ≈ r − ε cos θ, and makes angle ≈ (ε/r) sin θ to
r. Hence, the magnetic field from the current in the outer cylinder is

B ≈ 2I

cr

(
ε sin θ

r
,−1 − ε cos θ

r

)
, (98)

and the total magnetic field outside the outer cylinder is

Boutside ≈ 2Iε

cr2
(sin θ,− cos θ), (99)

so its magnitude is Boutside ≈ 2Iε/cr2.

The magnetic field energy per unit length along the axis is now

U =
1

8π

∫
B2 dArea =

I2

2πc2

(∫ a

0

r2

a4
2πr dr +

∫ 2π

0
dθ
∫ r(θ)

a

r dr

r2
+
∫ 2π

0
dθ
∫ ∞

r(θ)

ε2r dr

r4

)

≈ I2

2πc2

(
π

2
+
∫ 2π

0
dθ ln

[
b

a

(
1 +

ε

b
cos θ − ε2

2b2
sin2 θ

)]
+

ε2

2

∫ 2π

0

dθ

b2

)

≈ I2

2πc2

(
π

2
+
∫ 2π

0
dθ

(
ln

b

a
+

ε

b
cos θ − ε2

2b2
sin2 θ − ε2

2b2
cos2 θ

)
+

πε2

b2

)

=
I2

c2

(
1

4
+ ln

b

a

)
=

1

2
LI2. (100)

Hence, we would conclude from the energy method that there is no change in the
inductance to second order.

We contrast this with a calculation of the flux linked by the off-center coax. The
contribution for r < a is again given by (94). For r > a but inside the off-center
outer cylinder, the magnetic field is still B = (0, 2I/cr). The flux through the region
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r(θ) > r > a varies with azimuth, so we average over filaments on the outer cylinder:

Φ(r(θ) > r > a) =
2I

c

1

2π

∫ 2π

0
dθ
∫ r(θ)

a

dr

r
=

2I

2πc

∫ 2π

0
dθ ln

[
b

a

(
1 +

ε

b
cos θ − ε2

2b2
sin2 θ

)]

≈ 2I

2πc

∫ 2π

0
dθ

(
ln

b

a
+

ε

b
cos θ − ε2

2b2
sin2 θ − ε2

2b2
cos2 θ

)

=
2I

c

(
ln

b

a
− ε2

2b2

)
. (101)

Combining (94) and (101), we find that the self inductance is now

L =
2

c2

(
1

4
+ ln

b

a
− ε2

2b2

)
, (102)

to O(ε2/b2).

Comparing with the result (95), we infer that the calculation via the linked flux is
more accurate than that via the energy method when we use the incorrect assumption
of uniform current distributions.
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8. a) Since there are no free currents in the problem, ∇ × H = 0 and we can define a
magnetic scalar potential such that H = −∇φ. As the cylinder is very long, we ap-
proximate the problem as 2-dimensional: φ = φ(r, θ) in cylindrical coordinates (r, θ, z).

The source of the magnetic scalar potential is the imagined magnetic charges associated
with the magnetization. Since M = M x̂, the volume charge density ρM = −∇ ·M = 0.
However, at the surface of the cylinder at r = a, there is a density given by

σM = M · r̂ = M cos θ. (103)

The potential is continuous at the boundary r = a, and Gauss’ law tells us that

4πσM = 4πM cos θ = Hr(r = a+)−Hr(r = a−) = −∂φ(r = a+)

∂r
+

∂φ(r = a−)

∂r
. (104)

The potential can be expanded as a harmonic series, but only the term in cos θ will
contribute in view of (104). Thus,

φ =

{−Hr cos θ, r ≤ a,
−H a2

r
cos θ, r ≥ a,

(105)

satisfies continuity of the potential at r = a. Then, (104) also tells us that H = −2πM .

Inside the cylinder we have

φ(r < a) = 2πMx, (106)

H(r < a) = −2πM x̂ = −2πM, (107)

B(r < a) = H + 4πM = 2πM. (108)

Outside the cylinder there is no magnetization, and

φ(r > a) = 2πMa2 cos θ

r
, (109)

H(r > a) = B(r > a) =
2πMa2

r2
(cos θ r̂ + sin θ θ̂). (110)

b) In case of a moving cylinder, the analysis of part a) holds in the rest frame of the
cylinder. When the cylinder has velocity v = vẑ in the lab frame, there appears to be
an electric field in the lab frame related by

E = −γ
v

c
×B′ ≈ −v

c
× B, (111)

where we ignore terms of order v2/c2, so the magnetic field B in the lab frame is the
same as the field B′ given by (108) and (110) in the rest frame. Regarding the sign in
(111), we note that a charge which is at rest in the lab frame is moving with velocity
−v in the rest frame of the magnetized cylinder, and so in the latter frame experiences
a Lorentz force −v/c× B.
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Thus,

E(r < a) = −2πM
v

c
ŷ = −2πM

v

c
(sin θ r̂ + cos θ θ̂), (112)

E(r > a) =
2πMva2

cr2
(sin θ r̂ − cos θ θ̂). (113)

There is an electric charge density on the surface of the cylinder given by

σ =
1

4π

[
Er(r = a+) − Er(r = a−)

]
=

Mv

c
sin θ . (114)

This can be thought of as arising from a polarization P related to the moving magne-
tization by

P =
v

c
× M. (115)

See sec. 87 of Becker for a discussion of how M and P form a relativistic tensor.
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9. The magnetic induction B is related to the magnetic field H by B = μH, where μ is
the permeability. In the gap, μ = 1. The normal component of the magnetic induction
is continuous across the boundaries of the gap, since ∇ · B = 0. Thus,

Hgap = Bgap = Biron = μHiron. (116)

For a large permeability μiron, the magnetic field Hiron is negligible.

The magnetic field H at the center of the toroid is related by Ampére’s law as

∮
H dl = Hgapw + Hiron(2πb − w) =

4πNI

c
. (117)

With the neglect of the small quantity Hiron, we find

Hgap = Bgap = Biron ≈ 4πNI

cw
. (118)

The magnetic energy is

U =
1

8π

∫
B · H dVol ≈ πa2w

8π

(
4πNI

cw

)2

=
2π2a2N2I2

c2w
. (119)

The force tending to close the gap is

F = −dU

dw
=

2π2a2N2I2

c2w2
. (120)

The pressure can also be calculated via the Maxwell stress tensor as

Pgap =
B2

gap

8π
. (121)

If Bgap = 15, 000 Gauss, then

Pgap = 9 × 106 dyne/cm2 = 9 atmospheres. (122)
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10. The current density associated with a uniform current I in a wire of radius a whose
axis is the z axis is

J =
I

πa2
ẑ. (123)

Ohm’s law gives the electric field inside the wire as

E =
J

σ
=

I

πa2σ
ẑ = IRẑ, (124)

where σ is the conductivity, and R = 1/πa2σ is the resistance per unit length of the
wire.

The electric potential inside the wire is therefore,

φ(r < a) = −IRz, (125)

where we define φ(0, 0, 0) = 0.

For the region a < r < b, we suppose the potential satisfies separation of variables:

φ(a < r < b) = f(r)g(z). (126)

Continuity of the potential at r = a is satisfied by the form

φ(a < r < b) = −f(r)IRz. (127)

Substituting (127) into Laplace’s equation, ∇2φ = 0, we find that

1

r

d

dr
r
df

dr
= 0, (128)

so f has the general solution
f = A + B ln r. (129)

The boundary conditions on the potential at r = a and b now require that f(a) = 1
and f(b) = 0. Hence, f = ln(r/b)/ ln(a/b), and

φ(a < r < b) = −IRz
ln(r/b)

ln(a/b)
= IRz

ln(r/b)

ln(b/a)
. (130)

The surface charge density σq at the surface of the wire is

σq =
1

4π

[
Er(r = a+) − Er(r = a−)

]
=

1

4π

[
−∂φ(r = a+)

∂r
+

∂φ(r = a−)

∂r

]

= − IRz

4πa ln(b/a)
. (131)

The electric field is

E = −∇φ =

⎧⎨
⎩

IRẑ, r < a,
−IRzr̂/r ln(b/a) + IR ln(r/b)ẑ/ ln(a/b), a < r < b,
0, b < r.

(132)
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Figure 1: The solid curves show lines of Poynting flux S, and the dashed lines
are the electric field E in the region between the wire and the outer conductor.
Because the tangential component of E is continuous at the boundary r = a,
and E = IRẑ for r < a, the field lines for r > a are bent towards positive
z. For |z| < b the field lines leave positive surface charges at r = a and end
on negative surface charges also at r = a; in loop circuits (b >∼ L) this is the
general behavior. From Electrodynamics by A. Sommerfeld (Academic Press,
1952), p. 129.

The magnetic field follows from Ampère’s law:

Bθ(r) =

{
2Ir/a2c, r ≤ a,
2I/cr, a ≤ r,

(133)

The Poynting vector is then,

S =
c

4π
E × B =

⎧⎪⎨
⎪⎩
−I2Rrr̂/2πa2, r < a,
−I2R ln(b/r)r̂/2πr ln(a/b) − I2Rzẑ/2πr2 ln(b/a), a < r < b,
0, b < r.

(134)
The Poynting vector is radially inwards at the surface of the wire, and the energy flux
per unit length there is 2πaS(r = a) = I2R. That is, the Poynting flux energy the
wire through its surface provides the I2R power loss to Joule heating.

The Poynting flux crossing a plane at constant z is

∫
Sz dArea = − I2Rz

2π ln(b/a)

∫ b

a

2πr dr

r2
= −I2Rz. (135)

Since the flux is zero at z = 0, we interpret (135) as indicating that the total Poynting
flux crossing a plane at constant z equals the power dissipated by the wire between 0
and z. This flux exists in the region a < r < b, i.e., in the air (or vacuum) between
the conductors, rather than in the conductors themselves.
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For the alternative calculation of the surface charge density, we note that the capaci-
tance per unit length between the inner and outer conductors is

C =
1

2 ln(b/a)
, (136)

so the charge per unit length needed to support the potential φ(a, z) = −IRz is

Q(z) = Cφ(z) = − IRz

2 ln(b/a)
, (137)

and the corresponding surface charge density is

σ =
Q

2πa
= − IRz

4πa ln(b/a)
, (138)

as previously found in eq. (131).

This argument helps us understand how the charge distribution and electric field in
the central region of the wire is insensitive to the physical details of the ends of the
wire. The capacitance per unit length might be different from the expression (136)
for a few wire diameters in z from the ends of the wire, but it is quite accurate over
most of the length of the wire. Hence, we are less surprised that the potential (130)
was obtained without ever specifying the boundary conditions at the ends of the wire.
Those boundary conditions only affect the potential very near the ends of the wire,
and the potential over most of the wire must have the form (130) in any case.

The potential (130) can be thought of as a kind of zero-frequency mode of the cavity
between the inner and outer conductors. This cavity more has a “natural” behavior
at the ends, found by inserting zend into eq. (130). We readily see that this radial
potential distribution would hold if the ends of the cable are terminated “naturally”
in plates of uniform conductivity, so Er ∝ jr ∝ 1/r, and φ(r) ∝ ln r.

If the coaxial cable transmits energy from a source (battery) at one end to a load
(resistor) at the other, there is a net momentum

∫
dVol εμS/c2 stored in the fields,

which is very small due to the factor 1/c2. If the cable is an isolated system, then it
also has an equal and opposite mechanical momentum. See,
http://physics.princeton.edu/~mcdonald/examples/hidden.pdf
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11. a) If long coil 1 carries steady current I1, then the magnetic field inside that coil is
axial with magnitude

B1 =
4πN1I1

cl
, (139)

by an application of Ampére’s law, ignoring end effects. Outside the coil, the magnetic
field is zero. The flux linked by coil 1 is therefore,

φ1 = N1πr2
1B1 =

4π2N2
1 r2

1I1

cl
= cL1I1, (140)

so the self inductance of coil 1 is

L1 =
4π2N2

1 r2
1

c2l
. (141)

Similarly, the self inductance of coil 2 is

L2 =
4π2N2

2 r2
2

c2l
. (142)

The mutual inductance can be calculated via the flux linked in coil 2 when coil 1 carries
current I1. Since the magnetic field due to current I1 is zero outside coil 1, which is
inside coil 2, we have

φ12 = N2πr2
1B1 =

4π2N1N2r
2
1I1

cl
= cMI1, (143)

so the mutual inductance is

M =
4π2N1N2r

2
1

c2l
. (144)

Since r2 > r1, we have L1L2 > M2.

In solving the coupled circuit equations in the presence of an oscillatory driving voltage
at frequency ω, we use complex notation, and divide out the common factor eiωt. Then
the symbols I1 and I2 are complex numbers such that the real current is Re I1e

iωt, etc.

The coupled equations are

V0 = I1R1 + İ1L1 + İ2M = I1R1 + iωI1L1 + iωI2M, (145)

0 = I2R2 + İ2L2 + İ1M = I2R2 + iωI2L2 + iωI1M. (146)

These are readily solved as

I1 =
(R2 + iωL2)V0

R2
1 − ω2(L1L2 − M2) + iω(R1L2 + R2L1)

, (147)

I2 = − iωMV0

R2
1 − ω2(L1L2 − M2) + iω(R1L2 + R2L1)

, (148)

The time-average power dissipated in coil 2 is then,

〈P2〉 =
|I2

2 |R2

2
=

ω2M2R2V
2
0

2
{
[R2

1 − ω2(L1L2 − M2)]
2
+ ω2(R1L2 + R2L1)2

} . (149)
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b) To calculate the Poynting vector S, we need the electric and magnetic fields. The
(complex) magnetic field is

Bz(r) =

⎧⎪⎨
⎪⎩

4π(N1I1 + N2I2)/cl, r < r1,
4πN2I2/cl, r1 < r < r2,
0, r < r2.

(150)

The electric field is azimuthal, as follows from Faraday’s law:

Eθ = − 1

2πrc

d

dt

∫ r

0
Bz 2πr dr = − iω

rc

∫ r

0
Bz r dr

=

⎧⎪⎨
⎪⎩
−2πiωr(N1I1 + N2I2)/c

2l, r < r1,
−2πiω(r2

1N1I1 + r2N2I2)/c
2lr, r1 < r < r2,

−2πiω(r2
1N1I1 + r2

2N2I2)/c
2lr, r2 < r,

(151)

The Poynting vector is radial, and positive if both Eθ and Bz are positive. Its time-
average value is 〈Sr〉 = (c/8π)ReE�

θBz. For r < r1, E�
θBz is pure imaginary, so 〈Sr〉 = 0

here. Since Bz = 0 for r > r2, 〈Sr〉 = 0 here also. The remaining region gives

〈Sr(r1 < r < r2)〉 =
c

8π
Re

2πiω

c2lr
(r2

1N1I
�
1 + r2N2I

�
2)

4πN2I2

cl
= −πr2

1ωN1N2

c2l2r
Im(I�

1I2)

=
πr2

1ωN1N2

c2l2r

ωMR2V
2

0

[R2
1 − ω2(L1L2 − M2)]

2
+ ω2(R1L2 + R2L1)2

=
ω2M2R2V

2
0

4πlr
{
[R2

1 − ω2(L1L2 − M2)]
2
+ ω2(R1L2 + R2L1)2

}
=

1

2πrl
〈P2〉 . (152)

Since 2πrl 〈Sr〉 is the power transported by the electromagnetic field across the cylinder
of radius r and length l, we interpret the power consumed in the outer coil as flowing
from the inner, driven coil.

c) If, instead, coil 2 is driven, then the solutions to the coupled equations are obtained
from (147-148) by swapping indices 1 and 2. Likewise, the power consumed in coil
1 is obtained from (149) by the same swap of indices. The expressions (150-151) for
the electric and magnetic fields in terms of the currents remain the same, as does the
first line of (152) for the Poynting vector. However, in the rest of (152) we must swap
indices 1 and 2, and note the sign change that occurs in I�

1 . Thus, we find

〈Sr(r1 < r < r2)〉 = − 1

2πrl
〈P1〉 . (153)

Again, power flows from the driven coil to the load coil.
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12. a) The field angular momentum is given by

LEM =
∫

r×Pfield dVol =
1

4πc

∫
r× (E×B) dVol =

1

4πc

∫
[(r ·B)E− (r ·E)B] dVol.

(154)
From the symmetry of the problem, we infer that the angular momentum will be along
the z axis, and that the electric and magnetic field are independent of azimuth ϕ in
spherical coordinates (r, θ, ϕ). Thus, we desire

LEM,z =
1

2c

∫ ∞

0
r3 dr

∫ 1

−1
d cos θ(BrEz − ErBz). (155)

The magnetic field due to magnetic dipole mẑ is

B =
3cos θr̂ − ẑ

r3
m =

2cos θr̂ + sin θθ̂

r3
m. (156)

The components we need are

Br =
2mP1(cos θ)

r3
, and Bz = cos θBr − sin θBθ =

2mP2(cos θ)

r3
. (157)

The electric field can be gotten from the electric potential φ of a charged ring, p. 59
of the Notes with cos θ0 = 0:

φ =

⎧⎨
⎩

Q
a

∑
n

(
r
a

)n
Pn(0)Pn(cos θ), r < a,

Q
r

∑
n

(
a
r

)n
Pn(0)Pn(cos θ), r > a.

(158)

Since Pn(0) = 0 for odd n, only even n terms contribute to the potential. The electric
field components are

Er = −∂φ

∂r
=

⎧⎨
⎩
− Q

ar

∑
n n

(
r
a

)n
Pn(0)Pn(cos θ), r < a,

Q
r2

∑
n(n + 1)

(
a
r

)n
Pn(0)Pn(cos θ), r > a.

(159)

Eθ = −1

r

∂φ

∂θ
=

⎧⎨
⎩
− Q

ar

∑
n

(
r
a

)n
Pn(0)P 1

n(cos θ), r < a,

−Q
r2

∑
n

(
a
r

)n
Pn(0)P 1

n(cos θ), r > a.
(160)

Eϕ = 0, (161)

using the fact that
dPn(cos θ)

dθ
= P 1

n(cos θ), (162)

where Pm
n (cos θ) is an associated Legendre polynomial. See eq. (3.39) of Jackson.

We also need Ez = cos θEr − sin θEθ, for which it is useful to note two recurrence
relations (Gradshetyn and Ryzhik, 8.731.2 and 8.735.2):

cos θPn(cos θ) =
(n + 1)Pn+1(cos θ) + nPn−1(cos θ)

2n + 1
, (163)

sin θP 1
n(cos θ) = n cos θPn(cos θ) − nPn−1(cos θ)

=
n(n + 1)

2n + 1
[Pn+1(cos θ) − Pn−1(cos θ)]. (164)
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Then

Ez =

⎧⎨
⎩
− Q

ar

∑
n n

(
r
a

)n
Pn(0)Pn−1(cos θ), r < a,

Q
r2

∑
n(n + 1)

(
a
r

)n
Pn(0)Pn+1(cos θ), r > a.

(165)

so that

LEM,z =
1

2c

∫ ∞

0
r3 dr

∫ 1

−1
d cos θ(BrEz −ErBz)

=
mQ

c

⎧⎪⎨
⎪⎩
∫ a
0 r3 dr 1

ar4

∑
n n

(
a
r

)2
Pn(0)

∫ 1
−1 dμ [P2(μ)Pn(μ) − P1(μ)Pn−1(μ)]∫∞

a r3 dr 1
r5

∑
n(n + 1)

(
a
r

)2
Pn(0)

∫ 1
−1 dμ [P1(μ)Pn+1(μ) − P2(μ)Pn(μ)]

=
mQ

c

⎧⎪⎨
⎪⎩
∫ a
0 r3 dr 1

ar4 2
(

a
r

)2 (−1
2

) (
2
5
− 2

3

)
∫∞
a r3 dr 1

r5

[
2
3
− 3

(
a
r

)2 (−1
2

)
2
5

]

=
mQ

c

{
4

15a

∫ a
0 r dr

2
3

∫∞
a

dr
r2 + 3a2

5

∫∞
a

dr
r4

=

{
2mQ
15ac

, r < a,
13mQ
15ac

, r > a.
(166)

where we have used the facts that P0(0) = 1, P2(0) = −1/2, and
∫ 1
−1 Pm(μ)Pn(μ) dμ =

2δmn/(2n + 1). Altogether,

LEM,z =
mQ

ac
, (167)

b) As the magnetic moment m goes to zero, the electromagnetic angular momentum
vanishes. But, the consequent change in the flux through the charged ring results in
an azimuthal electric field Eϕ around the ring, which causes a torque that increases
the mechanical angular momentum:

dLmech,z

dt
= aQEϕ = − aQ

2πac

dΦ

dt
. (168)

This integrates to

Lmech,z,final =
Q

2πc
Φinitial =

Q

2πc

∫ a

0
2πr dr Bz (169)

If we use (157) for Bz, the result diverges. However, this form does not correctly
account for the flux inside the small coil at the origin. We avoid this issue by noting
that, since ∇ · B = 0, the magnetic flux through the loop of radius a is the negative
of the flux across the plane z = 0 outside the loop. In that plane, cos θ = 0, and since
P2(0) = −1/2, we have

Lmech,z,final = −Q

c

∫ ∞

a
r dr Bz =

mQ

c

∫ ∞

a

dr

r2
=

mQ

ac
= LEM,z,initial. (170)

Remark: Equation (169) can be given another interpretation. The magnetic flux can
be expressed in terms of the vector potential:

Φinitial =
∫

B · dS =
∮

A · dl = 2πaAinitial,ϕ. (171)
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Thus,
Lmech,z,final = (r ×Pfinal)z = aPfinal,ϕ = QAinitial,ϕ (172)

Since Pinitial,ϕ = 0 = Afinal,ϕ, we can write

[
r ×

(
P +

QA

c

)]
z

= constant. (173)

This is the z component of the canonical angular momentum of a charged particle in
an electromagnetic field. Hence, another view of the Feynman disk paradox is that it
illustrates the conservation of canonical angular momentum.



Princeton University 1999 Ph501 Set 5, Solution 13 39

13. The key to this problem is conservation of canonical momentum, P + eA/c, where A
is the vector potential (in Gaussian units).

It turns out to be even more effective to consider the canonical angular momentum,
which is L = r × (P + eA/c).

We want Pφ = 0 outside the magnet. This implies Lz = rPφ = 0 also. Therefore, we
need r(Pφ + eAφ/c) = 0 inside the magnet.

A solenoid magnet with field Bz has vector potential Aφ = rBz/2. To see this, recall
that the integral of the vector potential around a loop is equal to the magnetic flux
through the loop: 2πrAφ = πr2Bz.

For a particle with average momentum in the z direction, its trajectory inside the
magnet is a helix whose center is at some radius RG (called R0 in the statement of the
problem) from the magnetic axis. The radius RB (called R in the statement of the
problem) of the helix can be obtained from F = ma:

mv2
⊥

RB
= e

v⊥
c

Bz, (174)

so

RB =
eBz

cP⊥
. (175)

The direction of rotation around the helix is in the −z direction (Lenz’ law).

Since the canonical angular momentum is a constant of the motion, we can evaluate
it at any convenient point on the particle’s trajectory. In particular, we consider the
point at which the trajectory is closest to the magnetic axis. As shown in Fig. 2, this
point obeys r = RG −RB , and so

Lz = (RG − RB)P⊥ +
eBz

2c
(RG − RB)2 =

(
R2

G − R2
B

) eBz

2c
. (176)

Note that R2
G − R2

B is the product of the closest and farthest distances between the
trajectory and the magnetic axis.

Hence, the canonical angular momentum vanishes for motion in a solenoid field if
and only if RG = RB , i.e., if and only if the particle’s trajectory passes through the
magnetic axis.

We also see that if the trajectory does not contain the magnetic axis, the canonical
angular momentum is positive; while if the trajectory contains the magnetic axis, the
canonical angular momentum is negative.
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Figure 2: The projection onto a plane perpendicular to the magnetic axis
of the helical trajectory a charge particle of transverse momentum P . The
magnetic field Bz is out of the paper, so the rotation of the helix is clockwise for
a positively charged particle. a) The trajectory does not contain the magnetic
axis, and Lz > 0. b) The trajectory contains the magnetic axis, and Lz < 0.


